A Comparative Performance Evaluation of Write Barrier
| mplementations®

Antony L. Hosking

J. Eliot B. Moss

Darko Stefanovic

Object Systems Laboratory
Department of Computer Science
University of Massachusetts
Amherst, MA 01003

Abstr act

Generationa garbage collectorsare ableto achievevery
small pause times by concentrating on the youngest
(most recently allocated) objectswhen collecting, since
objects have been observed to die young in many sys-
tems. Generationa collectors must keep track of all
pointers from older to younger generations, by “moni-
toring” al stores into the heap. Thiswrite barrier has
been implemented in a number of ways, varying essen-
tially in the granularity of theinformation observed and
stored. Here we examine a range of write barrier im-
plementations and eva uate their relative performance
within a generation scavenging garbage collector for
Smalltalk.

1 Introduction

Generationa collectors achieve short collection pause
times partly because they separate heap-allocated ob-
jects into two or more generations and do not process
all generations during each collection. Empirical stud-
ies have shown that in many programs most objectsdie
young, so separating objectsby age and focusing collec-
tion effort on the younger generationsisapopular strat-
egy. However, any collection scheme that processes

*This work is supported by National Science Foundation Grant
CCR-8658074 and by Digital Equipment Corporation and Apple
Computer. The authors can be reached via Internet addresses
{hosking,moss,stefanov}@cs.umass.edu.

Permission to copy without feeall or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright noticeand thetitle of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

Proceedings ACM Conference on Object-Oriented Pro-
gramming Systems, L anguages, and Applications
Vancouver, Canada, Oct. 1992, pp. 92-109

only a portion of the heap must somehow know or dis-
cover al pointers outside the collected area that refer
to objects within the collected area. Since the areas not
collected are generally assumed to be large, most gen-
erational collectors employ some kind of pointer track-
ing scheme, to avoid scanning the uncollected aress.
Again, empirica studies show that in many programs
the ol der-to-younger pointersof interest to generational
collection are rare, so avoiding scanning presumably
improves performance.

To avoid scanning, the system must maintain some
kind of table enabling the collector to find al the in-
teresting pointers; we call this abstraction the interest-
ing pointerstable (1PT). Interesting pointersare created
when apointer (as opposed to non-pointer data) isstored
in a heap object (as opposed to some other place) and
the modified object resides in an older generation than
the object that is the target of the pointer. Thus, certain
of the program’s stores must somehow create IPT en-
tries. The action required has been called a store check
or a write barrier by different authors. The genera
approach isto add an entry to the IPT whenever an in-
teresting pointer is (or might be) created. The collector
uses and rebuildsthe | PT, discarding any entriesthat do
not describeinteresting pointers. Such entriescan come
about either because the system, as it runs, isimprecise
about what isinteresting, or because later changes over-
write interesting pointers with uninteresting data. Note
that if the system is imprecise, it must err on the side
of putting too many entries in the IPT rather than too
few, since the IPT must allow the collector to find all
interesting pointers.

Inthispaper weareconcerned with direct comparison
of various methods of implementing the write barrier.
We will describe: our collector, the specific write bar-
rier methods we compare, the benchmarks we used, the

Page 1

experiment setup and methodol ogy, and theresults. We
also discuss related work and present the conclusions
we draw from the results. We offer two principal con-
tributions here: the experimental results, which, like
most benchmark-based studies, are not conclusive but
nevertheless are interesting and useful; as well as the
unique (to our knowledge) experimenta setup that al-
lows very direct and meaningful comparisons of the
various schemes.

2 Overview of the gar bage collector

We now describe the garbage collector used for the per-
formance studies reported here. Its basisisthe UMass
Language-Independent Garbage Collector Toolkit, to
which we add language specific code for our Smalltalk
system. We first offer a condensed description of the
toolkit and continue with appropriate details of the
Smalltalk system. For a more detailed discussion of
the toolkit see [4].

2.1 Thetoolkit concept

The toolkit divides the responsibility for and support
of garbage collection into two parts. a language-
independent part, supplied by the toolkit, and a
language-specific part, nominaly supplied by the lan-
guage implementor. The language-independent part
consistsmostly of the datastructures and code for man-
aging multiple generations and the alocation of heap
objects. Thelanguageimplementor must supply thefol-
lowing capahilities: locating at scavenge time al root
pointers (those pointers outside the scavenged genera-
tionsthat refer to objectsin the scavenged generations),
and locating all pointers within a heap object given a
pointer to the start of the object. Thetoolkit includesa
library of routines that an implementor can use to sup-
port thePT; it remainstheimplementor’sresponsibility
to locate roots lying in the stack(s), registers, and any
other areas outside the heap.

2.2 Thedructureof theheap

Thetoolkit definesthe structure of the heap and supplies
the necessary alocation routines. The heap consists of
a number of generations, ordered by age. We number
themO, 1, 2, ..., inorder of increasing age. Inany given
collection some generation and all younger generations

will be scavenged. Thenumber of generationsmay vary
over time.

Each generation consistsof a number of steps. Steps
segregate objectsby age within ageneration, and during
scavenging all surviving (reachable) objectsin agiven
step are copied to some other step. This promotion step
may belong to the same or a different generation. By
adjusting the promotion stepsbefore scavenging onecan
introduce new steps, combine existing steps, and so on,
allowing thenumber of stepsinagenerationtovary over
time. The primary function of stepsisto eliminate the
need for storing or maintaining any age information in
individual objects. Thisreduces storage and time costs,
but also gives the collector age information without
imposing any requirementson object formats (whichare
entirely theresponsihility of thelanguageimplementor).
While the meaning of steps is somewhat arbitrary, we
imposeaconvention that objectsin thelower numbered
steps are younger than those in the higher numbered
steps, numbering the steps 0, 1, 2, ..., such that every
step in the system has a unique number.

For example, generation O might have steps 0 and 1,
generation 1 might have steps 2 through 4, and so on.
A simple promotion policy is to promote survivors of
step k to step k+1. In that case, the number of steps
in a generation determines the number of scavenges (of
that generation) necessary to promoteobjectsto the next
generation.

Each step consists of a number of blocks. A block is
2" bytes, aligned on a2™-byte boundary for somevalue
of n chosen when the system is built. A typical block
size might be 64K bytes. The number of blocks in a
step may vary over time. While the blocks of a step
are usually not contiguous, a hursery may be set up to
consist of a number of contiguous blocks, so that one
might more readily use a page trap to detect nursery
overflow and trigger a scavenge. This avoids the need
for an explicit limit check at every alocation.

Blocks have four primary advantages. First, they
allow sizes of stepsand generationsto vary easily since
the storage of a step need not be contiguous. Second,
they allow speedy determination of the generation, step,
and promotion step of an object: one merely shiftsthe
address of the object right by » bitsand indexes ablock
table containing the needed information. Third, blocks
match naturaly with page trapping or card marking
schemes (to be discussed in detail below). Fourth, they
reduce the storage needed under some circumstances,

Page 2

compared with copying collectors that use semi-spaces.
If b bytes are present in a generation before a scavenge
and the survivors consume a bytes, then a semi-space
scheme uses 2b bytes whereas our scheme uses b+a
bytes (modul o rounding resulting from the block size).
The degree of advantage depends on the survival rate
alb, but may be significant in some applications.

Blocks do introduce a problem: they cannot han-
dle objects larger than the block size. To handle such
objects we provide alarge object space (LOS), as sug-
gested in [14]. Indeed, it is probably a good ideato put
in LOS any object that consumes a significant fraction
of ablock; we used the heuristic threshold of 1/8 of a
block. Further, as also discussed in[14], any object that
has few pointersin it and that exceeds some threshold
in size should be stored in LOSto avoid the overhead of
copying. Without going into al the details, LOS uses
free list alocation based on splay trees [10, 11, 5] and
onceallocated an LOSobject isnever moved. However,
LOS objectsstill belong to astep, which isindicated by
threading the objects onto a doubly linked list rooted
in the step data structure. When an LOS object is pro-
moted, we simply unchain it from one list and chain it
into another. When scavenging is complete, any LOS
objects remaining on a scavenged step’s LOS list are
freed.

While the generation, step, and block of a non-LOS
object can be discovered via the simple shift and index
technique, LOS may mix objects from different steps
and generationsin the same block. Therefore, we store
a back reference from each LOS object’s header to its
containing step, alowing relatively easy determination
of the step given a pointer to the object’'s base. De-
termining the step given a pointer into the middle of
the object requires locating the object header, which is
supported but involves additiona work.

2.3 Phases of a scavenge

A scavenge consists of two phases. First, the root set
for the scavengeis determined based onthe IPT scheme
employed (aswell asthe stack and register decoding ap-
proach). All objects directly reachable from the roots
are copied into new space, and the roots updated. In
the second phase al objects reachable from the new
space objectsare copied over using anon-recursive Ch-

eney scan [2].! As each object is copied, aforwarding
pointer is left in the old copy, so that other references
to the object can be updated as they are encountered.
Since the toolkit makes no object format assumptions,
the details of forwarding pointer format are up to the
language implementor. The toolkit does support auto-
matic determination of where to allocate the new copy
of the object, given the object’s size (which must be
determined by language-specific code).

Before a scavenge begins, the toolkit, following a
dynamically modifiable plan supplied by the language
implementor, determines the generations to be scav-
enged and creates new steps according to the number
desired for each scavenged generation. It also sets up
all the promation step references. After a scavenge, all
the old steps of the scavenged generations are deleted
and their blocks become availablefor allocation.

2.4 Smalltalk details

Our Smalltalk system consists of a virtual machine of
our owndesign. Itincludesabytecodeinterpreter for the
instructionset defined in[3], and werun aSmalltalk im-
age cloned (converted into our format) from an earlier
release of Smalltalk-80.2 We manage contexts (stack
frames) as described in [7]. In particular, a number
of frames are prealocated and assembled on a doubly
linked list. Ordinary callstraverse thelist in one direc-
tion and ordinary returns traverse it the other way, with
cost similar to a stack. When a block context (similar
to aclosure) is created, or a frame otherwise becomes
referenceable as an object, it is removed from the or-
dinary linked list so that it will not be reused until the
collector can establish that it is no longer referenced.
We store frames in step 0 and they are never promoted.
Thismeansthat we need never perform store checks on
storesinto frames (they are in the youngest generation,
so such a store can never create an interesting pointer).

Non-frame objectsare created inthenursery instep 1.
Generation 0 includes steps 0 and 1, so in principle we
can use a dightly cheaper store check for initiaizing
stores (which seem to be the most common stores in
the system): ignore stores if the modified object is in

! The toolkit might be adapted to support mark-sweep or other
approaches to collection, but currently it provides only copying
collection. Also, it would not be hard to incorporate suggestions
such as hierarchical clustering [16].

2 Smalltalk-80is aregistered trademark of PARC Place Systems.

Page 3

generation O (regardless of the generation of the target
of thepointer).? Thereisatotal of five generations, with
one stepin each of generations1, 2, 3, and 4. Each step
(except step O, which never promotes, and step 5 which
isthe oldest step) promotesto the next step. Generation
Oiscollectedif werun out of frames or step 1 exceedsits
alocation of oneblock. Similarly, generations1, 2, and
3 are scavenged if they exceed their respective limits of
1, 1, and 10 blocks. Generation 4 is never collected.
Theblock sizeis 64K bytes. All objectslarger than 8K
bytesarestored inLOS, asareall bytesobjectsof sizeat
least 496 bytes. We do not claim that this arrangement
is necessarily well-tuned, but we held it fixed across
al benchmark runs so the comparisons remain direct.
Note that the system can easily be configured to have a
different heap arrangement.

3 Writebarrier implementations

As previously sketched, the write barrier consists of ac-
tions performed in conjunction with a store that might
create an interesting pointer. The purpose of the write
barrier is to support efficient location of all root point-
ersin the heap (i.e, to avoid scanning the generations
not being collected). We have implemented severa
versions of the three most common write barrier ap-
proaches. They vary mostly in the granularity of the
information they record.

The first scheme associates a remembered set with
each generation [13], recording the objects or locations
in older generationsthat may contain pointersinto that
generation. Any pointer store that creates a reference
from an older generation to a younger generation is
recorded in the remembered set for the younger gener-
ation. At scavenge time the remembered sets for the
generations being scavenged include the heap root set
for the scavenge.

The other schemes divide the heap into logica re-
gions of size 2* bytes, aligned on a 2*-byte boundary,
for some fixed k. We call these regions cards, after
[12, 17]. Each card has a corresponding entry in acard
table indicating whether the card might contain point-
ers into younger generations. Mapping an address to
an entry in thistable is simple: one shifts the address
right by k& and uses the result as an index into the table.

3\We detail later the exact store checks(if any) we usedwith each
write barrier implementation.

Whenever a pointer is stored into an object, the cor-
responding card is dirtied. At scavenge time al dirty
cards of generations not being scavenged include the
heap root set for the scavenge.

One variant of this scheme uses the page protection
mechanism of the operating system to detect storesinto
clean cards. A card in this scheme corresponds to a
page of virtual memory. All clean pages are protected
from writes. When awrite occurs to a protected page,
the trap handler dirties the corresponding entry in the
card table and unprotects the page. Subsequent writes
to the now dirty page incur no extra overhead. Note
that all writes to a clean page cause a protection fault,
not just those that store pointers. An operating system
could more efficiently supply the information needed
in the page protection scheme if it offered appropriate
calls to manipulate the page dirty bits maintained by
most memory management hardware [8].

With each of these schemes we are faced with the
choice of remembering either the ot that is updated or
the object containing that slot. For remembered sets,
thisis simply a matter of entering the object pointer or
the slot addressin the appropriate remembered set. For
card marking, remembering the contai ning object means
dirtying the card containing the header of the object.
Remembering the slot means dirtying the actual card in
which the dot lies, which may be different. Naturally,
the page protection schemeisonly ableto dirty the page
containing the slot, since that is the location updated.

We now give adetailed description of our implemen-
tation of these schemes.

3.1 Remembered sets

Our remembered sets are implemented as circular hash
tables using linear hashing. A remembered set is allo-
cated asan array of 2+k entries. To enter aniteminthe
set, we hash theitem to obtain bitsand index the table.
If the indexed location is empty then the item is stored
in that slot and we are done. If the location already
contains the item then we are done also. Otherwise,
theimmediately succeeding k& slotsare examined to try
to place the item (thisis not done circularly; hence the
2'+k rather than simply 2¢). If an empty location still
cannot be found then a circular search of the table is
made to find an empty slot. The hash tables are kept
relatively sparse by growing a table whenever an item
cannot be placed in its natural hash dot or the & fol-

Page 4

lowing slots, and 60% or more of the table's dlots are
full. We fixed k=2 and the growth policy is to incre-
ment (i.e., basically doublethetable size when atable
isgrown).

3.1.1 Thewritebarrier

To avoid making the remembered sets too large we
record only those stores that are interesting; we use
the term filtering to indicate the process of determining
whether an item isinteresting. In Smalltalk we always
doapointer vs. non-pointer test on theitem being stored.
If theitem isa pointer, thisisfollowed by a generation
test, which we perform by determining the generations
of both the modified source object and the target object
whose pointer is being stored, and comparing the two.
Following Zorn [18], and based on our own run-time
traces of the Smalltalk system which revea that most
storesoccur toinitializenewly allocated objects, we can
frequently avoid the need to determine the generation
of the target object by checking if the modified object
isin generation 0. As mentioned earlier, determining
the generation of an abject involves shifting its pointer
and indexing into the block table. Thus, our storefilter
involves a shift, index, and load to obtain the source
object’s generation, a conditiona to filter initiaizing
stores, followed by a shift, index, and load for the target
object, and a comparison. If the store passes through
thisfilter thenit isinteresting, so weinvokeasubroutine
to hash the modified object or slot into the appropriate
remembered set. To avoid run-time code to determine
precisely which remembered set to update, all interest-
ing stores are actualy hashed into a run-time scratch
Set.

Onthe MIPS R2000initializing storesarefiltered us-
ing 7 instructions. The remaining uninteresting stores
are filtered using another 7 instructions. The entire
inline sequence comes to a total of 17 instructionsin-
cluding the call to update the remembered set.

3.1.2 Scavenging

At scavenge time the remembered sets of the genera-
tionsbeing scavenged plusthe scratch set determinethe
heap root set. To eiminate duplicatesin theroot set we
hash the remembered sets of the scavenged generations
into the scratch set to form the union. Each entry in the
scratch set is then processed to locate pointersinto the

scavenged generations: if we are remembering objects
then the heap root set consistsof all pointer locationsin
those objects; otherwiseif slots are being remembered
then they directly constitutethe root set. Asscratch set
entries and promoted objects are processed, al inter-
esting pointers that we encounter are recorded in their
appropriate remembered set, in order to rebuild the re-
membered sets of the scavenged generationsand to keep
those of the older unscavenged generations up to date.
Theapparent advantagesof remembered setsaretheir
conciseness and accuracy, achieved at the cost of filter-
ing for interesting pointer stores before recording them
in the appropriate remembered set, and of hashing to
keep the sets small by eliminating duplicates. At scav-
enge time, unless there has been repeated mutation of
an object or location, the remembered set islikely to be
avery accurate characterization of the heap root set.

3.1.3 Thesequential store buffer

For an interpreted language such as our Smalltalk sys-
tem the space overhead of 17 instructionsat every store
siteis not a problem, since stores occur at arelatively
small number of fixed locationsin theinterpreter. How-
ever, for compiled languages this overhead will be in-
curred at every one of an arbitrary number of compiled
storesites, which may be prohibitive. For thisreasonwe
havedevised ascheme similar to that introduced by Ap-
pdl [1], alowing batch filtering and recording of pointer
stores, using a sequential store buffer (SSB) to buffer
the necessary information. The SSB comprises some
number of contiguous pages, bounded by a “guard’
page that has been protected from writes. Recording a
word of information in the SSB consists of storing to
the next free locationin the buffer and bumping the free
pointer. If the free pointer is maintained in a register
then this can be implemented on the M1PS R2000 using
justtwo instructions: oneto storetheword and the other
to increment the pointer.

At scavenge time the information recorded in the
SSB isprocessed to updatethe scratch set, with filtering
as described above. Overflow of the SSB at run time
is trapped by the operating system when an attempt is
made to store into the guard page. The trap handler
processes the SSB and resets the free pointer to the
beginning of the buffer.

We record two words of information in the SSB for
each store to alow for efficient filtering of uninterest-

Page 5

ing pointers: when remembering slots we record the
modified object as well as the updated slot;* when re-
membering objects we record both the modified source
object and the target object to avoid scanning the entire
modified object for interesting pointerswhen processing
the SSB.

3.2 Card marking

Card marking requires that we alocate a contiguous
card table containing an entry for every card in the
heap. Our garbage collector allowsthe heap to grow as
large as the operating system (and practical considera-
tions) will alow, since blocks are incrementally added
to the heap as they are needed. While we envision a
scheme where the card table grows incrementally, in
the benchmark runs we imposed an upper bound on
heap growth and alocated a fixed-size card table during
memory manager initialization.

3.21 Thewritebarrier

One of the most attractive features of card marking
is the simplicity of the write barrier. For this reason
we have chosen to implement the card table as a byte
array rather than abit map.5 By interpreting zero bytes
as dirty entries and non-zero bytes as clean, a pointer
store can be recorded using just a shift, index, and byte
store of zero. On the MIPS R2000 this comes to just
4 instructions: aload to get the base of the card table,
a shift to determine the index, an add to determine the
byte entry’s address, and a byte store of zero.

3.2.2 Scavenging

At scavenge time the dirty cards of the generations not
being scavenged determine the root set. We must scan
each card to find all references into the generations be-
ing scavenged. If we are remembering objects (i.e, if
pointer stores dirty the containing object’s card) then

*Recording the slot alone would be sufficient. However, we
can take advantage of the fact that our Smalltalk implementation
allocates all object headersin small object space. Large objectsare
represented by a header in small object space with a pointer to the
body of the object in large object space. This makes determining
the generation of a slot much simpler if we are given a pointer to
its containing object’s header rather than the address of the slot
itself. By recording the modified object aswell as the slot we avoid
unnecessarily complicating SSB filtering.

S\We first heard of this ideafrom Paul Wilson.

every pointer slot of every object whose header liesin
adirty card must be examined. If we are remembering
dots(i.e., if storesdirty the updated slot’scard) thenthe
root set consistsof all pointersthat liein dirty cards. Ei-
ther way, locating pointers within cards is complicated
by the mixing of bytesand pointersin Smalltalk objects,
and the potential for objectsto span multiple cards.

To find the pointers in a card we must be able to
find the object headers in the card, which encode the
formats of the abjects allowing us to locate their point-
ers. To support locating object headers, we maintain a
table of card offsets parale to the dirty card table, in-
dicating the location of the last (highest address) object
header within each card. This requires every alloca
tion of an object in any generation but the youngest to
update the card offset table. These updates are uncon-
ditional, since we allocate from low to high addresses,
so the most recent allocation in a card is always the
offset of the last object in the card. Since new objects
are dways alocated in the youngest generation this al-
location overhead is incurred only upon promotion of
objectsat scavengetime® A negative offset entry indi-
catesthat the card containsno object header—the object
header must bein some previouscard. A positiveoffset
indicates the longword of the card at which the last ob-
ject’s header begins. Using longword offsets alows us
to keep the offset table entriesto just one byte for cards
of 512 bytesor less. For larger cards we use atwo-byte
entry.

Before scanning a dirty card for pointers, we first
mark it clean. Then if wefind any interesting pointer in
the card (even if the generation of the target is not be-
ing scavenged), we dirty the card for future scavenges.
Note that a dirty card becomes clean if the scan certi-
fies that the card contains no interesting pointers. We
reduce scanning overhead by scanning al contiguous
dirty cards as a group, running from the first to the last.
Promoted objects are always allocated in newly alo-
cated blocks whose cards are assumed to be clean, so as
promoted objects are scanned we a so update their card
entries.

Anunresolved questionisjust how large cards should
be. Thereisan obvioustradeoff inthat large cards mean
fewer cards and smaller tables, but larger cards aso
imply alarger root set at scavenge time. Thereis aso

® Thereis one rare exception to this brought about by our imple-
mentation of the Smalltalk primitive method becore: .

Page 6

the question of filtering. As for remembered sets we
filter non-pointer storesto avoid unnecessarily marking
cards. However, there isthe possibility that generation
filtering might a so improve the accuracy of theroot set
by reducing the number of marked cards to be scanned
at scavengetime.

3.3 Page protection

The fina scheme is a variant of card marking where
the write barrier is implemented by using the paging
hardware’s capability to trap writes to protected pages.
Rather than recording every store at run time, we trap
only writes to clean pages. This means that thereis no
overhead for writing to dirty pagesat runtime, but stores
to clean pages will incur the significant overhead of
fieldingasignal fromtheoperating system, unprotecting
the appropriate page, and resuming (~ 250us round
trip as measured in atight loop under Ultrix 4.1 on the
DECStation 3100).

At scavenge time we process dirty pages (of gen-
erations not being scavenged) essentially as for card
marking, except that any dirty page certified as clean
must be protected. We scan runs of contiguous dirty
pages as agroup. Similarly, to protect arun of contigu-
ous ex-dirty pages weissuejust one system cal for the
entire run, to minimize system call overhead.

Unlike card marking, where we alocate promoted
objects in newly alocated blocks whose cards are as-
sumed to be clean, the page protection scheme assumes
that the pages of all newly allocated blocks are dirty.
This means that there is no need to record interesting
pointersas promoted objects are scanned. It aso means
that no page is ever protected in the youngest genera-
tion, where new objects are allocated, so alocating and
storing into a new object never causes atrap.

4 Benchmarks

We chose a set of five Smaltalk programs to run as
benchmarks under each of the write barrier implemen-
tations. Thefirst two benchmarks are real applications,
the second two are synthetic benchmarks designed to
reveal the behavior of the garbage collector, and the last
isintended to reveal the behavior of the garbage collec-
tor in an “interactive” session. We now describe each
benchmark and characterize its behavior:

Richards: Thisisthe Richards operating system sim-
ulation benchmark. It is a computation-intensive
program, and preallocates most of its data Most
subsequent alocations consist of frames. We
chose this benchmark to reveal the cost of garbage
collection in a program that does little allocation
and creates little garbage.

Lambda: Thisis apure A-calculusinterpreter of our
own devising. It represents A-expressions as di-
rected graphs, internally consisting of small fixed
size Smalltalk objects. It models 3- and 5- reduc-
tion. Internally, it implements normal order reduc-
tion by copying the argument subexpression. This
entail sintensiveallocation activity (for each occur-
rence of the bound variable, it allocates objectsfor
the argument copy) and garbage generation (fol-
lowing the substitution, the original argument is
garbage). In addition, variable bindings are han-
dlied internally using Smalltalk dictionaries, giving
rise to alarge number of becone: operationsto
grow the dictionaries.

Swap—trees with mutation: This synthetic bench-
mark first buildsa complete tree of branching fac-
tor 4 and height 6. Each node consists of an array
of pointersto the node's children and a small data
array. Thetotal sizeof thetreeis600K bytes. Once
the tree is built the program loops swapping ran-
dom subtrees of height 3. This benchmark reveals
the efficiency of the write barrier.

Destroy—trees with destructive updates. This syn-
thetic benchmark buildsacomplete tree of branch-
ing factor 6 and height 5, similar to the tree of
the Swap benchmark. Thetota size of the treeis
900K bytes. However, instead of swapping sub-
trees, Destroy replaces a subtree of height 3 (size
about 25K bytes) with a newly allocated subtree
of the same size. The tota amount of data pro-
cessed during a run is about 24 megabytes. This
benchmark explores the cost of applications that
generate garbage rapidly.

Interactive—the “macro” benchmarks: For this
benchmark we iterate 10 times through the full set
of “macro” benchmarks. These benchmarks are
part of the standard suite of benchmarks [6] used
to compare the relative performance of different
Smalltalk implementations. They measure system
support for the programming activitiesthat consti-
tute typical interaction with the Smalltalk system,
such as keyboard activity, compilation of methods
to bytecodes, and browsing.

Page 7

5 Experiments

To ensure that each benchmark exhibited the same be-
havior from run to run we modified the Smalltalk inter-
preter to record and replay sessions. Thus, every run
sees exactly the same Smalltalk events, such as aloca
tion, system time, keyboard/mouse events, interrupts,
etc. We note that the toolkit and write barrier software
design is such that each scavenge is presented with ex-
actly the same heap layout, collection of abjects, blocks,
etc., even to the point that the offset of the objects in
blocks will be the same. Indeed, the memory contents
can differ only in the sizes and locations of the write
barrier data structures (card table, remembered sets)
and the placement and order of the blocks (the presence
of the write barrier structures may cause blocks to be
alocated in different places under different schemes).

Naturally, there will still be some variation from run
to run due to context switching by the operating sys-
tem, but we minimized this by doing al timing testsin
single user mode, disconnected from the network. We
ran each benchmark severa times under variousimple-
mentations of the write barrier on a DECStation 3100
running Ultrix 4.1.” There was adequate rea memory
to prevent paging.

We measured el apsed time using acustomtimer board
with a resolution of 100 ns. Extracting the value of
the timer involves reading 4 contiguous words from a
memory location to which the timer device has been
mapped, resulting in little timing overhead. The fine-
grained accuracy of this timer allowed us to measure
the elapsed time of each phase of execution separately:
running time between scavenges, processing of theroot
set, scanning of promoted objects, and other overheads
of garbage collection. To obtain dynamic counts of
allocations, pointer stores, etc., webuilt aninstrumented
version of the interpreter and did a separate set of runs
(i.e., the counter instrumented interpreter was not used
for timing purposes).

Our experiments included runs for the two versions
of the remembered set scheme (one remembering ob-
jects, the other dlots), object and slot versions of the
card scheme, with card sizes varying from 16 to 4096
bytes by powers of 2, and the page protection scheme
(the page size is 4096 bytes). We also measured the

"The operating system had some official patches installed that
fix bugsin the mpr ot ect systemcall.

SSB variant of the remembered set scheme for both ob-
jectsand slotswith a 10-page SSB, and a variant of the
most promising card scheme using the same generation
filter asfor remembered setsto minimize the number of
dirtied cards.

6 Results

We now report the elapsed time performance of each
benchmark in turn. To best eliminate any uncontrolled
interferencefrom the operating system, wetakethemin-
imum elapsed time for each phase (separately) over
twenty runs. The phasesinclude:

e running, the time spent in the interpreter as op-
posed to the collector (note that running includes
the cost of store checks and/or page traps);

e root processing, the time spent scanning through
remembered sets or card/page tables and copying
the immediate survivors;®

e promotion, the time spent copying the remaining
survivors; and

e other, time spent in any remaining activities, such
as setting up internal tables, etc.

In addition, for the SSB variant of the remembered set
scheme we measured thetime spent processing the SSB
prior to each scavenge. Note that any SSB processing
required to handle SSB overflow is charged to the run-
ning phase. We exclude al image loading and initial-
ization time (i.e,, al actions prior to entering the main
interpreter loop). We present results for the slot-based
approaches first, and discuss the object remembering
schemes later (resultsfor the object-based schemes ap-
pear at the end of the paper).

6.1 Richards

The computation-intensive nature of the Richards
benchmark is revealed in Figure 1. We see small gc
overhead, indicating little need for scavenging apart
from the recovery of block contexts (frames). Even so,
expanding the scavenge part of the graph to examine
gc overheads, we see the tradeoff in the card scheme

8|n Smalltalk the stack is stored as heap objects so there is
no separate stack processing. In fact, all the process stacks are
copied during each scavenge. Also, Smalltalk hasonly afew global
variables, in the interpreter.

Page 8

Figure 1: Elapsed time for Richards

between the size of the cards and the number of cards
needing to be scavenged (Figure 2). For thisbenchmark
the SSB is substantially more expensive, due in most
part to the very high store rate and the low scavenge
rate, so that the SSB overflows approximately 30 times
between successive scavenges.

The high cost of thefiltered card scheme is curious,
considering that the same filter applied for remembered
sets shows little extra overhead. Further, this overhead
appears only in the results for the slot-based scheme.
The corresponding object-based scheme is comparable
with the other card schemes. Comparison of the com-
piled storecheck code reveal sthat the code generated by
the compiler for the slot-based scheme is less efficient
than that for the object-based scheme, perhaps because
the store check code needs three quantities around (the
object address, the slot address, and the new contents).
Since the compiler can probably be convinced to gen-
erate more efficient object code through rearrangement
of the source code, we anticipate eliminating this over-
head, making the filtered card scheme more competi-
tive. Moreover, compiled languages can ensure that the
best code is generated for the store checks, sinceit has
complete control over code generation.

A direct comparison of root processingtimesisgiven
in Figure 3, showing that 256-byte cards appear to be
optimal, and that at |east for cards, remembering objects
requires consistently less root processing. Moreove,
filtering seems to be futilefor the card schemes since it
haslittle impact on the root processing time, and offers
little (if any) improvement in running time. These root
processingresultshold acrossall the benchmarks, sowe
refrain from presenting separate root processing graphs
for the remaining benchmarks.

Overall, the page trapping scheme is marginally bet-
ter than the other schemes because most stores are to
pagesthat are aready dirty; remembered sets and cards
are competitive. Filteringisof littleusefor cards, since
it unnecessarily complicates the store check with little
(if any) improvement in total time. The SSB is penal-
ized by the high storerate and low scavenge rate of this
benchmark, incurring substantial overhead to service
SSB overflow traps.

6.2 Lambda

Naturally since Lambdadoes much more alocationand
creates much more garbagethan Richards, we seethat it

Page 9

Figure 3: Root processing time for Richards

Page 10

Figure 4: Elapsed time for Lambda

exhibitshigher collection overhead, ranging from 3.1%
to 6.9% of thetotal time (Figure 4). This demonstrates
how well even aminimally tuned generational collector
can perform in ahigh garbage context. We still observe
the characteristic tradeoff as card size varies, athough
themost effective schemefor thisbenchmark isremem-
bered sets, both with and without the SSB. Tuned cards
are competitive, and once again filtering offerslittle (if
any) improvement.

63 Swap

Figure 5 shows the times for the Swap benchmark. Its
behavior is generaly similar to that of Lambda, except
that the root processing time is proportionately much
higher, as we would expect from the continual muta-
tions, which force the collector to re-examine the ob-
jects. Once again, remembered sets come out best, with
the SSB providing marginally better performance. The
ratio of garbage collectiontimetototal timerangesfrom
2.7% for remembered sets, through 5.4% for the best
card schemeto 20% for 16-byte cards.

6.4 Destroy

In Figure 6 we see that Destroy incurs much higher
promotion costs than Swap, which isto be expected. It
also has larger root processing costs (as a fraction of
run time), because it does more allocation and creates
large amounts of garbage. Nevertheless, it producesthe
same relative standing of the schemes. The collection
overhead ishigh: from 16% to 37% of total time. Note
that this benchmark is probably not very characteristic
of real programs—while some programs do mutate a
long-lived heap, they generally do not do so rapidly,
nor do they create garbage from their old objectsin a
rapid continua fashion.

The noticeabl e variation in running time amongst the
card schemes is puzzling. Since the code for al the
card schemes is exactly the same, barring the shift val-
ues and the card offset table entries, the variation can
only be explained by cache and TLB effects. The Dec-
Station 3100 has direct-mapped physically-addressed
caches, so abad assignment of virtual pagesto physical
pages may make certain lines of the cache more volatile
than others, degrading performance if important data
or instructions end up in those cache lines. Note also

Page 11

Figure 6: Elapsed time for Destroy

Page 12

Figure 7: Elapsed timefor Interactive

how filtering, which disturbsthe store check code, and
reduces the number of storesthat must be recorded, im-
proves the running time for the 256-byte card scheme.
Moreover, the object-based schemes, which again have
dightly different store check code and dirty different
entries in the card table, exhibit no such variation in
running times.

6.5 Interactive

The Interactive benchmark yields similar results to the
other benchmarks (Figure 7). Remembered sets are
best, with gc overhead as good as 1.5% of total time,
and cards ranging from 2.9% to 10% of tota time.

6.6 Objectsversusdots

There seemslittleto distinguishthe approaches that re-
member objects from those that remember slots. Root
processing for the slot-based card schemes costs alittle
more than for the object-based card schemes, with the
effect more pronounced for small card sizes. We sug-
gest that remembering objectsis cheaper because when
remembering slots, we must process any object of the

previous card that continuesinto a dirty card, but when
remembering objects, we can skip over such objects.
Thisextracostisessentially per-card (sincethe average
object sizeremainsfixed aswevary the card sizewithin
any given benchmark), so asthe card sizeincreasesand
thenumber of cards decreases, theextracost fadesaway.
For remembered sets, remembering sotsis marginaly
cheaper than remembering objects, since the slots en-
code the interesting pointer information more exactly,
whereas the remembered objects must be scanned to
find their interesting pointers.

7 Related Work

Ungar introduced generation scavenging [13], building
on earlier work on generationa collection. Further de-
tails as to the cost of store checks appear in [15], with
the conclusion that specia hardware in the SOAR chip
might offer a time performance improvement of 3%
over atightly coded inline check. While our checks
are not as tightly coded, the apparent time penalty is
still small, athough it may be because our interpreter is
relatively slow compared with the SOAR design.

Page 13

Shaw considered the relationship of collectionto vir-
tual memory for LISP programs[9]. In particular, Shaw
examined various write barrier methods, including hy-
pothetical user access to page dirty bits maintained by
the operating system [8].

Themost directly related work of whichweare aware
is[18]. There, Zorn studies not only the write barrier,
but aso the read barrier, which is used in incremental
collection. Our results agree with Zorn on the cost of
the write barrier: even when implemented in software,
its cost appears to be modest. However, Zorn focused
primarily on the cost of the write barrier aone, rather
than thetotal cost, and our results show that granularity
issometimes significant in thetotal cost. We somewhat
disagreewith Zorn onthecost of pagetrapsfor thewrite
barrier, provided the operating system cost of delivering
atrap to a user handler is reasonably low. S$till, we
agree in the conclusion that since software schemes
offer generally better performance, port more easily,
and do not rely on good operating system performance,
software approaches might be more desirable.

8 Conclusions

There are several conclusionswe draw from the bench-
mark results. First, the card marking scheme exhibited
quite clearly the expected tradeoff with respect to card
size. In this environment (hardware/memory architec-
ture) a card size of 256 or 512 bytes gives the best
performance of the card schemes. Note that because
the card offset table entries are in terms of longwords,
these sizes allow the offsets to fit in one byte, so the
total overhead is two bytes per card, or 1 to 2%. The
variation in card marking collection overhead was sig-
nificant only in the mutation intensive benchmarks and
near the extremal card sizes. It does appear reasonable
to settle on a particular card size and usethat for al ap-
plicationsin a given system, since the optimal size did
not vary significantly across the benchmarks, and the
curve is relatively flat near the optimum. Generation
filtering isineffectivefor cards sinceit haslittleimpact
on root processing costs, expands the size of the store
check, and may incur extrarun-time overhead.

The page trapping scheme performed poorly in com-
parison to card marking. Interestingly, this does not
appear to be due to the overhead of fielding page traps,
since that is included in running time, which was not

significantly higher (and often lower) than in the card
marking schemes. Rather, it is because pages are too
large agranule so they missthe optimum card size.

Remembered setshavea strong advantage despitethe
extra generational check and the hash table insertions,
since they allow markedly less root processing than
the other schemes. If the inline space overhead is a
drawback then the SSB provides a reasonable solution,
except when there isahigh store rate and low scavenge
rate so that trapping SSB overflows has a noticeable
impact on running time, as occurred for the Richards
benchmark.

What was most surprising to us is how similar all
the schemes are in performance. For example, we were
surprised how close the page trapping scheme came to
being tightly competitive, though that may be partly the
result of the unusually good i mplementation of the oper-
ating system functions (i.e., in other operating systems,
the running time might be more noticeably degraded).
Note that this suggeststhat the access to hardware dirty
bits discussed in [8] may not improve matters much
over adecent implementation of reflecting the pagetrap
to user code.

We were al so surprised that the effects of the various
schemeson therunning timewerenot more pronounced,
and that much of the difference between the schemesis
in root processing. However, this could very well be
because we are measuring an interpreter, so the differ-
encestend to be obscured by theinterpreter’s overhead.
Also, some of the run-time variation may be artifact,
resulting from cache effects due to differences in the
memory placement of instructions (etc.). Because we
are running an interpreter, many of the store checks
are in the same place. If a version of the interpreter
compiled with a particular write barrier implementation
happensto have a store check ina*“bad” place, thenthe
effect is magnified (as compared with compiled pro-
grams). Thisleadsto an obvious suggestion for further
work: consider the same sort of study on a compiled
language. We hope to undertake such studies in our
Modula-3 system beforelong.

We can summarize the conclusions as follows: a
card size of 256 or 512 bytes appears optimal for card
marking on this hardware; page trapping was surpris-
ingly effective, but is not the best scheme because its
granularity is too large; and remembered sets are best
overall.

Page 14

9 Acknowledgments

Amer Diwan, Rick Hudson, and Christopher Weight
devised and implemented the origina garbage collector
toolkit. Craig Chambers provided us with Smalltalk
source code for the Richards benchmark. We espe-
cidly thank Digital Equipment Corporation’s Western
Research Laboratory, and Jeff Mogul in particular, for
giving us the high resolution timing board and the soft-
ware necessary to support it.

References

[1]

(2]

(3]

[4]

(3]

6]

[7]

(8]

(9]

[10]

A. Appel. Simple generational garbage collection
and fast allocation. Software: Practice and
Experience, 19(2):171-183, Feb. 1989.

C. J. Cheney. A nonrecursivelist compacting
algorithm. Commun. ACM, 13(11):677—678,
Nov. 1970.

A. Goldberg and D. Robson. Smalltalk-80: The
Language and its Implementation.
Addison-Wesley, 1983.

R. L. Hudson, J. E. B. Moss, A. Diwan, and C. F.
Weight. A language-independent garbage
collector toolkit. CoINs Technical Report 91-47,
University of Massachusetts, Amherst, Sept.
1991. Submitted for publication.

D. W. Jones. An empirical comparison of
priority-queue and event-set implementations.
Commun. ACM, 29(4):300-311, Apr. 1986.

K. McCadll. The Smalltalk-80 benchmarks. In
G. Krasner, editor, Smalltalk-80: Bits of History,
Words of Advice, chapter 9, pages 153-173.
Addison-Wesley, 1983.

J. E. B. Moss. Managing stack framesin
Smalltalk. In Proceedings of the ACM SIGPLAN
86 Symposium on Interpretersand Interpretive
Techniques, pages 229240, St. Paul Minnesota,
July 1987. ACM SIGPLAN Not. 22, 7 (July 1987).

R. A. Shaw. Improving garbage collector
performance in virtual memory. Technical Report
CSL-TR-87-323, Stanford University, Mar. 1987.

R. A. Shaw. Empirical Analysisof a LISP System.
PhD thesis, Stanford University, Feb. 1988.
Available as Technical Report CSL-TR-88-351.

D. D. Sleator and R. E. Tarjan. Self-adjusting
binary search trees. In Proceedings of the ACM
SIGACT Symposiumon Theory, pages 235-245,
Boston, Massachusetts, Apr. 1983.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

D. D. Seator and R. E. Tarjan. Self-adjusting
binary search trees. J. ACM, 32(3), July 1985.

P. G. Sobalvarro. A lifetime-based garbage
collector for L1SP systems on genera -purpose
computers, 1988. B.S. Thesis, Dept. of EECS,
Massachusetts Institute of Technol ogy,
Cambridge.

D. Ungar. Generation scavenging: A
non-disruptive high performance storage
reclamation algorithm. In Proceedings of the
ACM SIGSOFT/S GPLAN Software Engineering
Symposium on Practical Software Devel opment
Environments, pages 157-167, Pittsburgh,
Pennsylvania, Apr. 1984. ACM SIGPLAN Not.
19, 5 (May 1984).

D. Ungar and F. Jackson. Tenuring policiesfor
generation-based storage reclamation. In
Proceedings of the Conference on
Object-Oriented Programming Systems,
Languages, and Applications, pages 1-17, San
Diego, Cdlifornia, Sept. 1988. ACM SIGPLAN
Not. 23, 11 (Nov. 1988).

D. M. Ungar. The Design and Evaluation of a
High Performance Smalltalk System. ACM
Distinguished Dissertations. The MIT Press,
Cambridge, MA, 1987. Ph.D. Dissertation,
University of Californiaat Berkeley, February
1986.

P R. Wilson, M. S. Lam, and T. G. Moher.
Effective “ static-graph” reorganization to
improve locality in garbage-collected systems. In
Proceedings of the ACM SIGPLAN '91
Conference on Programming Language Design
and Implementation, pages 177-191, Toronto,
Canada, June 1991. ACM S GPLAN Not. 26, 6
(June 1991).

P. R. Wilsonand T. G. Moher. Design of the
Opportunistic Garbage Collector. In Proceedings
of the Conference on Object-Oriented
Programming Systems, Languages, and
Applications, pages 23-35, New Orleans,
Louisiana, Oct. 1989. ACM SIGPLAN Not. 24, 10
(Oct. 1989).

B. Zorn. Barrier methods for garbage collection.

Technical Report CU-CS-494-90, University of
Colorado at Boulder, Nov. 1990.

Page 15

Figure 9: Elapsed time for Richards (remembering objects, expanded scale)

Page 16

Figure 11: Elapsed time for Swap (remembering objects)

Page 17

Figure 13: Elapsed time for Interactive (remembering objects)

Page 18

