
Age-Based Garbage Collection�

Darko Stefanović Kathryn S. McKinley J. Eliot B. Moss
Department of Electrical Engineering Department of Computer Science Department of Computer Science

Princeton University University of Massachusetts University of Massachusetts

Princeton, NJ 08544 Amherst, MA 01003 Amherst, MA 01003

+1 609 258 5056 +1 413 545 2410 +1 413 545 4206

darko@princeton.edu mckinley@cs.umass.edu moss@cs.umass.edu

ABSTRACT

Modern generational garbage collectors look for garbage among the
young objects, because they have high mortality; however, these ob-
jects include the very youngest objects, which clearly are still live. We
introduce new garbage collection algorithms, calledage-based, some
of which postpone consideration of the youngest objects. Collecting
less than the whole heap requireswrite barrier mechanisms to track
pointers into the collected region. We describe here a new, efficient
write barrier implementation that works for age-based and traditional
generational collectors. To compare several collectors, their configu-
rations, and program behavior, we use an accurate simulator that mod-
els all heap objects and the pointers among them, but does not model
cache or other memory effects. For object-oriented languages, our
results demonstrate that anolder-firstcollector, which collects older
objects before the youngest ones, copies on average much less data
than generational collectors. Our results also show that an older-first
collector does track more pointers, but the combined cost of copy-
ing and pointer tracking still favors an older-first over a generational
collector in many cases. More importantly, we reopen for considera-
tion the question where in the heap and with which policies copying
collectors will achieve their best performance.

Keywords
Garbage collection, object behavior, write barrier, generational and
copying collection.

1 INTRODUCTION

Dynamic memory management (management of heap-allocated ob-
jects) using garbage collection has become part of mainstream com-
puting with the advent of Java, a language that uses and requires

�This work is supported in part by NSF grant IRI-9632284, and by
gifts from Compaq Corp., Sun Microsystems, and Hewlett-Packard.
Kathryn S. McKinley is supported by an NSF CAREER Award CCR-
9624209. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation or
other sponsors.

To appear in OOPSLA’99, Denver, November 1999.

garbage collection. This wider use of garbage collection makes it
more important to ensure that it is fast. Garbage collection has been
investigated for decades in varying contexts of functional and object-
oriented language implementation (e.g., Lisp, ML, Smalltalk). The
consensus, for uniprocessor systems operating within main memory,
is that a class of algorithms known asgenerational copying collection
performs quite well in most situations. While the breadth of variation
within the class is considerable, the algorithms have this in common:
objects are grouped according to their age (time elapsed since object
allocation), and the younger groups or generations are examined more
often than older ones. In particular, the most recently allocated objects
are collected first. In this paper, we present a new copying collection
algorithm, calledOlder-First, that maintains the grouping by age, but
chooses to collect older objects (following a particular policy which
we describe in Section 2). Our algorithm achieves lower total cost,
sometimes dramatically, than traditional copying generational collec-
tion for a number of Java and Smalltalk programs. Why does it im-
prove performance?

Let us consider the costs that copying garbage collection imposes
on the run-time system. First, there is the cost of copying objects
when they survive a collection. Second, to allow the collector to ex-
amine only aportionof the heap at a time, bookkeeping actions must
log changes to pointers (references) that go from one portion to an-
other; we call thispointer-tracking. Some of the pointer-tracking is
interleaved with program execution whenever the program writes a
pointer (i.e., thewrite barrier), while some is done at garbage collec-
tion time. Third, the program itself and the garbage collection algo-
rithm(s) have different cache and memory behaviors, which interact
in complex ways. These effects are beyond the scope of this paper
and are left for future work. In this paper, thetotal costof collection
refers to combined cost of the pointer tracking and copying collection.

Generational copying collection performs better than non-
generational, i.e., full heap, copying collection because it achieves
markedly lower copying costs. On the other hand, it must incur the
cost of pointer tracking, whereas non-generational collection has no
need to track pointers because it always examines the entire heap.
Thus, generational collection incurs a pointer-tracking cost that is off-
set by a much reduced copying cost. We have discovered that there is
a trade-off between copying and pointer-tracking costs that can be ex-
ploitedbeyondgenerational copying collection. Our Older-First (OF)
algorithm usually incurs much higher pointer-tracking costs than gen-
erational algorithms, but also enjoys much lower copying costs. We
find that most pointer stores and the objects they point to are among
the youngest objects, and by moving the collected region outside these
youngest objects,OF must track more pointers. However,OF lowers
copying costs because it gives objects more time to die, and does not
collect the very youngest objects which clearly have not had time to
die. In the balance, its total cost is usually lower than the total cost
of generational copying collection, in some cases by a factor of 4. In



itself, OF is very promising, but, more importantly, its success reveals
the potential for other flexible collection policies to exploit this trade-
off and further improve garbage collection performance.

In Section 2 we describe our new collection algorithm within a
broader classification of age-based algorithms. We present our bench-
mark suite in Section 3, and assess the copying performance of the
family of age-based collectors in Section 4. We then consider imple-
mentation issues, including a new fast write barrier in Section 5. Sec-
tion 6 evaluates the combined costs of copying and pointer-tracking.
The results call for a reevaluation of the premises and explanations of
observed performance of copying collectors, which is the subject of
Section 7.

2 AGE-BASED GARBAGE COLLECTION

Upon a garbage collection, each scheme we consider partitions the
heap into two regions: the collected regionC, in which the collector
examines the objects for liveness, and if live, they survive the collec-
tion; and the uncollected remainder regionU , in which the collector
assumes the objects to be live and does not examine them. The non-
generational collector is a degenerate case in which the uncollected
region is empty. The collector further partitions the setC into the set
of survivor objectsSand the set of garbage objectsG, by computing
root pointers intoC and the closure of the points-to relation withinC.
To make the freed space conveniently available for future allocation,
the collector manipulates the survivorsSby copying (or compacting)
them.

The amount of work involved is, to a first approximation, propor-
tional to the amount of survivor data, and so that should be minimized.
Ideally we chooseC so thatS is empty; in the absence of some ora-
cle, we must look for schemes that organize heap objects so that the
partition intoC andU is trivial, and then find heuristics that makeS
small.

We restrict attention to a class of schemes that keep objects in a
linear orderaccording to their age. Imagine objects in the heap as if
arranged from left to right, with the oldest on the left, and the youngest
on the right, as in Figure 1. The region collected,C, is restricted to be
a contiguous subsequence of this sequence of heap objects, thus the
cost of the initial partition is practically nil. We call these schemes
age-basedcollection.

Traditional generational collection schemes are, in the main, age-
based: the region collected is some subsequence of youngest (most
recently allocated) objects. Copying collectors may reorder ob-
jects somewhat during copying since they typically follow pointers
breadth-first instead of in age order. In compacting collectors, re-
ordering does not occur.

In this paper, we introduce and categorize alternative collection
schemes according to their choice of objects for collection. In all
these collectors, we fix the size of the collected region rather than
allowing it to vary during program execution, to simplify our analysis.
Previous research shows that dynamically sizing the collected region
can improve performance [29, 36, 34, 1, 5], but this investigation is
beyond the scope of our paper.

A youngest-only(YO) collector always chooses some youngest
(rightmost) subsequence of the sequence of heap objects (Figure 2).
In our implementation, theYO collector fills the entire heap and then
repeatedly collects the youngest portion of the heap including objects
surviving the last collection. The time in allocation between collec-
tions is the amount theYO collector frees. This collector might have
good performance if object death is only, or mainly, among the new
objects.

Generational collector schemes are variants of youngest-only col-
lection, differing however in how they trigger collections [5]. In the
basic design [17, p.147], new allocation is into one fixed-size part of
the heap (thenursery), and the remainder is reserved for older objects

oldest youngest

allocation

direction

Figure 1: Viewing the heap as an age-ordered list.

jCj: collected region U : region(s) not collected)
S : region of survivors : area freed for new allocation

Legend for Figures 2–5.

youngest

S

C
Collection 1

C

S

U

U Collection 2

oldest

Figure 2: Youngest-only (YO) collection.

from
reserve

from
reserve

youngest
C

Collection 1S

C

C

U
Collection 2

reserve

nurseryolder generation

oldestreserve

reserve
put on

freed

S

U
freed

freed

oldest

oldest

S Collection 3
(full heap)

Figure 3: Generational youngest-only collection.

2



(theolder generation). Whenever the nursery fills up, it is collected,
and the survivors are promoted to the older generation (Figure 3).
When the older generation fills up, then the following collection col-
lects it together with the nursery. In a two-generation collector, that
collection considers the entire heap.

Note that the generational collector deliberately does not allocate
directly into the space reserved for the older generations, so that,
unlike YO, the region chosen for collection contains exactly the ob-
jects allocated since the last collection (except for full heap collec-
tions). We study two and three generation schemes:2G (2 Genera-
tions; youngest-only) and3G. We assume the size of each generation
is strictly greater than 0, and therefore3G never degenerates into2G.1

An oldest-only(OO) collector always chooses an oldest (leftmost)
subsequence of the sequence of heap objects (Figure 4). In our imple-
mentation, theOO collector initially waits for the entire heap to fill
and then repeatedly examines the oldest objects including those sur-
viving the previous collection. As in theYO collector, only the result-
ing free amount is available for allocation. An object is more likely
to be dead the longer we wait, hence theOO collector might have
good performance. Of course, it will suffer if there are any objects
that survive the entire length of the program because it will copy them
repeatedly.

An older-first (OF) collector chooses a middle subsequence of
heap objects, which is immediately to the right of the survivors of the
previous collection (Figure 5). Thus the region of collection sweeps
the heap rightwards, as a window of collection. The resulting free
blocks of memory move to the nursery. Initially, objects fill the entire
heap and the window is positioned at the oldest end of the heap. After
collecting the youngest or right end of the heap, the window is reset
to the left or old end.

The intuition for the potentially good performance of this collector
can be gleaned from the diagram in Figure 6, which shows a series of
eight collections, and indicates how the window of collection moves
across the heap when the collector is performing well. If the window
is in a position that results in small survivor sets (Collections 4–8),
then the window moves by only that small amount from one collection
to the next. The remaining window size is freed and becomes available
for allocation. As the window continues to move slowly, it remains
for a long time in the same region, corresponding to the same age of
objects. A great deal of allocation takes place without many objects’
being copied; almost a window size between successive collections.
How long the window remains in a good position, and how long it
takes to find this “sweet spot” again once it leaves, will determine the
performance of the collector for a particular workload, heap size, and
window size.

We refer to theOF, OO, and YO collectively asFC collectors
(Fixed-size Collection window). The base point of our comparisons is
the non-generational collector (NG), which considers the entire heap
in each collection. Note that it is possible for anFC collector to find
no garbage in the collected region. If that happens, we let the collector
fail for the purposes of this study. (An implementation could increase
the heap size temporarily, or retry collection on another region, per-
haps the whole heap, or increase the window size adaptively.) Because
generational schemes by design occasionally consider the whole heap,
they enjoy an advantage over the new schemes as simulated here.

3 BENCHMARKS

Table 1 lists our benchmarks, which include Smalltalk and Java pro-
grams and their basic properties relevant to garbage collection perfor-
mance: amount of data allocated in words (each word being 4 bytes),
number of objects allocated, maximum live amount (which is also

1We also examined a scheme in which the older generation is al-
lowed to grow into the nursery, and vice versa [1], but it performed
similarly to2G and3G.

oldest youngest
C

S U

US

Collection 1

Collection 2
C

Figure 4: Oldest-only collection.

youngest

U

U

S

S

C

C

U Collection 1

Collection 2

oldest

U

Collection 3U C
S

Figure 5: Older-first collection.

C

C

C

C

C

C

C

C
S

S

S

S

S

S

S

S empty

Collection 1

Collection 2

Collection 4

Collection 5

Collection 6

Collection 7

Collection 8

Collection 3

oldest youngest

Figure 6: Older-first window motion example.

3



Pointer stores
Benchmark Words alloc.Objects alloc.Max. live total alloc./st. non-null %

Java
JavaBYTEmark 1 161 949 109 896 59 728 49 061 23.68 48 83599.5
Bloat-Bloat 37 364 458 3 429 007 202 435 4 927 497 7.58 4 376 79888.8
Toba 38 897 724 4 168 057 290 276 3 027 982 12.85 2 944 67297.2

Smalltalk
StandardNonInteractive 204 954 46 157 1 160 7 251 28.26 5 88281.1
HeapSim 3 791 306 1 084 650 93 026 30 298 125.13 30 23399.8
Lambda-Fact5 277 940 53 580 6 295 91 877 3.03 87 40395.1
Lambda-Fact6 1 216 247 241 864 13 675 404 670 3.01 387 03795.6
Swim 1 533 642 444 908 17 542 134 355 11.41 120 42789.6
Tomcatv 2 117 849 624 612 30 593 286 032 7.40 285 05699.6
Tree-Replace-Binary 209 600 35 785 9 784 39 642 5.29 32 98683.2
Tree-Replace-Random 925 236 189 549 13 114 168 513 5.49 140 02983.1
Richards 4 400 543 652 954 1 498 763 626 5.76 611 76780.1

Table 1: Benchmark Properties

the minimum required heap size to execute the program), total num-
ber of pointer stores, words of allocation per pointer store, number of
non-null pointer stores, and the percentage of pointer stores that are
non-null.

We now describe individual benchmarks, providing where possi-
ble details of their structure. Our set of Java programs is as follows:

� JavaBYTEmark. A port of the BYTEmark benchmarks to Java,
from the BYTE Magazine Web-site.

� Bloat-Bloat. The program Bloat, version 0.6, [21] analyzing
and optimizing the class files from its own distribution.

� Toba. The Java-bytecode-to-C translator Toba working on
Pizza [22] class files [23].

Our set of Smalltalk programs is as follows:

� StandardNonInteractive. A subset of the standard sequence of
tests as specified in the Smalltalk-80 image [12], comprising
the tests of basic functionality.

� HeapSim. Program to simulate the behavior of a garbage-
collected heap, not unlike the simplest of the tools used in this
study. It is however instructed to simulate a heap in which ob-
ject lifetimes follow a synthetic (exponential) distribution, and
consequently the objects of the simulator itself exhibit highly
synthetic behavior.

� Lambda-Fact5 and Lambda-Fact6. An untyped lambda-
calculus interpreter, evaluating the expressions 5! and 6! in the
standard Church numerals encoding [4, p.140]. Previously used
in Ref. [15]. We used both input sizes to explore the effects of
scale.

� Swim. The SPEC95 benchmark, translated into Smalltalk by
the authors: shallow water model with a square grid.

� Tomcatv. The SPEC95 benchmark, translated into Smalltalk by
the authors: a mesh-generation program.

� Tree-Replace-Binary. A synthetic program that builds a large
binary tree, then repeatedly replaces randomly chosen subtrees
at fixed height with newly built subtrees. (This benchmark was
namedDestroy in Ref. [15, 14].) Tree-Replace-Random is a
variant which replaces subtrees at randomly chosen heights.

� Richards. The well-known operating-system event-driven sim-
ulation benchmark. Previously used in Ref. [15].

4 ESTIMATING COPYING COSTS

The idea of Older-First collection sufficiently diverges from estab-
lished practice that it is instructive first to determine whether it is
feasible in principle, before going into the details of an implemen-
tation. With the understanding that pointer-tracking costs are likely
to be higher in older-first collection than in generational collection,
we sought a quick estimate of copying cost to discover if the promise
of Figure 6 is delivered on actual programs. We built an object-level
simulator that executes the actions of each of the collectors exactly as
depicted in Figures 2–5. The simulator is much simpler than the actual
implementation: objects and collection windows of arbitrary sizes are
allowed, the age order is perfectly preserved on collection, and point-
ers are not tracked. This simulator can produce the statistics of the
amount of data copied over the run of a program, which, divided by
the amount allocated, gives the “mark/cons” ratio, traditionally used
as a first-order measure of garbage collector performance.

We now discuss the copying cost estimate results for two Java
benchmarks,JavaBYTEmark and Bloat-Bloat, then summarize and
make some general observations. Figures 7 and 8 each present two
graphs: Graph (a) compares the best performance of each collection
scheme (OO, YO, OF, 2G, 3G), plotting the mark/cons ratio (the copy-
ing cost that we would like to minimize), relative toNG, against heap
size. Performance depends on the heap size available to the collector,
which is laid along the horizontal axis. For each heap size, we simu-
lated many configurations of each collection scheme. This graph only
includes thebestconfiguration of each collector. Graph (b) provides
details of different configurations of each collector for one represen-
tative heap size, plotting the relative mark/cons ratio against the size
of the collected region or nursery as fraction of the heap size.

JavaBYTEmark. For this program, theOF scheme copies signif-
icantly less data than all other schemes under all configurations. In
fact, it copies over a factor of 10 fewer objects than the3G collector.
As we see in Figure 7(b), it attains this performance even while keep-
ing the window of collection small: 20% of total heap size. In smaller
heaps not shown here, the best window size forOF grows up to 40%
of the heap. The generational collectors in Figure 7(b) only approach
their best configurations when the nursery constitutes over 50% of the
heap. Thus, theOF scheme copies much less using a smaller win-
dow size. Small window sizes are desirable because they contribute
to keeping pause times for collection short, which is especially impor-
tant in interactive programs.

The reason for this dramatic reduction in copying cost is exactly
the scenario described in Figure 6. Many objects wait until middle
age to die, and theOF collector is able to find them just as they die,

4



0

0.2

0.4

0.6

0.8

1

100000 150000 200000 250000 300000 350000 400000

M
ar

k/
co

ns
 r

at
io

 o
f b

es
t c

on
fig

ur
at

io
n

(r
el

at
iv

e 
to

 N
G

)

Heap size (words)

JavaBYTEmark

OO
YO
OF
2G
3G

(a) Best configuration.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

M
ar

k/
co

ns
 r

at
io

(r
el

at
iv

e 
to

 N
G

)

Fraction collected (of total heap size 238885)

JavaBYTEmark

OO
YO
OF
2G
3G

(b) Representative heap size.

Figure 7: Copying cost estimates,JavaBYTEmark.

0

0.2

0.4

0.6

0.8

1

400000 600000 800000 1e+06

M
ar

k/
co

ns
 r

at
io

 o
f b

es
t c

on
fig

ur
at

io
n

(r
el

at
iv

e 
to

 N
G

)

Heap size (words)

Bloat-Bloat

OO
YO
OF
2G
3G

(a) Best configuration.

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

M
ar

k/
co

ns
 r

at
io

(r
el

at
iv

e 
to

 N
G

)

Fraction collected g (of total heap size 446984)

Bloat-Bloat

OO
YO
OF
2G
3G

(b) Representative heap size.

Figure 8: Copying cost estimates,Bloat-Bloat.

and to stay in a sweet spot for a long time. TheOF collector does
occasionally sweep through the heap and as a result revisits the oldest
objects repeatedly. When we examine the lifetimes of the objects in
this program [25] we find there are a number of long lived objects.
Thus, theOF collector is repeatedly copying these objects (whereas
generational collectorsby designrarely copy these objects); neverthe-
less it copies a factor of 10 less data.

As it is the trend in most of the benchmarks,OF collection out-
performsOO andYO. OF collection achieves similarly low copying
costs that are also integer factors better than the generational collec-
tors using a small window size onStandardNonInteractive, HeapSim,
Richards, Lambda-Fact6, andLambda-Fact5.

Bloat-Bloat. Figure 8(a) illustrates that the best configurations of
OF, 2G, and3G, all exhibit comparable and low copying cost. Fur-
thermore, Figure 8(b) shows that these 3 collectors achieve close to or
their minimums with a window size around 40% of the entire heap.
The OF collector (as simulated for this study) fails with a window
size below 20%, because long-lived data spans more than the collec-
tion window [25]. These results are representative of the remaining 8
programs. Comparing2G with 3G collection in Figure 8(a) and (b)
reveals no significant differences in the best configurations, but many
configurations of the3G collector perform worse, sometimes much
worse, than the2G collector.

4.1 Comparing 2 and 3 Generations
Several of the programs follow the trend we see in Figure 7(a) for
JavaBYTEmark, in which 3G copies fewer objects than2G. Jav-
aBYTEmark is the program in our suite in which the3G collector
enjoys the largest advantage over the2G collector. The more detailed
presentation in Figure 7(b) reveals however that there are many con-
figurations of the3G collector that the2G collector outperforms. This
trend is true for the other programs as well, and demonstrates the diffi-
culty of configuring generations well. For the remaining 9 programs,
Toba, Bloat-Bloat, Lambda-Fact5, Lambda-Fact6, HeapSim, Swim,
Tomcatv, Tree-Replace-Binary, and Tree-Replace-Random, the 2G
collector copies the same amount or less than a3G collector.

4.2 Comparing FC Collectors.
As it is demonstrated byJavaBYTEmark andBloat-Bloat, theOF col-
lector usually copies significantly less data than theOO andYO collec-
tors. There are however a few programs for which theOO collector
performs the best:Tree-Replace-Random andTree-Replace-Binary.
In these programs, there is very little long-lived data [25]. Random
replacement of random subtrees or the interior node connected to the
leaves of the binary tree does indeed imply that the longer the collector
waits the more likely an object will be garbage. However, such syn-
thetic programs are probably not representative of behaviors in users’
programs, and most programs do have some very long-lived data [10].

5



4.3 Conclusion.
The copying cost estimates show great promise for the Older-First
algorithm on a set of benchmarks. We therefore consider the issues
involved in an actual implementation, and then proceed to the evalu-
ation of a prototype. To simplify the investigation and the presenta-
tion, we will focus on the two-generation collector2G (since we have
found that it is usually comparable to the three-generation one) and
the Older-First algorithmOF.

5 WRITE BARRIER

While OF collection reduces copying costs, it may increase write bar-
rier costs. This potential increase prompted us to consider carefully
which pointer stores need to be remembered in our prototype imple-
mentation. Generational collectors remember pointers from older to
younger generations, but not within generations. Thus, stores into the
youngest generation, including objects just allocated (in the nursery),
never need to be remembered. The corresponding rule forOF col-
lection is based on the following observation: when a store creates
a referencep ! q, then we need to remember it only ifq might be
collected beforep. Figure 9 shows diagrammatically which pointers
anOF collector must remember, according to their direction between
different regions of the heap. For example, the pointer store that cre-
ates the pointer

�

�

�

�

p !

�

�

�

�

q need not be remembered, because object
�

�

�

�

p will necessarily fall into the collected region earlier than
�

�

�

�

q will.

pq

oldest

region of next collection

youngest
allocation
direction

Figure 9: Directional filtering of pointer stores: crossed-out pointers
need not be remembered.

allocation copying

youngest oldest

region of
next collection

high addresses low addresses

Figure 10: Directional filtering with an address-ordered heap.

At first glance, it would appear complex and expensive to do the
filtering suggested by Figure 9, although not more than in flexible
generational collectors [15]. However, if we reorder the regions of the
heap physically as shown in Figure 10, then the test can be simpler
still: we need only test if the store creates a pointer in a particular di-
rection and possibly crossing a region boundary. A large zone of the
virtual address space is set aside for allocation from higher addresses
to lower. The collection region also moves from higher addresses to
lower, but lags behind the allocation; the survivors are evacuated into
the next similarly sized zone at lower addresses. If the collection re-
gion catches up with allocation (equivalent to reaching the right end
in the logical layout of Figure 9), the former allocation zone is re-
leased, the former copying zone becomes the allocation zone, and a
new copying zone is acquired. The organization of Figure 10 is es-
pecially attractive with a very large address space and with some co-
operation from the operating system, to acquire and release address
space as the heap progresses from higher to lower addresses.

Our implementation is based on allocating fixed-sizeblocksto the
various heap regions, with the collector constrained to collect an inte-
gral number of blocks. This structure, with a block table, simply and
quickly maps from addresses to remembered sets.

Since the block size is a power of two, blocks are aligned by block
size, and the collection window moves from higher to lower addresses,
we essentially test ifp < q :

// write barrier for: *p = q
// mask == 2ˆk - 1
if (p < (q & ˜mask))

remember p in q’s remset;

Adjusting one of the pointers using the mask eliminates stores
within the same block. This test is important, since the vast majority
of stores are to nearby objects, and thus tend not to cross block bound-
aries [25]. The directional test (<) also reduces the number of pointers
remembered.

This write barrier, then, filters stores inline so that out-of-line code
to remember a pointer is only executed for those cross-block pointers
where the source block of the pointer may be collected after its tar-
get block. The test above also filters out stores of null pointers. In
essence, it is treating the null pointer value of 0 as referring to an ob-
ject that will never be collected, without the need for an additional
explicit test.

Assuming thatp andq are in registers and that the mask fits in the
immediate field of an instruction, the above sequence requires only
three instructions: mask, compare, and conditional branch. On the
Alpha processor we indeed obtain such a sequence. The SPARC re-
quires an additional instruction to construct the mask, since the imme-
diate fields are too small for reasonable block sizes. One can dedicate
a register to hold the mask, and thereby reduce the sequence to three
instructions.

The slow path to remember a pointer at the write barrier consists
of the following: determine the target object’s block (shift the address
right), index a block table (the base of which is in a register), load a
pointer into the block’s remembered set, decrement the remembered
set pointer and check for underflow (explained in a moment), save the
pointer to be remembered, and store the decremented remembered set
pointer back into the block table. We organize each block’s (genera-
tion’s, in a generational collector) remembered set as a linked list of
chunks, where each chunk holds 15 remembered pointers in sequen-
tial memory addresses. We allocate these chunks on aligned memory
boundaries, so the underflow test consists of checking if some low bits
of the remembered set pointer are all 0.

Garbage collection requires a space overhead for its auxiliary data
structures for pointer remembering; since our evaluation of the time
overhead is with respect to a given heap size, a fair comparison of
different collectors requires the space allowed each collector for or-
dinary data to be diminished by the amount needed for auxiliary data
(which it is difficult to doa priori). In our study,OF collectors have
a greater space overhead than2G because their pointer filtering is less
efficient. However, we measured the space overhead ofOF on our
suite of benchmarks to be only 1% of heap size—therefore the conse-
quent time overheads are negligible.

6 EVALUATING TOTAL COLLECTION
COSTS

We evaluate our proposed collection algorithm and write barrier on
our benchmark suite using a combination of simulation and prototyp-
ing. We obtained heap traces (described in detail below) from program
runs in a Smalltalk and a Java virtual machine.These traces are inde-
pendent of the storage management scheme of the system from which
they were collected.For each collection algorithm we study, we pro-
cess the traces using a driver routine, which performs relevant actions
(such as object allocation and mutation) on objects in a heap. An
actual implementation of the particular collection algorithm manages
the heap. From this implementation, we obtain exact counts of vari-
ous relevant quantities, such as the number of objects copied, number

6



of bytes copied, and write barrier actions, which we use to estimate
execution times.

6.1 Obtaining Counts and Volumes
We now describe in more detail how we obtained the counts and vol-
umes we report in our results.

Traces. Our traces indicate each object allocation (with the size
of the object), each update of a pointer field of a heap object, and
each object “death” (an object dies when it ceases to be reachable).
Object death isprecise—in the tracing system we perform a com-
plete garbage collection immediately before each object allocation,
and note in the trace the objects that have died since the previous allo-
cation. While this tracing technique is time-consuming, it does mean
that when we present the traces to any actual collection algorithm, we
will observeexactlythe collection behavior we would have obtained
from the corresponding program (but without running the program).

Driver. The driver routine is straightforward in concept: it simply
reads and obeys each trace record, by taking appropriate action on the
prototype heap implementation. A key difference between the driver
and a live program is that, since our traces do not include manipu-
lations of local and global variables, the driver keeps a table (on the
side) ofall live objects. When the driver processes an object death
record, it deletes the corresponding object from the table of live ob-
jects. From the point of view of the collector, the driver thus differs
from a live program only in that more objects are referred to directly
rather than reached only via other objects.

Prototype heap implementations and write barriers. All the
heap implementations share some common infrastructure. Each heap
consists of a collection of blocks, which are aligned, 2k-byte portions
of memory. We varied the block size in some experiments. Each heap
also has remembered set data structures and write barriers appropriate
to that heap. For example, the generational heap uses a generational
comparison, whereas the OF heap uses the same-block and directional
filtering. We note that these implementations are highly instrumented,
so that we can tell how many pointer stores go down each filtering
path of each write barrier. Likewise, the collector cores are highly
instrumented to obtain accurate counts of copying actions. We do not
obtain wall-clock timings from these prototype heap implementations.

6.2 Estimating Execution Times
Pending a complete implementation, we carefully implemented the
write barriers and other actions and timed them. All code fragments
have the same advantages, i.e., they execute in tight loops with impor-
tant quantities in registers, so we argue that theratio of their timings
gives a reasonable order-of-magnitude estimate of the ratio we would
expect in an actual implementation, even though the absolute values
of the timings are optimistic.

We used a 292 MHz Alpha 21164. We took a cycle count mea-
surement by running a piece of code, with and without the fragment
we wished to measure, for many iterations of a loop, then taking the
difference in times and dividing by the clock period.

Write barrier. Depending on the details of the loop in which we
embedded the barrier, the fast path took 1, 2, or 3 cycles, which we
expected since the original sequence is 3 instructions and the Alpha
has an issue width of 4 (i.e., the alignment matters). We use 2 cycles
in our estimates. Remembering a pointer on the slow path of the write
barrier takes an average of 11 cycles (including the original test, and
the time needed for chunk management on overflow). Finally, to fetch
a remembered set entry, examine the target object, and possibly start
to copy the object takes 13 cycles on average. Thus the total cost to
create and process a remembered set entry, exclusive of copying its
target object, is 24 cycles.

Copying timing. Object copying involves more than simply
copying some bytes from one place to another. One must also: de-
code the object header, determine which fields of the object contain
pointers, and handle each one of those pointers, thus accomplishing
the transitive closure of the points-to relation in a breadth-first man-
ner [9]. Since our prototype heaps were slightly simplified from actual
language implementations (i.e., we did not deal with all special cases
that arise in Java, such as finalization and locks), any comparisons
are likely to underestimate copying cost, and thus underestimate the
benefits ofOF.

We modelled the total copying and collection processing costs us-
ing this equation:

c= αobj �nobj+αw �nw+αskp�nskp+αdup�ndup

Here theα are the costs per occurrence of each case and then
are the number of times that case occurs. The subscriptobj concerns
the number of objects processed,w the number of words copied,skp
the number of pointer fields skipped because they are null or do not
point into the collected region, anddup the number of pointers into
the collected region but to objects already copied. Note that when we
encounter a pointer to an object in the collected region but not yet
copied, we charge our cost of discovery to the copying of that object.

We measured the following values (for operation with all data
structures in primary cache):αobj = 65 cycles,αw = 2:5 cycles,
αskp= 15 cycles, andαdup= 17 cycles. As an aside, we note that
these costs indicate that copying the words is not a large component
of the cost of processing pointer-rich objects.

Given our instrumentation to gather counts (then as well as the
number of times the different write barrier actions occur) and our care-
ful estimates of the times for the various collector and write barrier
operations, we can project cycle costs for each collection algorithm.
As previously mentioned, we would not claim that the difference in
predicted cycle counts would exactly match that in practice, but that
ratiosof predicted cycle costs would be reliable to an order of magni-
tude. Put another way, if we predict a ratio of collection costs of 2:1
or more, then it would be surprising if an implementation showed an
inversion of costs of the schemes.

6.3 Results
We applied the block-based evaluator to our benchmark suite. We now
examine the resulting evaluation of the older-first and generational
collectors with the detailed cost model just described which takes into
account both copying and pointer-tracking costs.

Similar to the mark/cons ratio plots we examined in Section 4, the
plots of total cost in Figures 11–22 show the lowest total cost that each
collector can achieve, among all examined configurations for a given
heap size. The minimum heap size equals the maximum amount of
live data, and evaluated heap sizes range from 2 to 6 times that min-
imum. While pointer costs work in favor of the2G and against the
OF collector, and diminish the advantages thatOF enjoyed in the esti-
mate of copying costs in Section 4, nevertheless they do not succeed in
changing the qualitative relationship that we observed previously. On
one subset of benchmarks (JavaBYTEmark, StandardNonInteractive,
HeapSim, Lambda-Fact5, Lambda-Fact6,Richards) the OF collector
has a clear advantage, except with very small heap sizes. On the re-
maining benchmarks, the performance of the two collectors is similar.

7



0

500000

1e+06

1.5e+06

2e+06

200000 250000 300000 350000 400000

T
ot

al
 c

os
t (

cy
cl

es
),

 e
st

im
at

ed

Heap size (words)

JavaBYTEmark

2G
OF

Figure 11: Total collection cost,JavaBYTEmark.

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

200000 400000 600000 800000 1e+06 1.2e+06

T
ot

al
 c

os
t (

cy
cl

es
),

 e
st

im
at

ed

Heap size (words)

Bloat-Bloat

2G
OF

Figure 12: Total collection cost,Bloat-Bloat.

0

5e+07

1e+08

1.5e+08

2e+08

500000 1e+06 1.5e+06

T
ot

al
 c

os
t (

cy
cl

es
),

 e
st

im
at

ed

Heap size (words)

Toba

2G
OF

Figure 13: Total collection cost,Toba.

0

200000

400000

600000

800000

1e+06

1.2e+06

2000 3000 4000 5000 6000 7000 8000

T
ot

al
 c

os
t (

cy
cl

es
),

 e
st

im
at

ed

Heap size (words)

StandardNonInteractive

2G
OF

Figure 14: Total collection cost,StandardNonInteractive.

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

100000 200000 300000 400000 500000 600000

T
ot

al
 c

os
t (

cy
cl

es
),

 e
st

im
at

ed

Heap size (words)

HeapSim

2G
OF

Figure 15: Total collection cost,HeapSim.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

5000 10000 15000 20000 25000 30000 35000 40000

T
ot

al
 c

os
t (

cy
cl

es
),

 e
st

im
at

ed

Heap size (words)

Lambda-Fact5

2G
OF

Figure 16: Total collection cost,Lambda-Fact5.

8



0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

10000 20000 30000 40000 50000 60000 70000 80000 90000

T
ot

al
 c

os
t (

cy
cl

es
),

 e
st

im
at

ed

Heap size (words)

Lambda-Fact6

2G
OF

Figure 17: Total collection cost,Lambda-Fact6.

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

20000 40000 60000 80000 100000

T
ot

al
 c

os
t (

cy
cl

es
),

 e
st

im
at

ed

Heap size (words)

Swim

2G
OF

Figure 18: Total collection cost,Swim.

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

60000 80000 100000 120000 140000 160000 180000 200000

T
ot

al
 c

os
t (

cy
cl

es
),

 e
st

im
at

ed

Heap size (words)

Tomcatv

2G
OF

Figure 19: Total collection cost,Tomcatv.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

10000 20000 30000 40000 50000 60000

T
ot

al
 c

os
t (

cy
cl

es
),

 e
st

im
at

ed

Heap size (words)

Tree-Replace-Binary

2G
OF

Figure 20: Total collection cost,Tree-Replace-Binary.

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

20000 30000 40000 50000 60000 70000 80000 90000

T
ot

al
 c

os
t (

cy
cl

es
),

 e
st

im
at

ed

Heap size (words)

Tree-Replace-Random

2G
OF

Figure 21: Total collection cost,Tree-Replace-Random.

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

2000 3000 4000 5000 6000 7000 8000 9000 10000

T
ot

al
 c

os
t (

cy
cl

es
),

 e
st

im
at

ed

Heap size (words)

Richards

2G
OF

Figure 22: Total collection cost,Richards.

9



7 DISCUSSION

Comparing collectors. A straightforward comparison betweenOF
and2G collectors shows thatOF achieves lower total costs in many
cases. The main contributing factor is the reduction of copying cost;
the supporting factor is the containment of the increase of pointer-
tracking cost.

That copying costs can be markedly lower than with generational
collection, in a collector that scavenges areas other than the youngest,
is perplexing in the light of widely recognized good performance of
generational collectors. Nevertheless, it is entirely in accord with the
intuition that the very youngest objects are live, and to collect them
is wasteful. In generational collection there is a tension between the
need to increase the size of the nursery so as to reduce such wasteful
copying of young objects, and the need to increase the size of older
generations so that they are not collected frequently—a tension that
cannot be resolved in a heap of finite size. In contrast, Older-First
collection is able to focus on an age range where wasteful copying
is minimized, which results in good performance on those programs
where such a range prominently exists. Whereas our diagram in Fig-
ure 6 shows how this desirable behavior may arise, it is tempting to
consider how a designer could encourage it. For example, further im-
provements may be achieved by dynamically (adaptively) choosing
the size of the collection window, and, more ambitiously, looking at
window motion policies more sophisticated than the one we have de-
scribed.

Pointer tracking. While an ever-increasing latitude in collection
policy may further reduce copying costs below those of generational
collection and the simple Older-First scheme, it will also be necessary
to keep the pointer-tracking costs within reason. The pointer-tracking
costs inOF, albeit high with respect to generational collection, are not
excessive, because its window motion policy allows efficient pointer
filtering. Any block-based collector can apply a filter to ignore pointer
stores that do not cross block boundaries; we found that filter to elim-
inate about 60% of stores for reasonable configurations (note that
blocks cannot be arbitrarily large lest the collector degenerate into a
non-generational one). Directional filtering (Figure 9), ignores about
95% of stores: not as many as generational filtering, which ignores
about 99%, but enough that the cost for the remaining, remembered,
stores does not substantially offset the copying cost reduction.

As we developed our directional filtering scheme, we collected
statistics of pointer stores, according to the position, in an age-ordered
heap, of the pointer source and target (i.e., the object containing the
reference, and the referent object), which shed new light on some
long-held beliefs about the pointer structure of heaps. It has been
widely assumed that pointers tend to point from younger objects to
older ones. While this belief is surely justified for functional pro-
grams, it is not generally true of the object-oriented programs we ex-
amined. Both younger-to-older and older-to-younger directions are
well represented, neither dominant, in most of our benchmarks. The
supposed predominance of younger-to-older pointers is often cited as
cause and justification of the efficacy of generational pointer filter-
ing. A more faithful explanation arises from our observations: most
pointer stores are to objects that are very young, and they install
pointers to target objects that are also very young (whether relatively
younger or older than the source), and a generational filter ignores
these stores because they are between objects of thesamegeneration.
Figure 23 provides an example: (a) inBloat-Bloat, older-to-younger
pointers (negative age distances) account for 40% of the stores; how-
ever, the histogram of source positions (b) as well as that of target
positions (c) show that most stores establish pointers between very
young objects.

Caching and memory effects. Since copying collectors only
touch the live data, and leave untouched newly dead objects, collec-
tors that copy less should also have good locality. However,OF visits
the entire heap more regularly as compared to generational collectors,

0

0.2

0.4

0.6

0.8

1

-20 -15 -10 -5 0 5 10 15 20

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

log2(abs(distance)) * sgn(distance)

Bloat-Bloat

(a) Distribution of pointer age distances

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

0 20000 40000 60000 80000 100000 120000 140000

H
is

to
gr

am

Source position

Bloat-Bloat

(b) Distribution of pointer source ages

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

0 20000 40000 60000 80000 100000 120000 140000

H
is

to
gr

am

Target position

Bloat-Bloat

(c) Distribution of pointer target ages

Figure 23: Pointer store heap position:Bloat-Bloat.

10



which may decrease its locality in the cache and increase its paging
activity. Clearly, we can only study these effects in the context of a
complete implementation, and we will do so in future work.

8 RELATED WORK

The overwhelming consensus in the studies on generational garbage
collection has been that a younger-first discipline should be used; i.e.,
that when the collector decides to examine one generation, it must at
the same time examine all younger generations. The scheme that we
introduce may be understood (if we ignore policy details), as similar
to requiring an older generation to be collected apart from younger
ones. This possibility is indeed mentioned, but dismissed both in Wil-
son’s survey of garbage collection [32, p. 36] and in Jones and Lins’
monograph [17, p.151], the two most accessible sources on the state
of the art in uniprocessor garbage collection.

Generational garbage collection employs fixed boundaries be-
tween generations, in order to minimize the pointer-tracking effort
needed for each such boundary. Barrett and Zorn explored the pos-
sibility of using flexible generation boundaries (remaining however
within the youngest-first discipline), and found that the increase in
pointer-tracking effort need not be excessive [5]. OurOF scheme uses
flexible collection region boundaries, but we combine it with efficient
mechanisms to keep pointer-tracking costs in check, even without the
youngest-first discipline.

Clinger and Hansen proposed a collector for Scheme that does
not base collection decisions on object age, but rather on the time
elapsed since last collection [11], and focuses on objects for which
that time is longest. (There have been historical precursors to this
idea [2, 18, 6].) Although this algorithm is not age-based, it prompted
us to investigate similarly flexible age-based ones; in the context of
object-oriented languages that we examined, we found the latter to be
superior.

More generally, schemes have been suggested that divide the heap
into regions, not necessarily age-based, that can be collected inde-
pendently and/or incrementally. Bishop proposed such segregation
in accordance with the usage of objects [8], while Hudson and Moss’s
mature object space algorithm (for managing very-long-lived data) in-
troduced policies that approximate the age-order criterion [16].

In garbage collection, there is an inherent trade-off between space
and time overheads, and there is a trade-off between reducing the to-
tal time overhead and reducing the time of a single collection (for
incremental operation). Different authors have applied different mea-
sures in their system evaluation. Our focus is on time overhead of
collection within given space constraints. Therefore, without mak-
ing specific comparisons, which are difficult when evaluation met-
rics as well as underlying languages are widely different, we recog-
nize that our study draws on previous experience with generational
garbage collection implementations [19, 27, 20, 24, 28, 35], their poli-
cies [29, 30, 31, 34, 1, 13], their write barrier mechanisms [33, 15, 14],
and their evaluation with respect to object allocation and lifetime be-
havior [3, 26, 11].

Achieving performance improvements with generational collec-
tion critically depends on setting or adapting the configuration pa-
rameters right—incorrectly chosen generation sizes can cause per-
formance to degrade severely. We have confirmed these matters
in our observations of multi-generational collectors on our bench-
mark traces. Choosing a good regime of generations is not an easy
task, and it is not yet fully understood despite numerous studies
[29, 36, 34, 1, 5]. However, we can also say that it is a matter of
tuning the performancewithin the class of youngest-only collection
schemes. Our goal in this study has not been to examine how to tune
a particular scheme, but instead to compare the schemes. Whether
optimal configurations can be chosena priori, or how a system might
adaptively arrive at them are questions for separate investigation.

9 SUMMARY

Generational collection achieves good performance by considering
only a portion of the heap at each collection. It achieves this good
performance even while imposing additional costs on the mutator,
namely a write barrier to track pointers from older to younger gen-
erations. We found that we can reduce copying costs further, in many
cases dramatically, by not including the youngest objects in each col-
lection, and we call this more general schemeage-based collection
since it still determines which objects to collect based on age. We con-
sidered in detail a particular age-based algorithm that we termolder-
first (OF) and found that it never needed to copy substantially more
data than generational collection, and copied up to ten times less for
some programs.OF does require more write barrier work than gener-
ational collection, perhaps ten times more, but the savings in copying
can outweigh the extra pointer tracking costs.

We obtained these results with exact heap contents simulation,
prototype collector implementation, and careful timing of crucial code
fragments. Given the factor by whichOF outperforms generational
collection—often a factor of 2 or more—it should also perform well
in actual implementation. Integration with a Java virtual machine is
in progress.

While improved performance is one measure of the significance
of this work, we also feel that it contributes substantially to our un-
derstanding of memory usage and garbage collector behavior. Put
another way, garbage collection has a long tradition of study, yet we
have shown that the widely accepted state of the art, generational col-
lection, leaves considerable room for improvement.

We also question some of the widely held beliefs about genera-
tional collection, offering new intuition. While we clearly agree with
the tenet that one should wait for objects to die before collecting them,
as it has been recognized in the considerable body of work concerning
the avoidance of early “tenuring” of objects, we show that it is practi-
cal to avoid copying the very youngest objects and that doing so saves
much work, even though it imposes a heavier burden on the running
program. In the past the write barrier cost was thought too high to per-
mit exploring algorithms likeOF. Now we have results encouraging
consideration of a wide range of new techniques.

Future work should include considering other window motion al-
gorithms, dynamically changing the window size, using multiple win-
dows (e.g., one for younger objects and one for mature objects as in
mature object space collection), and more experimentation and mea-
surement, for more programs, platforms, and languages.

Acknowledgements. We acknowledge with gratitude the assistance
of David Detlefs and the Java Topics group with Sun Microsystems
Laboratories, Chelmsford, Massachusetts, in collecting and providing
traces for this work. We thank Margaret Martonosi and the anony-
mous referees for valuable comments on drafts of this paper.

References

[1] Appel, A. W. Simple generational garbage collection and fast
allocation.Software Practice and Experience 19, 2 (1989), 171–
183.

[2] Baker, H. G. List processing in real-time on a serial computer.
Commun. ACM 21, 4 (1978), 280–94. Also AI Laboratory Work-
ing Paper 139, 1977.

[3] Baker, H. G. ‘Infant Mortality’ and generational garbage collec-
tion. SIGPLAN Notices 28, 4 (1993), 55–57.

[4] Barendregt, H. P.The Lambda Calculus: Its Syntax and Se-
mantics. Elsevier (North-Holland), Amsterdam, 1984. Second
edition.

11



[5] Barrett, D. A., and Zorn, B. Garbage collection using a dynamic
threatening boundary. InProceedings of SIGPLAN’95 Confer-
ence on Programming Languages Design and Implementation
(La Jolla, CA, June 1995), vol. 30 ofSIGPLAN Notices, ACM
Press, pp. 301–314.

[6] Bekkers, Y., Canet, B., Ridoux, O., and Ungaro, L. MALI:
A memory with a real-time garbage collector for implementing
logic programming languages. In3rd Symposium on Logic Pro-
gramming(1986), IEEE Press, pp. 258–264.

[7] Bekkers, Y., and Cohen, J., Eds.International Workshop on
Memory Management(St. Malo, France, Sept. 1992), no. 637 in
Lecture Notes in Computer Science, Springer-Verlag.

[8] Bishop, P. B. Computer Systems with a Very Large Address
Space and Garbage Collection. PhD thesis, Massachusetts In-
stitute of Technology, Cambridge, MA, May 1977.

[9] Cheney, C. J. A nonrecursive list compacting algorithm.Com-
mun. ACM 13, 11 (Nov. 1970), 677–678.

[10] Cheng, P., Harper, R., and Lee, P. Generational stack collection
and profile-driven pretenuring. InProceedings of SIGPLAN’98
Conference on Programming Languages Design and Implemen-
tation (Montreal, Québec, Canada, June 1998), vol. 33 ofSIG-
PLAN Notices, ACM Press, pp. 162–173.

[11] Clinger, W. D., and Hansen, L. T. Generational garbage collec-
tion and the radioactive decay model.SIGPLAN Notices 32, 5
(May 1997), 97–108.Proceedings of the ACM SIGPLAN ’97
Conference on Programming Language Design and Implemen-
tation.

[12] Goldberg, A., and Robson, D.Smalltalk-80: The Language and
its Implementation. Addison-Wesley, 1983.

[13] Hayes, B.Key Objects in Garbage Collection. PhD thesis, Stan-
ford University, Stanford, California, Mar. 1993.

[14] Hosking, A. L., and Hudson, R. L. Remembered sets can also
play cards. InOOPSLA/ECOOP ’93 Workshop on Garbage Col-
lection in Object-Oriented Systems(Oct. 1993), E. Moss, P. R.
Wilson, and B. Zorn, Eds.

[15] Hosking, A. L., Moss, J. E. B., and Stefanović, D. A com-
parative performance evaluation of write barrier implementa-
tions. In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications(Vancou-
ver, Canada, Oct. 1992),SIGPLAN Notices 27, 10 (Oct. 1992),
pp. 92–109.

[16] Hudson, R. L., and Moss, J. E. B. Incremental collection of
mature objects. In Bekkers and Cohen [7], pp. 388–403.

[17] Jones, R., and Lins, R.Garbage Collection: Algorithms for Au-
tomatic Dynamic Memory Management. John Wiley, Chichester,
1996.

[18] Lang, B., and Dupont, F. Incremental incrementally compact-
ing garbage collection. InSIGPLAN’87 Symposium on Inter-
preters and Interpretive Techniques(Inst. Rech. Informat. Au-
tomat. Lab., France, 1987), vol. 22(7) ofSIGPLAN Notices,
ACM Press, pp. 253–263.

[19] Lieberman, H., and Hewitt, C. A real-time garbage collector
based on the lifetimes of objects.Commun. ACM 26, 6 (June
1983), 419–429.

[20] Moon, D. Garbage collection in a large Lisp system. InPro-
ceedings of the ACM Symposium on Lisp and Functional Pro-
gramming(Austin, TX, Aug. 1984), pp. 235–246.

[21] Nystrom, N. Bytecode-level analysis and optimization of Java
class files. Master’s thesis, Purdue University, West Lafayette,
IN, May 1998.

[22] Odersky, M., and Wadler, P. Pizza into Java: translating the-
ory into practice. InPOPL ’97. Proceedings of the 24th ACM
SIGPLAN-SIGACT symposium on Principles of programming
(New York, 1997), ACM Press, pp. 146–159.

[23] Proebsting, T. A., Townsend, G., Bridges, P., Hartman,
J. H., Newsham, T., and Watterson, S. A. Toba: Java
for applications, a way ahead of time (WAT) compiler. (at
http://www.cs.arizona.edu/sumatra/toba/), 1998.

[24] Sobalvarro, P. G. A lifetime-based garbage collector for LISP
systems on general-purpose computers, 1988. B.S. Thesis, Dept.
of EECS, Massachusetts Institute of Technology, Cambridge.

[25] Stefanović, D. Properties of Age-Based Automatic Mem-
ory Reclamation Algorithms. PhD thesis, University of Mas-
sachusetts, Amherst, MA, Feb. 1999.

[26] Stefanović, D., and Moss, J. E. B. Characterisation of object
behaviour in Standard ML of New Jersey. In1994 ACM Con-
ference on Lisp and Functional Programming(Orlando, Florida,
June 1994), ACM Press.

[27] Ungar, D. Generation scavenging: A non-disruptive high per-
formance storage reclamation algorithm. InProceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments(Pittsburgh,
Pennsylvania, Apr. 1984),SIGPLAN Notices 19, 5 (May 1984),
pp. 157–167.

[28] Ungar, D. M.The Design and Evaluation of a High Performance
Smalltalk System. ACM distinguished dissertation 1986. MIT
Press, 1986.

[29] Ungar, D. M., and Jackson, F. Tenuring policies for generation-
based storage reclamation.SIGPLAN Notices 23, 11 (1988),
1–17.

[30] Ungar, D. M., and Jackson, F. An adaptive tenuring policy
for generation scavengers.ACM Transactions on Programming
Languages and Systems 14, 1 (1992), 1–27.

[31] Wilson, P. R. A simple bucket-brigade advancement mechanism
for generation-based garbage collection.SIGPLAN Notices 24,
5 (May 1989), 38–46.

[32] Wilson, P. R. Uniprocessor garbage collection techniques. In
Bekkers and Cohen [7], pp. 1–42.

[33] Wilson, P. R., and Moher, T. G. A “card-marking” scheme
for controlling intergenerational references in generation-based
garbage collection on stock hardware.SIGPLAN Notices 24, 5
(May 1989), 87–92.

[34] Wilson, P. R., and Moher, T. G. Design of the opportunistic
garbage collector. InProceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applications
(New Orleans, Louisiana, Oct. 1989),SIGPLAN Notices 24, 10
(Oct. 1989), pp. 23–35.

[35] Zorn, B. Barrier methods for garbage collection. Tech. Rep.
CU-CS-494-90, University of Colorado at Boulder, Nov. 1990.

[36] Zorn, B. G. Comparative Performance Evaluation of Garbage
Collection Algorithms. PhD thesis, University of California at
Berkeley, Dec. 1989. Available as Technical Report UCB/CSD
89/544.

12


