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Abstract—Advances in materials science have led to physical
instantiations of self-assembled networks of memristive devices
and demonstrations of their computational capability through
reservoir computing. Reservoir computing is an approach that
takes advantage of collective system dynamics for real-time
computing. A dynamical system, called a reservoir, is excited
with a time-varying signal and observations of its states are
used to reconstruct a desired output signal. However, such a
monolithic assembly limits the computational power due to signal
interdependency and the resulting correlated readouts. Here,
we introduce an approach that hierarchically composes a set
of interconnected memristive networks into a larger reservoir.
We use signal amplification and restoration to reduce reservoir
state correlation, which improves the feature extraction from
the input signals. Using the same number of output signals,
such a hierarchical composition of heterogeneous small networks
outperforms monolithic memristive networks by at least 20% on
waveform generation tasks. On the NARMA-10 task, we reduce
the error by up to a factor of 2 compared to homogeneous
reservoirs with sigmoidal neurons, whereas single memristive
networks are unable to produce the correct result. Hierarchical
composition is key for solving more complex tasks with such
novel nano-scale hardware.

Index Terms—Memristive devices, Memristive networks, Time-
series processing, Reservoir computing

I. INTRODUCTION

Unconventional computing architectures, exploiting intrin-
sic dynamics for computation, have the potential to provide
platforms for “faster, less expensive and more energy efficient
computing” than current conventional architectures [1]. One
approach to constructing such architectures is the random
assembly of some form of computational substrate. In [2]
an example of randomly assembled molecular switches was
shown to implement logic functions and in [3] a general
methodology for programming randomly assembled struc-
tures was introduced. A more detailed understanding can be
obtained from the comprehensive survey on nanoelectronics
architectures, and software tools by Haselman and Hauck [4].

Within the growing field of emerging nanodevices, the
memristor [5], [6] is one candidate for the implementation
of unconventional computing architectures. Random assembly
of memristive devices into larger networks has been shown
[7]-[9]. The ability to use these random assemblies for tasks
such as higher harmonics generation demonstrates computa-
tion based on intrinsic properties of dynamical systems, as
exploited by reservoir computing [10], [11].

Goudarzi et al. [12], [13] showed that the tolerance of
reservoir computing to fault and variation as well as its ability

to compute multiple tasks simultaneously make it a suitable
choice for hardware implementations using unconventional
substrates. Memristive-based reservoir computing, using ran-
dom or ordered networks, was shown to be able to solve simple
pattern classification problems [14], [15]. However, further
analysis has shown that the computational capabilities of such
networks are not easily scalable by increasing the number of
memristive devices within the network. Similarly, Sillin et al.
[9] recognized the need for real-time feedback for solving
more complex tasks.

A classical implementation of reservoir computing, called
echo state network (ESN), typically consists of a random
recurrent neural network as the reservoir [10]. Rodan and
Tino [16] showed that random connectivity is not essential to
reservoir computing and that simplified network topologies,
such as a simple-cycle-reservoir (SCR), can produce compet-
itive results. This suggests that deterministic connectivity and
modularity, which are also important digital design principles,
may allow us to compose larger reservoirs out of memristive
networks.

In this paper, we introduce an architecture that harnesses
randomly assembled memristive networks as reservoir nodes,
and relies on the ability to connect them in a deterministic
manner to achieve higher system complexity. By using mem-
ristive networks for nonlinear computation we build upon the
results shown in [9], [14], [15]. Based on suitable combina-
tions of input and reservoir weight scaling we improve wave
generation performance by at least 20% compared with single
memristive networks. In addition, we tackle the NARMA-
10 task, not solvable by single memristive networks, and
achieve error rates up to twice as low as conventional reservoir
implementations. Based on these results we can envision
high-performance, parallel computing architectures that shift
computation to the memristive networks and enable much
simplified CMOS layers.

II. ARCHITECTURE

Memristive reservoir computing relies on dynamic state
changes of the memristive devices [15]. For nonlinear device
types voltages greater than a given threshold are required to
drive these memristive state changes. Increasing the compu-
tational capacities of memristive networks faces two main
challenges, both related to the network size and density, which
determine the effective voltage drops over all devices within
the network. Too low device voltages would not cause any
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Fig. 1: Architecture of memristive simple-cycle-reservoir (SCR). (a) Amplitude dependent memristive switching characteristics
for a 10Hz applied sine wave. Low amplitudes cause no state switching as the switching threshold is not reached. Increasing
the amplitude will result in non-saturated state switching. Further increasing the amplitude will result in near-binary switching
due to fast saturation of the memristive state variable; (b) example of a randomly assembled memristive network. The red
circles indicate nodes in which memristive devices (links between nodes) connect. The network size and device density is
controlled by the number of nodes N and the in-degree K (number of connections per device); (c) simple cycle reservoir as
in [16]. Instead of analog neurons, memristive networks provide the input-output-mapping of each SCR node.

memristive state changes required for computation, whereas
too high voltages can cause damage to devices. Second,
increased network size also raises the question of how to
interface to additional network states. Due to the differences in
the predicted form factors of nanodevices and of an underlying
CMOS layer, an increased number of interfaced memristor
signals would require spreading the memristor network over
a larger area, losing some density advantages of nanodevices
[17]. We will outline a modular architecture that circumvents
the mentioned challenges of voltage scaling and signal inter-
facing by composing a larger reservoir out of small memristive
networks.

The core element of our architecture is a memristive device.
We rely on the device model described in [18]. The current
response as well as the memristive state updates are described
by the following two equations.

I(t) = (1= w(t)) o [1 —exp (=BV(1))]
+ w(t)ysinh (6V (¢)) ()

dw . w(t)
P Asinh (nV(t)) — — ()

The current I(¢) as well as the state change dw are functions
of the device state w(¢) and the applied voltage V' (¢). o, 5,
v, 9, A, and 7 are constants that were determined to match
experimental data. 7 describes the speed of the state decay of
the device.

In Fig. la we show the switching characteristics of the
memristive device subject to application of a 10Hz sine wave
with 1V, 1.2V, and 1.5V amplitudes. In [15] it was shown
how the memristive state changes affect the computation,
with more continuous changes being the most beneficial. This

motivates using voltages beyond the device’s threshold voltage
to fully exploit the resistive range. However, voltages below
the threshold that do not cause memristive state changes,
such as the 1V signal, still exhibit a nonlinear voltage-current
response as described by equation 1, which might be harnessed
for computation.

The next level of our architecture is the memristive network,
which is randomly assembled by a set of memristive devices,
represented by links (Fig. 1b). The red circles represent nodes
in which devices connect and where it is possible to interface
to network states. Such memristive networks are the building
blocks for composing the larger reservoir architecture.

Similar to what was shown in [7], [9], [17] we assume an
underlying CMOS grid providing vertical posts that interface
to these memristive networks. This allows the composition of
memristive networks into a larger reservoir by (a) applying
input signals to the networks, (b) implementing interfaces
to read network states (differential signal obtained from two
random network nodes), and (c) signal routing and ampli-
fication between memristive networks in the CMOS layer
following the ring structure with minimal connections as
presented in [16] (Fig. 1c). With each SCR node interfacing
to a distinct memristive network (in other words a distinct
nonlinear input-output function), this architecture provides the
basis for heterogeneous reservoir computing. Each SCR node
output is forwarded to the readout layer. A detailed description
containing the readout layer is given in Section III.

III. EXPERIMENTAL SETUP

A. Reservoir Computing Model

In our single cycle reservoir, the nodes are ordered in a
ring structure with uniform fixed weights connecting the nodes
without any further adaptation [16]. Figure lc is a schematic
of the SCR. The readout layer computes a linear combination



of the reservoir states. The readout weights are determined
using supervised learning techniques, where the network is
driven by a teacher input and its output is compared with a
corresponding teacher output to estimate the error; the weights
can be calculated using any closed-form regression technique
[10] to minimize this error. We represent the time-dependent
inputs as a column vector u(t), the reservoir state as a column
vector x(t), and the output as a column vector y(t). The
input connectivity is represented by the matrix W where
each element is assigned the weight v with signs chosen
according to Bernoulli distributions. The reservoir connectivity
is represented by an N x N weight matrix W7, In our
SCR, the weights of the reservoir are uniform and equal to
the magnitude of the spectral radius |A|. Spectral radius is the
largest absolute eigenvalue of the weight matrix, and deter-
mines the dynamical regime of the reservoir. For |A| > 1, the
reservoir amplifies the signals over time, potentially causing
chaotic dynamics, whereas for |A\| < 1 the signals attenuate
over time leading to contractive dynamics.

As described in Section II, the state of a reservoir node is the
differential between two randomly chosen signals within the
memristive network comprising the node, denoted hereafter by
x;(t). The time evolution of the i reservoir node is given by:

x;(t+1) = fi (W[ - x(t) + Wi -u(t)), (3)

where W7 and W" are the i row of the reservoir weight
matrix and the input weight matrix respectively, and f; is the
distinct transfer function of node ¢ computed by its internal
memristive network (see Section II). The output is generated
by multiplying an output weight matrix W% of length N +1
and the reservoir state vector z(t) extended by a constant 1
represented by x’(¢):

y(t) = W - X'(¢). 4)

For training, we calculate the output weights to minimize
the squared output error E = {||y(t) — y(¢)||?) given the
target output y(¢). Here, || - || is the Ly norm and {-) the time
average. The output weights W°“! can be calculated using
any regression technique.

B. Memory Capacity Task

The linear memory capacity is a standard measure of
memory in recurrent neural networks. The memory capacity
is evaluated using the capacity function Cy, which is the
coefficient of determination between the output y; and the
desired output ¥;:

_ Cov(uni)
? 7 Var(y)Var(G,)’
where ¢ is the memory length for the task. The desired output
for this task is defined as:

&)

Ur = Up—g- (6)

The ¢-delay memory function Cy measures how well the
network can reconstruct its input from ¢ steps ago. Memory
capacity is then calculated as a summation of the capacity

function over ¢: C' = Z¢ Cys. We use 1 < ¢ < 10 for our
empirical estimations. In these experiments reservoirs of size
N = 20 nodes are driven with a one-dimensional input drawn
from uniform distributions on [—0.8, 0.8].

C. Higher Harmonics Generation Tasks

Higher harmonic generation (HHG) is a nonlinear process
in which a dynamical system is excited by a signal with fre-
quency f and in turn generates signals with other frequencies
not present in the input. To enable comparison with [9], we
present the following three tasks:

1) Sine wave generation: For this task, the reservoir is
driven with a sine wave at frequency f and the output is trained
to produce a sine wave at frequency 2f.

2) Triangle wave generation: For this task, the reservoir is
driven with a sine wave and the output is trained to produce
a triangle wave given by:

8 sin(27(2k + 1) ft
ot) =3 2.0 ((21(f+?)2)f)

k=

(7

3) Square wave generation: For this task, the reservoir is
driven with a sine wave and the output is trained to produce
a square wave given by:

o(t) = %Z sin(2m(2k — 1) ft)

2k — 1) ®

k=1
D. Multiple Superimposed Oscillator

Prediction of superimposed oscillators is used to test the pre-
diction and wave generation capability of recurrent networks
[19]. To perform this test the network is usually operated in
a free-running mode after training and the speed at which the
output deviates from the expected wave is measured. Here we
use only a restricted version of the task in which the network
is trained to produce the input values 5 ms ahead of time. The
input wave form to the network is defined as:

y(t) = sin(0.2¢) + sin(0.311¢) + sin(0.42¢). )

The coefficients are designed to make sure the attractor has a
long cycle length and cannot be memorized by the network.
We will use this task to test prediction ability and stability of
random memristor networks.

E. NARMA 10

Nonlinear autoregressive moving average 10 (NARMA 10)
is a discrete-time temporal task with 10th-order time lag. To
simplify the notation we use y; to denote y(¢). The NARMA
10 time series is given by:

Y=y + By Y Y1 Fyunu 1+ (10)

i=1
where n = 10, « = 0.3, 8 = 0.05, v = 1.5, § = 0.1. The input
u¢ is drawn from a uniform distribution in the interval [0, 0.5].
This task presents a challenging problem to any computational
system because of its nonlinearity and dependence on long
time lags. Calculating the task is trivial if one has access



to a device capable of algorithmic programming and perfect
memory of both the input and the outputs of up to 10 previous
time steps. This task is often used to evaluate the memory
capacity and computational power of ESN and other recurrent
neural networks.

F. Simulation Software

All experiments were done using the software framework
OGER [20], a comprehensive reservoir computing framework
that provides a variety of datasets, reservoir node types, and
training methods. We augmented the existing set of reservoir
nodes by a memristive reservoir node (MRN). An MRN is
the above-mentioned random assembly of memristors. We
compute these networks by treating them as temporarily
stationary resistive networks that can be solved efficiently
using the modified nodal analysis (MNA) algorithm [21].
After calculating a time step using the MNA, we update
the memristive devices based on the node voltages present
in the network to account for the dynamic state changes of
memristors.

IV. RESULTS
A. Memory Capacity

Figure 2a shows an example of the power-spectral density
of a single node in the SCR. The existence of f structure
indicates non-trivial long-range correlation structure in the
node dynamics, which suggests rich memory. A similar result
was reported in [9]. Figure 2b shows the sensitivity of the
memory capacity C to two parameters, the input weight
coefficient v and the spectral radius A, for a SCR with 20
nodes and reconstruction delay of ¢ = 10. We observe the best
memory capacity for low voltages and )\ in the range between
1.5 and 2.5. Conforming with traditional ESN larger voltages
lead to more dynamic switching and nonlinear state changes,
which harms the ability to preserve information. Hence we can
observe the known RC trade-off between nonlinear processing
and high memory capacity. In contrast to ESN, the choice
of A\ underlies different considerations. In traditional ESN
|A\| < 1 implements a fading memory of past inputs, with
longer retention for values closer to one. |A| > 1 can lead
to chaotic behavior as signals circulating within the recurrent
network might get amplified indefinitely. For our approach, the
output of a memristive network can never be greater than the
input, and is most likely to be smaller. Therefore we can allow
an amplification of signals, which is indicated by the best MC
for A = 1.5...2.5. Beyond that the system does not become
chaotic, but voltage limitations cause signal saturation, which
limits the memory capacity.

B. Higher Harmonic Generation

We compared single memristive networks with the mem-
ristive SCR architecture. Both setups are compared based on
the number of signals extracted from them and forwarded to
the readout layer. Table I shows the best results from setups
comparable to [9]. The single memristive network had 16
output nodes and contained 120 memristive devices. The SCR
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Fig. 2: (a) Examples of node dynamics in the reservoir (left
columns) and corresponding power-spectral density (PSD)
(right column). The existence of power-law PSD indicates non-
trivial long-term memory at the level of single nodes similar to
what was reported in [9]. (b) Memory capacity C as a function
of input weight coefficient v and spectral radius A. The values
are normalized by system size N = 20.

Architecture Task MSE (stdev) v

20Hz sine 0.0617(0.0191) 2

Single network | triangle 0.0015(2.45¢~%) 2
square 0.0521(0.0029) 12.5

20Hz sine 0.0111(0.0064) 2

SCR triangle | 8.14e~4(1.62¢™%) 2
square 0.0307(0.0037) 12.5

TABLE I: The best observed MSE for HHG tasks and cor-
responding parameters for systems passing 16 values to the
readout layer.

was made up of 16 nodes with each node providing one
signal and utilizing memristive networks of approximately 50
devices. Figure 3a shows a more detailed representation of the
performance of a single memristive network as a function of
increasing input biases. Similar to [9] we observe the best
generation of the sine wave for v = 2V and the square
signal for larger voltages. Besides some similarities we can
also observe clear discrepancies, such as the absolute MSE
values and the minimal error for generating the triangle wave.
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Fig. 3: (a) Wave generation MSE single memristive network
with 16 readout nodes. The curves for the individual signals
are in shape similar to the ones published in [9], even though
the scale is different. (b) Comparison of cumulative MSE
of single memristive network with single cycle reservoir of
memristive networks as a function of readout signals. The
SCR, due to the physical separation of the memristive net-
works can produce less dependent signals and achieve better
performance.

Without having absolute certainty, we suspect differences in
the memristive devices, constraints on the network topology,
and the application/reading of input/output signals to be likely
causes of these differences.

Figure 3b compares the combined MSE (sine, triangle,
square) of single memristive networks and of the memristive
SCR. The x-axis defines the number of signals read from the
corresponding architecture. For the SCR this is the same as the
number of nodes. We can observe that the signals read from
the SCR allow better generation of the target signals. Due to
the physical separation of the SCR nodes, the signals are less
correlated and provide more features compared with signals
all read from the same memristive network.

C. Prediction of Superimposed Oscillators

Superimposed oscillators are used in the recurrent neural
network community to test the signal generation and prediction
capabilities of a network. Here, we use the three superimposed

oscillators task to demonstrate the prediction capability of
our reservoir consisting of N = 20 SCR nodes, each of
which includes 55 memristors on average. The sine wave
is fed to the network as explained before and the output is
trained to produce the correct values 5 ms ahead of time. We
repeat the experiment with different combinations of input
weight coefficient v = {1,2,3,...,15} and spectral radius
A = {0.1,0.3,0.5,...,2.5}. All results are averaged over
50 experiments for each parameter combination. Note that in
this particular experiment there is no difference between the
training and testing errors since the input is always fixed. We
present the results using the normalized-root-mean-squared-
error (NRMSE):

varnse - ¥ O =501

(¥(®)?)
The best average result was NRMSE = 0.17 with standard
deviation 0.07 for v = 2 and A\ = 0.5, while the best individual
result was as low as NRMSE = 0.04 forv=1and A = 0.7,
which is comparable to a classical ESN solving the same task.

D. NARMA-10

The NARMA-10 task, due to the need of memory, poses a
difficulty that single memristive networks, as presented here,
are not capable of dealing with. Experiments to verify this
were done for different single memristive network sizes (75
to 350 devices) with best resulting NRMSE values of around
10 indicating this inability.

The memory capacity results in section IV-A have shown
that memory is best preserved at low voltage ranges, which
also means that the memristive devices change only minimally.
We found the optimal values for the MC task also leading to
the best results on the NARMA-10 task. Figure 4 compares
the results for our memristive SCR and a regular sigmoidal
neuron SCR. The low input signal range implies that the nodes
of both implementations behave mostly linearly. However,
due to a spectral radius greater than one and the resulting
signal amplification, memristive networks experience some
low-frequency internal device state changes (at a lower rate
than the input signal), which adds some nonlinear processing
to the reservoir. As a result of this, with a growing number
of nodes, the memristive SCR continues to improve while
the sigmoidal SCR plateaus at around a size of 100 nodes.
We attribute this continuous performance improvement for in-
creasing reservoir sizes to the heterogeneity of the input-output
mappings (activation functions) of the memristive networks,
the low frequency memristive state changes, and the resulting
diverse signals used by the readout layer.

(11

V. DISCUSSION

We compared our simulation results of memristive networks
to the physical realization of “atomic switch networks” used
for reservoir computing [7], [9]. The differences in these
results highlight an important aspect of unconventional com-
puting, namely the high variability in structure and behavior
of such computational substrates. Our results emphasize that
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reservoir computing allows for the utilization of varying sub-
strates to achieve computation, despite these differences.

Initial investigations of the input-output mappings of ran-
dom memristive networks have shown a wide range of behav-
ior based on where the CMOS layer connects to the memristive
networks. In extreme cases, due to the random structure, a
subset of memristive networks does not contribute to compu-
tation at all. Deeper understanding of these differences and
their contribution to the overall computation is key to better
utilization of the hardware resources.

VI. CONCLUSION

In this work we have introduced a hierarchical memristor-
based reservoir computing approach. We showed that for the
higher harmonics generation tasks, system parameters causing
frequent memristive state switching gave the best results,
outperforming single memristive networks by at least 20%.
The NARMA-10 task, which requires memory of the past 20
inputs, performs best for system parameters that cause only
sporadic memristive switching, hence better preserving the
memory implemented by the recurrent structure. The variety
of memristive networks allowed a better utilization of the
resulting reservoir states by the readout layer, leading to better
performance compared with sigmoidal neuron based reser-
voirs. In this work, we combined the computational capacities
of memristive networks with scalability advantages of CMOS
to compose complex and computationally powerful reservoir
systems based on emerging nanoscale devices.
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