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ABSTRACT ing surge in GC research. A number of studies use objecintiéet

Programmers are writing a large and rapidly growing numider o traces and simulations to examine the effectiveness of névalc
programs in object-oriented languages such as Java thaireeq gorithms [13, 19]. Others use traces to tune garbage cioliecia

garbage collection (GC). To explore the design and evalnaif profile feedback [5, 6, 12, 16]. The demand for traces is seific
GC algorithms quickly, researchers are using simulatisedan that the GC research community is discussing a standaraofitest
traces of object allocation and lifetime behavior. Tirete force to enable sharing of traces [7].

method generates perfect traces using a whole-heap GCrgt eve  Producing perfectly accurate traces is currently a verg ton-
potential GC point in the program. Because this processds pr suming process; for many benchmarks (such as SEBCjess,
hibitively expensive, researchers often wanulatedtraces by SPEC_213javac, or SPEC228 jack), thebrute forcemethod of

collecting only periodically, e.g., every 32K bytes of alition. producing traces can require over a month for each tracee $in
We extend the state of the art for simulating GC algorithris/im performs a whole-heap collection at each allocation poTat.re-
ways. First, we present a systematic methodology and sszulthe duce this cost, people often ugmnulatedtraces, which they gen-
effects of trace granularity for a variety of copying GC alguns. erate by collecting after evelybytes of allocation. Unfortunately,
We show that trace granularity often distorts GC perforrears: researchers have not studied the effects of granularityaobage
sults compared with perfect traces, and that some GC digusit collection simulations. While there has been research lietter
are more sensitive to this effect than others. Second, weduate methods of approximating traces [18], the research did tuatys

and measure the performance of a new precise algorithm farge  what effects these approximations have. We show here that gr
ating GC traces which is over 800 times faster than the bourtef ulated traces can produs@nificantlydifferent results. Thus, past

method. Our algorithm, called Merlin, frequently timesfzmob- research based on the simulation of granulated traces mapbe

jects and later uses the timestamps of dead objects to teecins  lematic. This result also suggests a new requirement foistany

precisely when they died. It performs only periodic garbagke dard trace format: that it should include information retiog the

lections and achieves high accuracy at low cost, elimigasiny accuracy/granularity of the trace.

reason to use granulated traces. To address the efficiency problems of the brute force methdd a
the accuracy problems of granulated traces, we propose ¢nénivi

1. INTRODUCTION trace generation algorithm. The Merlin algorithm freqetitne-

stamps live objects and later uses the timestamps to reaonsie
time at which the object died. Because it uses timestampsmrat
than collections to identify time of death, the new algaritdoes
not require frequent collections. Rather, it makes use omab
*This work is supported by NSF ITR grant CCR-0085792, NSF collections to identifywhich objects have died and then uses time-
grant ACI-9982028, NSF grant EIA-9726401, DARPA grant 5- stamps to identifyvhenthey died. Ordering the dead objects from
21425, DARPA grant F33615-01-C-1892 and IBM. Any opinions, the latest timestamp to the earliest, the algorithm workmfthe
findings, conclusions, or recommendations expressed snntiai- current time backwards. It thus determines when each objast
tseprgi]ls%rrgthe authors’ and do not necessarily reflect thésheo last alive, saving the trace generator from having to pottes ob-
ject further. By avoiding frequent collections, the Mewdilgorithm

can run 800 faster than the brute force approach. It makésagper
tracing efficient and obviates the need for granulatedntaci

The remainder of this paper analyzes the effects of traceugra
larity on GC simulation fidelity for a number of GC algorithiausd
then introduces the Merlin trace generation algorithm. tiSe
gives some background on garbage collection, GC tracesracel
granularity. Section 3 describes the experimental metloggtave
used to analyze the effects of trace granularity. Sectioredgmts
the results of our granularity analysis and Section 5 dszsithese

While languages such as¢rpand Smalltalk have always used gar-
bage collection (GC), the dramatic increase of people ngifiro-
grams in Java and other modern languages has seen a codespon




results. Section 6 then introduces our new trace generatgn:
rithm and describes how it improves on the existing algarith
Section 7 presents and analyzes results from the new trating
gorithm. Finally, Section 8 presents related studies aruti@e9
summarizes this study.

2. BACKGROUND

Three concepts are central for understanding this resegacbage
collection garbage collectiotraces and garbage collectiamace
granularity.

2.1 Garbage Collection

Garbage collection automates reclamation of objects tteanat
needed from within the heap. While a wide variety of systeses u
garbage collectors, we assume a system that uses an infifgiit
environment to make our explanations simpler, i.e., aniekplew
command allocates objects, but there isfmee command. In-

stead, an object is removed from the heap during a GC when the

collector determines that the object is no longer reachable
Since, without additional information, GCs cannot know ethi
objects the program will use in the future, a garbage callemin-

servativelycollects only objects it determines the program cannot

reach and therefore cannot use now or in the future. To determ
reachability, GCs begin at a program’s roots. The rootsainnt
all the pointers from outside of the heap into the heap, sadhe
program stack and static variables. Any objects in the he&jnn
the transitive closure of these pointers are unreachabiee $nce
an object becomes unreachable it remains unreachable dandtc
be updated or used), these objects can be safely removedtfeom
heap.

In whole-heap collection, the collector determines thehahil-
ity of every object and removes all unreachable objects.yMai
lectors (e.g., generational collectors) often colleciyqrdrt of the
heap, limiting the work at each collection. Because theectdir
reclaims only unreachable objects, it must conservatiasgume
that the regions of the heap not examined contain only liyeaté.

If objects in the unexamined region point to objects in thenaixied
region, the target objects also remain in the heap. Sin@ctshin
the uncollected region are not even examined, collectarsvrise
barriers to find pointers into the collected region. The write barri-
ers are instrumentation invoked at every pointer storeatjmer. A
write barrier typically tests if the pointer target is in ayi@n that
will be collected before the region containing pointer seuand
records such pointers in some data structure.

We assume that every pointer store is instrumented with & wri
barrier. In many systems this assumption is not true for poatt-
ers, such as those in the stack. In this case, we enumerateothe
pointers at each potential GC point, which is much less esipen
than a whole-heap collection, and can be further optimizedgu
the techniques of Cheng et al. [6].

2.2 Copying Garbage Collection Algorithms
We use four copying garbage collection algorithms for owalev
ation: a semi-space collector, a fixed-nursery generdtiowikec-
tor [15], a variable-sized nursery generational collef3rand an
Older-First collector [13]. We briefly describe each of théere
for the reader who is unfamiliar with the GC literature.

A semi-space collector (SS) allocates ifimm space using a
bump pointer. When it runs out of space, it collects thisrenti
region by finding all reachable objects and copying them @to
secondTo space. The collector then reverdegsm and To space

and continues allocating. Since all objectdiom space may be
live, it must reserve half the total heap for the space, as do the
generational collectors that generalize this collector.

A fixed-nursery (FN) two generation collector divides ffrem
space of the heap into a nursery and an older generhtiral-
locates into the nursery. When the nursery is full, it cafete
nursery and copies the live objects into the older generatib
repeats this process until the older generation is also futhen
collects the nursery together with the older generation coples
survivors into theTo space (the older generation).

A variable-size nursery collector (VN) also divides fremspace
into a nursery and an older generation, but does not fix thoeind-
ary. In steady state, the nursery is some fractioRrofm space and
when it fills up, VN copies live objects into the older fractiorhe
new nursery size is reduced by the size of the survivors. Vitieen
nursery gets too small, VN collects all Bfom space.

The Older-First collector (OF) organizes the heap in ordetbe
ject age. It collects a fixed size window that it slides thiodige
heap from older to younger objects. In the steady state amohwh
the heap is full, OF collects the window, returns the freecepta
the nursery, compacts the survivors, and then positiongitheow
for the next collection over objects just younger than thtbaésur-
vived. If the window bumps into the allocation point, it reséhe
window to the oldest end of the heap. It need only reserveespac
the size of a window for a collection.

2.3 Garbage Collection Traces

A garbage collection trace is a chronological recording \a&re
object allocation, heap pointer update, and object dedjlecbbe-
coming unreachable) over the execution of a program. Thesge
include all the information that a memory manager needstéor i
processing. Processing an object allocation requires emtifabr
for the new object and how much memory it needs; pointer up-
date records include the object and field being updated anaeiv
value; object death records define which object became cimrea
able. These events comprise the minimum amount of infoomati
that GC simulations ne€.

Simulators use a single trace file to analyze any number fefrdif
ent GC algorithms and optimizations applied to a single oy
run. The trace contains all the information to which a gaebeq)-
lector would actually have access in a live execution andfale
events upon which the collector may be required to act, iedep
dent of any specific GC implementation. Traces do not reclhrd a
aspects of program execution. Thus, researchers can samalla
single implementation of a garbage collector with tracemfiany
number of different languages. For these reasons, GC dionsila
are useful when prototyping and evaluating new ideas. Smme-
concurrent) garbage collection is deterministic, simata can re-
turn exact results for a number of metrics. When accurate fikes
are used as input, results from a GC simulator can be relied,up
making simulation attractive and accurate traces critical

Garbage collection trace generators must be integratedtiet
memory manager of the interpreter or virtual machine in Wihie
program runs. If the program is compiled into a stand-alomee e
cutable, the compiler back end must generate code for trace g

1The obvious generalization togenerations applies.

2While some optimizations and collectors may need additiona
formation, it can be added to the trace file so that the mgjofit
simulations do not need to process it. Since most GC algosith
use only this information, here we assume only this minimfri
mation.



eration instead of ordinary memory management code at dach o
ject allocation point and pointer update. The trace can lagtpr
updates by instrumenting pointer store operations; thssumen-
tation is particularly easy if the language and GC impleraton
use write barriers, since it then simply instruments thostevear-
riers.

A reachability analysis of the heap from the program’s reit s
determines object deaths. The common brute force methodasf t
generation determines reachability by performing a wiaap gar-
bage collection. Since the garbage collector marks andepses
exactly the reachable objects, any objects unmarked (uapsed)
at the end of the collection must be unreachable and the gierce
erator produces object death records for them.

For a perfectly accurate trace, we must analyze the progtam a
each point in the trace at which a garbage collection coulthbe
voked. For most GC algorithms, collection may be needed when
ever memory may need to be reclaimed: immediately before al-
locating each new object, assuming only object allocatiyérs
GC. Thus, brute force trace generators have the expensdlefteo
ing theentire heap prior to allocatingachobject. If the simulated
GC algorithms allow more frequent garbage collection iaimns,
the reachability analyses must be undertaken more oftemwghs
These frequent reachability analyses are also difficulabise of
the stress they place on the system and how they expose irrors
the interpreter or virtual machine.

2.4 Garbage Collection Trace Granularity
A common alternative to generating perfect traces is taoperthe
reachability analysis only periodically. Limiting the dysis to ev-
ery N bytes of allocation makes the trace generation process fast
and easier. It also causes the trace to be guaranteed @&couhat
at those specific points; the rest of the time it may ovemresie
the set of live objects. Any simulation should assume th@aib
become unreachable only at the accurate points. graeularity
of a trace is the period between these moments of accurate dea
knowledge.

Although trace granularity is related to time, its most ayppi-

3.2 Granularity Schemes

We designed and implemented four different schemes to aandl
trace granularity. Each of these schemes works indepdgdaint
the simulated GC algorithm. They explore the limits of trgcan-
ularity by affectingwhenthe collections occur.

Unsynced: When we began this research, our simulator used this
naive approach to handling trace granularity: it did naghiwe
call this methodUnsynced Unsynced simulations allow a GC to
occur at any time in the trace; collections are simulateti@niat-
ural collection points for the garbage collection algaritfsuch as
when the heap or nursery is full). This scheme allows the Isitou

to run the algorithm as it is designed and does not considee tr
granularity when determining when to collect. Unsyncedusam
tions may treat objects as reachable because the objehtréeatd
was not reached in the trace, even though the object is urabbx
However, they allow a GC algorithm to perform collectionsheir
natural points, unconstrained by the granularity of theliripace.

Three other schemes, which we cajincedsynchronized), sim-
ulate garbage collection invocations within the trace atlpoints
with accurate knowledge of unreachable objects. The scheme
check if a garbage collection is needed, or will be needeah,soo
only at the accurate points and perform a collection onlyhasé
points. Figure 1 shows how each of the Synced schemes makes
collection decisions. In each of these figures, the solid Khis
the natural collection point for the algorithm. The tria@gdenote
points with perfect knowledge. The shaded region is as lagye
one granule of the trace. Each scheme performs the colteatio
the point in the trace with perfect knowledge within the sithce-
gion. This point is shown by the arrow labeled G.

SyncEarly: The first scheme we callyncEarly Figure 1(a) shows
how SyncEarly decides when to collect. If, at a point with-per
fect knowledge, the simulator determines that the natai&ction
point will be reached within the following period equal tceogran-
ule of the trace, SyncEarly forces a GC invocation. SyngEal
ways performs a collectioat or beforethe natural point is reached.
SyncEarly simulations may perform extra garbage collestie.g.,
when the last natural collection point occurs between tioeoéthe

ate unit of measurement depends on how GC is triggered. Sincetrace and what would be the next point with perfect knowledge

most collectors perform garbage collection only when menier
exhausted, the most natural measure of granularity is thebao
of bytes allocated between accurate points in the trace.

3. EXPERIMENTAL DESIGN

This section describes our methodology for evaluating esyean-
tally the effect of trace granularity on simulating the faapying
garbage collectors. We start by describing our simulatdr @o-
grams. We then describe how to deal with granularity in satiaih.

3.1 Simulator Suite

For our trace granularity experiments, we ugeesim a GC simu-
lator suite from the University of Massachusetts with frentls for
Smalltalk and Java traces. In our simulator, we implemefdad
different garbage collection algorithms: SS, FN, VN, and &Fde-
scribed in Section 2.2. The first three collectors are in gjidead
use. For each collector, we simulated eight differiémtm space
sizes from 1.25 to 3 times the maximum size of the live objects
within the heap, at .25 increments. For FN and VN we simulated
each heap size with five different nursery sizes and for OF fivié
window sizes. These latter parameters ranged %dm% of From

space, in}5 increments.

But, SyncEarly ensures that the simulated heap will nevar tpe-
yond the bounds it is given.

SynclLate: The second scheme 8yncLate Figure 1(b) shows
how SyncLate decides when to collect. At a point with perfect
knowledge, if SyncLate computes that the natural collectioint
occurred within the preceding time of one granule of theeyac
SynclLate invokes a garbage collection. SyncLate collattsr
after the natural point is reached. SyncLate simulations may GC
too few times, e.g., when the last natural collection poictuns
between the last point with perfect knowledge and the endief t
trace. SyncLate allows the heap and/or nursery to grow lieyon
their nominal bounds between points with perfect knowledys
enforces the bounds whenever a collection is completed.
SyncMid: The last Synced schemeS$yncMid Figure 1(c) shows
how SyncMid decides when to collect. SyncMid forces a GC-invo
cation at a point with perfect knowledge if a natural coli@epoint

is within half of the trace granularity in the past or futugyncMid
requires a collection at the point with perfect knowleddesest

to the natural collection point. Doing this, SyncMid simidas

try to balance the times they invoke collections too earlg too
late to achieve results close to the average. SyncMid stiook
may, like SyncEarly, perform more or may, like SyncLate f@en
fewer garbage collections. Between points with perfecttadge,



SyncMid simulations may also require the heap and/or nyrser
grow beyond their nominal bounds. However, heap boundstidire s
enforced immediately following a collection.
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Figure 1: When each of the Sync schemes decides to collect.
The triangles denote points in the trace with perfect knowlelge.
The natural collection point is shown as the solid line labeld

N. The shaded region is as large as one granule of the trace and
shows the region in which garbage collection is allowed. A GC
is forced at the pointin the trace with perfect knowledge wihin
the shaded region, shown by the arrow labeled G.

4. TRACE GRANULARITY RESULTS

In this section, we present our data analysis and results.

4.1 GC Simulation Metrics

During a garbage collection simulation we measure a number o
metrics: the number of collections invoked, the mark/caator
the number of interesting stores, and the space-time pto8irce

the metrics we consider are deterministic, simulators caie Gc-
curately return these results.

The mark/cons ratio is the number of bytes that the collector
copied divided by the number of bytes allocated. The rativese
as a measure of the amount of work done by a copying collector.
Higher mark/cons ratios suggest an algorithm will need rtiare,
because it must process and copy more objects.

Another metric we report is the number of interesting stéoes
program run. Since many garbage collectors do not colleceth
tire heap, they use a write barrier to find pointers into tiggorecur-
rently collected (as we mentioned in Section 2.1). The vinéeier
instruments pointer store operations to determine if thatppis
one of which the garbage collector needs knowledge. The aumb
of pointer stores, and the cost to instrument each of theses, ot
vary in a program run, but the number of pointer stores thattmu
be remembered varies between GC algorithms at run time dhd wi
affect their performance.

We also measure the space-time product. While this is not di-
rectly related to the time required by an algorithm, it measwan-
other important resource: space. This metric is the sumuteer
of bytes used by objects within the heap at each allocatiamt po
multiplied by the size of the allocation (or the integral loé thum-
ber of bytes used by objects within the heap with respectnte ti

measured in bytes of allocation). Since the number of byites a
cated does not vary between different algorithms, thisimetea-
sures how well an algorithm manages the size of the heapghrou
out the program execution.

None of these metrics is necessarily sufficient in itself éted
mine how well an algorithm performs. Algorithms can perform
better in one or more of the metrics at the expense of anofimer.
importance of considering the totality of the data can be sethe
models developed that combine the data to determine theito&a
each algorithm needs [13].

4.2 GC Traces
We used 15 GC traces in this study. Nine of the traces are from
the Jalapefio JVM (now know as the Jikes RVM) [2, 1], a comnpile
and run-time system for Java in which we implemented ouetrac
generator. The nine Java traces are: bloat-bloat (BlodtUdihg
its own source code as input), two different configuraticifSlden
health (5 256 and 4 512), and SPEC compress, jess, raytiace, d
javac, and jack. We also have six GC traces from the Uniyersit
of Massachusetts Smalltalk Virtual Machine. The Smalltedkes
are: lambda-fact5, lambda-fact6, tomcatv, heapsim, reptace-
random, and tree-replace-binary. More information abloeititaces
appears in Table 1.

We implemented a filter that takes perfect traces and a target
value and outputs traces with the targeted level of graitylaie
first generated perfectly accurate traces for each of theranos
and then our filter generated 10 versions of each trace wéthugr
larity ranging from 1KB to 2048KB. Then our simulator useé th
perfect and granulated traces as input.

4.3 Analysis

We began by simulating all combinations of program tracacer
granularity, granularity scheme, GC algorithm, &ndmspace and
nursery (window) size. We record the four metrics from abiove
each combination. Table 2 shows an example of the simulater o
put. With this large population of data (approximately 600s
lations for each GC/granularity scheme combination), wéope

a detailed statistical analysis of the results. For thidyasig we
remove any simulation that required fewer than 10 garbatiecco
tions. In simulations with few GCs, the addition or removiko
single collection can create dramatically different effe@nd fur-
thermore the garbage collector would rarely make a diffiegan
the program’s total running time. For these reasons, thesdts
would rarely be included in an actual GC implementation wtiel
ther. We also remove any simulation where the trace granbular
equaled 50% or more of the simulateebm space size, since trace
granularity would obviously impact these results. We prthese
cases, since the data will only bolster our claims that deaity

is important. In addition, we only include simulations widoth
the perfect trace and the granulated trace completed. Docidly,
simulations of the granulated trace would complete meretabse
the simulator expanded the heap and delayed collectiohasmaic-
curate point. There were also simulations of granulatezkahat
did not finish because garbage collection was invoked edhian
normal, causing too many objects to be promoted. Because any
metrics generated from simulations that did not finish wdagddn-
complete, we did not include them in our analysis. The number
of experiments remaining at the 1KB granularity was abouto®0
SS, 200 for VN, 250 for FN, and 425 for OF. The number of valid
simulations does not vary more than by 2% or 3% until the 32KB
granularity. At the 32KB granularity, there are 20% fewengia-



Program Description Max. Live | Total Alloc
bloat-bloat Bytecode-Level Optimization and Analysis Tool 98 usingoien source code as input 3207 176| 164 094 868
Olden Health (5 256)| Columbian health market simulator from the Olden benchrsaite, recoded in Java 2337284| 14953944
(4512) 1650444| 9230756
SPEC_201.compress| Compresses and decompresses 20MB of data using the Lempakiod. From SPECJVM98 8144 188| 120 057 332
SPEC_202jess Expert shell system using NASA CLIPS. From SPECJVM98. 3792 856| 321981 032
SPEC_205raytrace | Raytraces a scene into a memory buffer. From SPECJVM98. 5733464 | 154 028 396
SPEC_209.db Performs series of database functions on a memory residétate. From SPECJVM98. 10047 216| 85169 104
SPEC_213 javac Sun’s JDK 1.0.4 compiler. From SPECJVM98. 11742 640| 274573 404
SPEC_228 jack Generates a parser for Java programs. From SPECJVM98. 3813624| 322274 664
lambda-fact5 Untyped lambda calculus interpreter evaluating 5! in th@dard Church numerals encoding 25180 1111760
lambda-fact6 Untyped lambda calculus interpreter evaluating 6! in te@dard Church numerals encoding 54 700 4 864 988
tomcatv Vectorized mesh generator 126 096 | 42085 496
heapsim Garbage collected heap simulator 549 504 9949 848
tree-replace-random | Builds a binary tree then replaces random subtrees at a feigtithwith newly built subtrees 49 052 2341388
tree-replace-binary | Builds a binary tree then replaces random subtrees withynewitt subtrees 39 148 818 080

Table 1: Traces used in the experiment. Sizes are expresseuhytes.

gc num alloc b alloc o copyb copyo xcopyb xcopyo garbge b gadbg mark/con xcplcp  mut.i/s  gcils

6 5221236 148532 1098480 27504 268088 5558 3770048 12102210887 0.244 054 14 243 0

10 9230756 353094 1552152 48481 284404 6379 6622732 2789316850 0.183232 40675 0

(a) Perfect Trace

gc num alloc b alloc o copyb copyo xcopyb xcopyo garbge b gadbg mark/con xcp/cp  mut.i/s gcils

6 4787328 125037 1443608 32306 355768 7173 2824328 9272201948 0.246444 11644 0

11 9230756 353094 2007252 58368 375464 8164 6392528 29023217 453 0.187054 41949 0

(b) SyncMid With 1KB Granularity

Table 2: Simulator output from a fixed-sized nursery simulaion of Health (4, 512). The top lines are the metrics after sixollections,
when the differences first become obvious; the bottom linesathe final results of the simulation.

tions. The numbers continue to drop as the granularity asas;
by the 2048KB granularity there are fewer than half the nunolbe
usable simulations as at the lowest granularity.

The goal of this experiment is to determine if trace grariyar
affects GC simulations. To aggregate the remaining datajoxe
malize the granulated trace simulation results to the tesilthe
simulation using a perfect trace with an identical confitjora In
order that results that are too low and too high balance, we us
the logarithm of this ratio. For each metric and combinatidn
garbage collector and granularity scheme we performedaited
t-tests on the aggregated results. Following conventi@ecensid-
ered only differences at the 95% confidence level or highex (p
0.05) to be statistically significant or more than the restiltan-
dom fluctuations. When the t-test finds that the granulatedite
are significantly higher at the 95% confidence level we exfreit
if the experiment is repeated with similarly granulated¢¢s 95%
of the time the means from these repeated experiments wallz
larger than the results generated from perfect traces ML8imilar
argument exists for results that the t-test determine grefgiantly
lower. Table 3 shows the smallest granularity, in kilobygsvhich
we observe a statistically significant difference for eaghlina-
tion of collector, metric, and simulation method.

Programs with smalleFrom space and nursery (window) sizes
will obviously be more sensitive to trace granularity. Jastwe
removed simulations where the granularity was over hakFrom
space size, we also re-ran our analysis using only thosestthet,
at some point, had enough live objects to equal the largase tr
granularity. The excluded programs are small enough tledtrine
force algorithm can generate perfect traces in under 8 hadthe
traces remaining in this analysis are those for which brateef
tracing would need to generate granulated traces. The nuofibe

remaining simulations ranged from around 40 (for SS) to adou
220 (for OF) at the 1KB granularity and does not vary by more
than 1 or 2 until the 2048KB granularity where the counts elase

by about 10% of OF and all the Unsynced simulations. The tesul
of this analysis are shown in Table 4.

5. TRACE GRANULARITY DISCUSSION

The data in Table 3 are quite revealing about the effectsaaktr
granularity and the usefulness of the different schemeaiinlling
granulated traces. From these data it is clear that the ug@oi-
lated traces distorts GC performance results, compardrpeifect
traces. For a majority of the metrics, a granularity of onig dilo-
byte is enough to cause this distortion! Clearly, trace giaity
significantly affects the simulator results.

5.1 Unsynced Results

Unsynced collections dramatically distort the simulatiesults.

In Table 3, two collectors (SS and OF) have statisticallynigig
cant differences for every metric at the 1KB granularity. bisth
cases, the granulated traces copied more bytes, neededa@ste
and used more space. For both collectors the differences wer
actually significant at the 99.9% confidence level or higher(
0.001), meaning we would expect similar results in 999 o080
experiments! The generational collectors did not fare moet

ter. Both collectors saw granulated traces producing Sogmtly
higher mark/cons ratios than the perfect traces. As onednexH
pect, these distortions grew with the trace granularityJisynced
simulations, collections may come at inaccurate pointhértitace;

the garbage collector must process and copy objects theaach-
able only because the trace has not reached the next settbf dea
records. Once copied, these objects increase the spaeettod-



Unsynced SyncLate SyncEarly SyncMid
SS FN VN OF|SS FN VN OF|SS FN VN OF| SS FN VN OF
Mark/Cons 1 1 1 1 1 8 16 4 1 1 4 4 | none 1 none 1
Space-Time| 1 1 1 1 1 1 1 2] 1 1 1 1| none 1 2 1
Num. of GCs| 1 1 16 1 1 1 1 1 1 1 4 4| none 1 16 1
Int. Stores | nfa 16 16 1| n/a 2 4 8| n/a 2 8 4] n/la 32 16 none

Table 3: Earliest granularity (in KB) at which each metric becomes significantly different, by simulation method and cdéctor.
Differences were tested using a two-tailed t-test at the 95%onfidence level (p = 0.05).

Unsynced SyncLate SyncEarly SyncMid
SS FN VN OF| SS FN VN OF|SS FN VN OFf SS FN VN OF
Mark/Cons 1 1 4 32| 32 1 1024 16| 8 512 none 8 none 512 none 64
Space-Time| 4 1 512 1| 16 1 512 512 1 1 512 2 1 1 512 32
Num. of GCs| 32 1 512 16| 16 1 64 8| 64 1 512 8| none 1 512 1024
Int. Stores | nfla 512 2098 512 nfa 16 1024 16/ n/a 32 1 8| n/a 16 1 none

Table 4: Earliest granularity (in KB) at which each metric becomes significantly different, by simulation method and cdéctor.
Differences were tested using a two-tailed t-test at the 95%onfidence level (p = 0.05). This table considers only datadm traces

with a maximum live size of of 2MB or more

uct and cause the heap to be full sooner, thus require more fre
quent GCs. This process snowballs, so that even small gnanul

ities quickly produce significant differences. Only the renof
interesting stores for the generational collectors anahtimber of
collections required for VN are not immediately affectechele
are not significantly more pointers from the older generatinthe
nursery because Unsynced collections tend to promotetstijesit
are truly unreachable and, therefore, do not have any paigie
dates.

We expect simulations using larger heaps to be less affdgted

these issues. The results in Table 4 show that this is truespace-

time product and mark/cons results for SS show that objeets a

staying in the heap longer. For VN simulations, however, waat
see a significant increase in the number of collections;xttra eb-
jects require the collector to perform more whole-heapeatibns
and not just nursery collections. Therefore each collectoes
more work: the number of collections remains similar to hssu
with perfect traces by producing a significantly higher nieoks
ratio. No matter the collection algorithm, Unsynced sirtioles
clearly distort the results. This result suggests a newireauent
for the trace file format: it should clearly label the pointsthe
trace with perfect knowledge.

5.2 Synced Results

Synced simulations tend to require slightly higher granitiés than
Unsynced before producing significant distortions. Howeseery
Synced scheme significantly distorts the results for eadhierfer
at least one collector. Examining the results from Table 8 Eax
ble 4, reveals a few patterns. Considering all the tracescBSsrly
and SynclLate still produce differences from simulatiorisgiper-
fect traces, but slightly larger trace granularities mayrdxguired
before the differences become statistically significanyncMid
has several cases where significant distortions do not apipata
this result is both collector- and metric-dependent. Initéaid
there are still statistically significant distortions atdes with gran-
ularities as small as 1KB. In Table 4, when considering ordges
with larger maximum live sizes, Synced simulations pro\idéer
estimates of the results from simulating perfect traces, Bere
still exist significant differences at fairly small granritees.

Because Synced simulations affect only when the collestomn
cur, they do not copy unreachable objects merely becausebthe
ject deletion record has not been reached. Instead, aujuste
collection point causes other problems. Objects that doeatbd
and those whose death records should occur between thalnatur
collection point and the Synced collection point are itlyiaf-
fected. Depending on the Synced scheme, these objects may be
removed from the heap or processed and copied earlier than in
simulation using perfect traces. Once the heap is in eromtéin-
ing too many or too few objects), it is possible for the diffleces
to be compounded as the Synced simulation may collect atgoin
even further away (and make different collection decigighan
the simulation using perfect traces. Just as with Unsyniedla-
tions, small initial differences can snowball.

SyncEarly: SyncEarly simulationtendto decrease the space-time
products and increase the number of GCs, interesting stanels
mark/cons ratios versus simulations using perfect traesmaller
granularities, FN produces higher space-time productsmisiby,
FN copies objects from the nursery because they have notrhad t
to die before collection. SyncEarly exacerbates this sdoacol-
lecting even earlier and copying more objects into the olderer-
ation than similar simulations using perfect traces. Asdrgran-
ularity grows, however, this result disappears (the sitinra still
show significant distortions, but in the expected direqtimecause
the number of points in the trace with perfect knowledgettrttie
number of possible GCs.

SyncLate: In a similar, but opposite manner, SyncLate simulations
tendto decrease the mark/cons ratio and number of collections.
As trace granularity increases, these distortions becoore pro-
nounced as the number of potential collection points begitimit
the collectors as well. Not every collector produces theesdistor-
tion on the same metric, however. FN produces significarnglyer
mark/cons ratios and more garbage collections at smallutaan
ities. While SyncLate simulations allow it to copy fewer etls
early on, copying fewer objects causes the collector todelele-
heap collections. The whole-heap collections remove whiaae
objects from the older generation and prevent them fromirigrc
the copying of other unreachable objects in the nursery. cbhe
lector eventually promotes more and more unreachable tshjga
that it often must perform whole-heap collections soonraftes-



ery collection, boosting both the mark/cons ratio and thalmer of
GCs.

SyncMid: The best results we found are for SyncMid. From Ta-
ble 4, the largeFrom space sizes produce similar results for Sync-
Mid simulations and simulations using perfect traces ahdagye
granularities. The design of SyncMid tries to balance times that

it collects too early with those times it collects too lates @result,

it tends to balance collections distorting the results ia dinection
and collections distorting results in the other. While tlis ben-
efit, it also makes the effects of trace granularity hard tdjut.
Both SyncEarly and SyncLate showed collector-dependdmdabse
ior. While we showed that it would not be sound to base conclu-
sions for a new or unknown collector from their results, ooeld
make an assumption about their effect on the metrics. SyhcMi
simulations, by comparison, produced biases that werendiepe
upon both the metric and collector. When significant diffees
occur, it is not clear in which way the metric will be skewedhig

the results were very good on the whole, there is still nohglsi
metric for which every collector returned results withotatisti-
cally significant distortions.

5.3 Trace Granularity Conclusion
From the above, it is clear that trace granularity has a fogmit
impact on the simulated results of garbage collection #lyos.

how this works with the Merlin algorithm.

6.1 Merlin Algorithm Overview

The Merlin algorithm improves upon brute force trace getiena
by computing when objects were last reachable rather thanwh
objects become unreachable. Knowing the last moment thath-an
ject was reachable, the death time for an object can be ahtiy-
mined: since time advances in discrete steps, the deathofize
object is the time interval immediately following the onewhich
the object was last reachable. By computing the last timeobbj
are reachable, Merlin needs to perform only occasional aggrb
collections, saving substantial work.

To find when objects are last reachable, we stamp objects with
the current timewvheneverthey may transition from reachable to
unreachable — whenever objects may lose an incoming referen
If the object later loses another incoming reference (beedhe
earlier update did not leave it unreachable), then Merlihsirnply
overwrite the previous timestamp with the current time.

Now suppose that the system runs, performing occasional gar
bage collections. Consider the situation immediatelyofelihg one
of these GCs. The collector determines which objects areaghr
able and which may still be live. For tracing purposes, wedrtee
compute exactlyhenthe unreachable objects were last reachable.
The timestamps can be used to compute these times.

When using traces to compare and measure new GC algorithms Consider a dead object with the latest timestamp. The object

and optimizations, there is not a clear way to use granulateegs
and have confidence that the results are valid.

6. MERLIN TRACE GENERATION

Life can only be understood backwards; but it must be lived fo
wards.—Sgren Kierkegaard

In this section we present our néerlin Trace Generation Algo-
rithm, which generates perfect traces up to 800 times faster ltean t
dominant brute force method of trace generation. Given peed
with which it can generate perfect traces, the Merlin altoni re-
moves the need to use granulated traces and avoids the ihaties
their use can cause.

The Merlin algorithm has other advantages over brute fommmet
generation. As discussed in Section 2.4, implementing dtterl
algorithm is difficult. For brute force to work, all GC and GC-
affecting code must beompletelyerror-free and the system must
support whole-heap garbage collection. Our new trace gearer
can work with almost any garbage collection algorithm aneksstes
the system less.

According to Arthurian legend, the wizard Merlin began life
an old man. He then lived backwards in time, dying at the tifne o
his birth. Merlin’s knowledge of the present was based ontwba
had already experienced in the future. The Merlin traciggidthm
works in a similar manner. Because it computes when eaclttobje
died backwards in time, the first time the Merlin trace getiena
algorithm encounters an object in this calculation is theetdf the
object’s death; any other possible death times would béeeanl
the running of the program (but later in Merlin’s proces3irand
need not be considered. Merlin, both the mythical charesetelr
our trace generator, works in reverse chronological ordethat
each decision, once made, never has to be revisited.

This remainder of this section overviews how Merlin compute
when objects transition from reachable to unreachable,ghes a
detailed explanation of why Merlin works, and discusseslénp
mentation issues. The method of finding object allocatiam$ a
pointer updates is similar to the above description, but @esedbe

must have been last reachable at that time, for if it werehagale
later, it would have been pointed to by an object with an esager|
timestamp — but this is the latest time. Now consider the tpoin
ers in the dead object with the latest death time. Any objds
are the target of these pointers would have also been rdachiab
the time stamped into the original object. Thus we propatiee
last reachable time from the first object to the objects toctvlif
points. In fact, we should propagate this last reachable fiom a
dead object to the objects to which it points until we can pgate
it no further. To prevent infinite propagation through cgclne al-
gorithm simply stops if an object was last reachable at a Gmel
to or later than the last reachable time of the source object.
Once this processing is completed for the object with thestat
timestamp, we have found the objects that were last reaetzbl
that time. We can then remove them from the set of dead ob-
jects and consider the latest timestamp among the remagfing
jects. The last reachable time arguments apply iteratigeywe
can determine this time for every object that the GC found uvas
reachable.

6.2 Merlin Details and Implementation

While the previous section provides an overview of Merlitist
section presents a detailed discussion of why the Merliarélgn
works and discusses implementation issues.

As discussed in Section 2.3, finding which objects are dead re
quires a reachability analysis. Our new algorithm cannainge
this requirement, but instead improves upon the previouieforce
method in computing the last instant that an object was edzeh
To compute when objects were last reachable, the Merlirrighgo
does a small amount of work as the program runs and when the
trace must be accurate, and then performs less frequent @ibg d
trace generation.

After the system invokes a GC, the Merlin algorithm worksksac
ward in time to find exactly when each object the garbage colle
tor found was unreachable was last reachable. In brute foace
generation, a death record is appended to the trace when-an ob



Figure 2: Objects A and B are reachable until their last incom
ing reference is removed. Object C is last reachable when an
incoming reference is removed, even though it has others. Gb
jects D, E, and F are reachable until an action that does not
affect their incoming references.

™

ject is found to be unreachable. Whenever objects could hd,de
the trace generator must find which objects are unreach&lgp-
arating computingvhenobjects were last reachable fromhether
objects are unreachable saves Merlin substantial amotintsrk,
but requires the introduction dimeinto trace generation. Where
in the trace to add these “death” records is specified by tfextd
last reachable time. Time is related to trace granularitye tmust
advance wherever object death records may occur: at théspnin
the trace with perfect knowledge.

6.2.1 How Objects Become Unreachable

To understand how the Merlin algorithm works backward inetim
to compute when an object was last reachable, it is impottant
understand how objects become unreachable. Table 5 ises géri
generalizations about how objects within the heap tramsifiom
reachable to unreachable. Scenarios 1 and 2 of this tabteiloes
an object that is reachable until an action involves theatbjece-
nario 3 describes an object that is last reachable withdogiiig
directly involved in an action. Clearly, not all pointer ste are the
last time an object is reachable, but any object that doesnbec
unreachable because of a pointer store must be in the tvardit-
sure set of the object that lost an incoming reference.

6.2.2 Finding Potential Last Reachable Times
Knowing how objects transition from reachable to unreatshahd
using the concept of time, is is now possible to find objedast |
reachable time. Since it is not always clear if a pointeresier
the last time an object is reachable (if a pointer updateelean
object with no incoming references, it is clear the pointedate is
the last time the object is reachable; if an update leavestifest
with n remaining incoming references, it is not clear if the object
continues to be reachable), just counting the number ofnirog
references (reference counting) is not sufficient to datesrfast
reachable times. The following paragraphs consider tHerdifit
methods by which objects transition from reachable to wireble
and present the Merlin pseudo-code to compute these |asiaiie
times.

Instrumented Pointer Stores: Most pointer stores will be instru-
mented by a write barrier. Objects may be reachable untiirstgo
store, caught by a write barrier, removes an incoming refare
The Merlin trace generator stamps the object losing an ifmgpm
reference (the old target of the pointer) with the currengti Since
time increases monotonically, each object will ultimateystamped
with the final time it loses an incoming reference. If the liast

1. An object transitions from one to zero incoming referasnce
via a pointer update. Objects A and B in Figure 2 are exam-
ples of this case.

2. An object transitions from to n— 1 incoming references via
a pointer update, where all- 1 references are from unreach-
able objects. An example of this case is object C in Figure 2.

3. An object’s number of incoming references does not change
but all the reachable objects pointing to it become unreach-
able. The objects labeled D, E, and F in Figure 2 are exam-
ples of this case.

Table 5: How objects become unreachable

coming reference is removed by an instrumented pointee stoe
Merlin code shown in Figure 4 stamps the object with the as¢t
it was reachable.

Uninstrumented Pointer Stores:Root pointers may not have their
pointer stores instrumented. An object that is reachaltibairoot
pointer update may not have the time it transitions frommaht=
to unreachable detected by any instrumentation. Just asn@aho
GC begins with a root scan, our trace generator performs a-mod
fied root scan when the trace must be accurate. This modifigd ro
scan also enumerates the root pointers, but merely starmpsdt
referenced objects with the current time. While root-refieed,
objects are always stamped with the current time; if an objes
reachable until a root pointer update, the timestamp willl libe
last time the object was reachable. Figure 5 shows Merlsesigo-
code executed whenever the root scan enumerates a pointer.
Referring Objects Become Unreachable:We also compute the
time an object was last reachable for objects unreachalheben
cause the object(s) pointing to them are unreachable (8oe®a
of Table 5). For chains of these objects, updating the lastrable
time for one object requires recomputing the last reachirhkes of
objects to which it points. We simplify this process by ngtthat
each of these object’s last reachable time is the latestdashable
time of an object containing the former in its transitivestice set.

6.2.3 Computing When Objects Become Unreachable
Because the Merlin algorithm is concerned withenan object was
last reachable and cannot always deterrhiowthe object became
unreachable, the issue is to find a single method that compurte
ery object’s last reachable time. The methods from Figurasd}
5 timestamp the correct last reachable time for those abjbett
are last reachable as described in Scenarios 1 and 2 of Table 5
By combining the two timestamping methods with computireg la
reachable times by membership in transitive closure se&slitv
can determine the last reachable time of every object.

To demonstrate that this combined method works, we consider
each scenario from Table 5. Since no object continues ta pmin
an object last reachable as described by Scenario 1 of Taddle 5
ter it is last reachable, the latter object will only be a memtif its
own transitive closure set. Therefore, the last reachahkeMerlin
computes will be the object’s own timestamp. The last relaleha
time computed for an object that is last reachable as in $iceRa
of Table 5 will also be the time with which it is stamped. This o
ject was last reachable when its timestamp was last updatede
any objects that point to it must be unreachable, the pajraoin
jects could not have later last reachable times. Thus, #msitive



closure computation will determine the object was lasthahte at
the time with which it is already stamped. We show above thiat t
combined method computes last reachable times for objeataite
last reachable as in Scenario 3 of Table 5, so Merlin can ctempu
last reachable times by combining timestamping and comgtitie
transitive closures and need not know how each object traned
from reachable to unreachable.

6.2.4 Computing Death Times Efficiently

Computing the full transitive closure sets is a time consnuro-
cess, requiring)(nz) time. But finding an object’s last reachable
time requires knowing only thiatestobject containing the former
object in its transitive closure set. Rather than formatiynput-
ing the transitive closure sets, Merlin performs a deptt-Eearch
from each object, propagating the last reachable time fahi@
the objects visited in the search. To save time, Merlin bedyn
ordering the objects from the earliest timestamp to thestadad
then pushing them onto the search stack so the latest objkct w
be popped first. Figure 3(a) shows this initialization. Upen
moving an object from the stack, the Merlin algorithm anabyits
fields to find pointers to other objects. If a pointed-to objemuld
be unreachable and is stamped with an earlier time than tee re
ring object, then the pointed-to object is stamped with taier
time. If the object is definitely unreachable, it is pushetbahe
stack after its timestamp is updated (e.g., Figure 3(b) éc)).3f a
pointed-to object’s time is equal to that of the referringech then
either we have found a cycle (e.g., Figure 3(c)) or the pditte
object is already on the stack to propagate this time. Eitlasy,
the pointed-to object does not need to be pushed on the sifack.
a pointed-to object’s time is later, then the object remaireach-
able after the time being propagated and this possible éasthr
able time is unimportant. Pushing objects onto the staak fitee
earliest stamped time to the latest means each object isgsed
only once. The search proceeds from the latest stamped dime t
the earliest; later examinations of an object are compueandjer
last reachable times. This method of finding last reachaiviest
requires only®(nlogn) time, the sorting of the objects being the
limiting factor. Figure 6 shows the code the Merlin alganitises
for this modified depth-first search.

6.3 The Merlin Trace Generator

As described so far, Merlin is able to reconstnwbienobjects were
last reachable. However, it is unable to deternvitéichobjects are
no longer reachable: it still needs a reachability analy&e Mer-
lin algorithm uses two simple solutions to overcome this. eih
ever possible, it delays computation until immediatelyeafiar-
bage collection. Before any memory is cleared, the tracergen
tion algorithm has access to objects within the haxaghthe garbage
collector’s reachability analysis. This piggy-backingesa lot of
duplicative analysis. At other times (e.g., when a prograrmi-
nates), garbage collection may not be invoked but the ahgori
needs a reachability analysis. We first stamp the rooteatad
objects with the current time and then compute the last edzieh
times of every object in the heap. Objects with a last redehab
time equal to the current time must be reachable from theranag
roots and therefore are still alive. All other objects aresachable
and their death records are added to the trace. This metHoulef
ing unreachable objects enables the Merlin algorithm tdkwwith
any garbage collector. Even if the garbage collector cagnoat-
antee that it will collect all unreachable objects, whenghegram
terminates Merlin performs the combined object reachgbiliast

reachable time analysis to find the unreachable objects taid t
last reachable times.

As stated in Section 2.1, we rely upon a couple of assumptions
about the host GC. First, that any unreachable object the<GC i
treating as live will have the objects it points to treatethas as is
required among many GC algorithms. Thus no object is removed
from the heap until all objects pointing to it are removed.c-Se
ond, the Merlin algorithm assumes that there are no poitbees
involving an unreachable object. Therefore, we assumeotize
an object becomes unreachable, its incoming and outgofeg re
ences are constant. Both of these preconditions are inmidaa
our transitive closure computation, and languages suchvasahd
Smalltalk satisfy them.

The order in which the Merlin trace generator adds infororati
to the trace is an issue. As discussed in Section 6.2, owr gyexeer-
ator needs the concept of time to determine where in the tace
object death record should be placed. The object deathdeedr
ther must be added to the trace in chronological order befoite
ing the trace to disk, or can be appended to the trace withfa pos
processing step placing the trace into proper order. Hgldihthe
trace records in memory until all object deaths are founddsfia
cult challenge; with larger traces holding these recorasreguire
significant amounts of memory. Our implementation of the IMer
algorithm uses an external post-processing step thataudtite-
grates the object death records. Either way of handlingisisise
has advantages and disadvantages, but adds very littleditrace
generation.

6.4 Object Allocations and Pointer Updates
Trace generation is already efficient at finding and repgrthb-
ject allocations and pointer updates. As discussed in @eéti3,
even the brute force method of trace generation can find aodde
these actions in linear time. Our new algorithm, like thoséole
it, instruments the host system’s memory manager to determi
when memory is allocated for new objects. At those times,-Mer
lin records the ongoing object allocation.

Finding and reporting pointer updates also does not charike.
brute force trace generation, the Merlin algorithm insteats the
heap pointer store operations (preferably by augmentingtieg
write barriers). Our new trace generation algorithm does ad
additional requirement, the reasons for which are expthin&ec-
tion 6.2.2. Unlike brute force, our trace generator reguaecess
to the object being updated, the new value of the pointer,thed
old value of the pointer. As many write barriers are already i
plemented to access these values (e.g., a write barriebleapt
reference counting), this additional requirement is notuabhip.
Allowing our trace generator to work with almost any garbagke
lector (rather than requiring a semi-space collector) rmdke in-
strumentation to record pointer updates easier to add.e/slsemi-
space collector does not require a write barrier, many #lgos
(e.g., generational and OF collectors) do. Moreover, $igdain-
guages/systems require a write barrier for their own reasbom-
bining our trace generator with these algorithms allowsutbe of
the existing write barriers, enabling the Merlin trace gate to
leverage this code.

7. EVALUATION OF MERLIN

We implemented both Merlin and the brute force trace algorit
within the Jikes virtual machine. We then performed somgaini
timing runs on a Macintosh Power Mac G4, with two 533 MHz
processors, 32KB on-chip L1 data and instruction cache®iKRB5



A D Stack A D Stack A D Stack

Object A Object B Object C
Object C Object C Object C
\ c Object B \ c Object B \ c Object B

Object D Object D Object D
B B B
(a) Before Processing Object A (b) Before Processing Object B (c) Before Processing Object C

Figure 3: Computing object death times, where; < tj;1. Since Object D doesn’t have any incoming references, Merlis computation

cannot change its timestamp. Although Object A was last redwable at its timestamp, care is needed so that the last reachk time

does not change via processing its incoming reference. In)(@Object A is processed finding the pointer to Object B. ObjetB'’s

timestamp is earlier, so Object B is added to the stack and lageachable time set. We process Object B and find the pointerat
Object C in (b). Object C has an earlier timestamp, so it is aded to the stack and timestamp updated. In (c), Object C is proessed.
Object A is pointed to, but it does not have an earlier timestap and is not added to the stack. After (c), the cycle has finigd being
processed. The remaining objects in the stack will be examéd, but no further processing is needed.

voi d Poi nterStorel nstrunment ati on( ADDRESS sour ce, ADDRESS newTar get)
ADDRESS ol dTarget = get Menor yWor d( sour ce) ;
if (oldTarget # null)
ol dTarget.ti meStanp = currentTi ne;
addToTr ace( poi nt er Updat e, source, newTarget);

Figure 4: Code for Merlin’s pointer store instrumentation

voi d ProcessRoot Poi nt er (ADDRESS r oot Addr)
ADDRESS r oot Target = get Mermor yWor d( r oot Addr) ;
if (rootTarget # null)
root Target.ti neStanp = currentTi ne;

Figure 5: Code for Merlin’s root pointer processing

voi d Conput eObj ect Deat hTi nes()
Time lastTime = o
sort unreachabl e objects fromthe earliest timestanp to the |atest;
push each unreachabl e object onto a stack fromthe earliest timestanp to the |atest;
while (!stack.enpty())
oj ect obj = stack. pop();
Time obj Time = obj.tinmeStanp;
if (objTine <= | astTine)
| ast Ti me = obj Ti ne;
for each (field in obj)
if (isPointer(field) & obj.field # null)
Ohj ect target = get MenoryWord(obj.field);
Time targetTine = target.ti meStanp;
if (isUnreachabl e(target) && targetTine < | astTine)
target.timeStanp = | astTi ne;
st ack. push(target);

Figure 6: Code of Merlin trace generation last reachable tine computation
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Figure 7: The speedup of Merlin versus Brute Force trace gen-
eration. Note the log-log scale.

unified L2 cache, 1MB L3 off-chip cache and 384MB of memory,
running PPC Linux 2.4.3. We used only one processor for our ex
periments, which were run in single-user mode with the ngtwo
card disabled. We built two versions of the VM, one for eacthef
algorithms. Whenever possible we used identical code fivtio
JVMs, so Merlin is implemented with a semi-space collector.

Merlin’s running time is spent largely in performing the nifietl
root scan that is required at every accurate point in thetréde
further improved Merlin’s running time by including a nurmbef
optimizations that minimize the number of root pointers thast
be enumerated at each of these locations. The first optiimizat
was to instrument pointer store operations involving st@iobal)
pointers. With this instrumentation Merlin does not nee@ -
merate the static pointers at each accurate point, as terimenta-
tion marks objects whenever they lose an incoming referéooe
the static fields. Because Java allows functions to accegdtair
own stack frame, repeated scanning within the same metheagysi
enumerates the same objects from the pointers below thisoafist
frame. We implemented a stack barrier that is called whemés
are popped off the stack, enabling Merlin to scan the stask le
deep and further reduce the time needed for Merlin tracihggé-
cause they would not improve brute-force tracing, thesamipa-
tions were used only with Merlin tracing.

We generated traces at different granularities across kismge
of programs. Because of the time required for brute foraetgen-
eration, we limited some traces to only the initial few megab of
data allocation. Working with common benchmarks and gdimgra
traces of identical granularity, Merlin achieved speedaridrs of
up to 816. In the time that brute force needed to generategnaith
16 to 1024KB of granularity, Merlin generated perfect tadeig-
ure 7 shows the speedup Merlin, generating perfect trachig\ees
over the brute force algorithm generating traces at diffelevels
of granularity. Clearly, Merlin can greatly reduce the timeeded
to generate a trace. However, as seen in Figure 7, the spéedup
less as granularity increases. The time required deperithe dime
needed to generate object death records and, thereforeaa t
granularity. Brute force limits object death time procagdio only
when the trace must be accurate; as the granularity ingdhse
time needed greatly diminishes. While Merlin needs to perfo

only periodic collections, it also must perform a small seao-
tions at each pointer update and location in the trace witfepe
knowledge. Even with brute force performing more frequefsG
the cost of Merlin’s frequent root enumerations and updgtiime-
stamps becomes too great.

These results are promising, but we can speed up perfornas@nce
the Merlin tracing algorithm even more. As a program’s memor
footprint grows, and as more accurate points are needeléHimn
algorithm is far less affected than brute force.

8. RELATED WORK
We do not know of any previous research into the effects aktra
granularity or different methods of generating garbagéectibn
traces. In this section, we discuss the research from wihnish t
study draws its roots.
Using Knowledge of the Future: Belady’s [4] optimal virtual
memory page replacement policy,¥ decided which blocks should
not be paged to disk by analyzing future events. At each ibecis
point, the MN algorithm considers future memory accesses, stored
within an available file, until it determines the single iKdo evict.
Because the algorithm did not cache results, at each degisiot
the MIN algorithm begins a new analysis. While Belady’s algo-
rithm used knowledge of future events to perform optimatlyro-
cesses events in chronological order. Each time it is indpkee
MIN algorithm looks only far enough into the future as is neagssa
to make the current decision.
Cyclic Reference Counting: One of the earliest methods of gar-
bage collection was to use reference counts: each objeatdmst
of its incoming references so, when the count reaches 0 jleeto
can be freed [8]. McBeth was the first to appreciate that this a
proach cannot collect cycles of objects, since the refereoants
would never reach zero [9]. Many different schemes have teen
veloped to deal with cycles. Trial deletions [17] collecysles of
objects by removing a pointer thought to be within a cycleteAf
removing the pointer, trial deletion updates the referacmts. If,
in updating the reference counts, the source object foretmaved
pointer is found unreachable, then a cycle exists and thectsbare
dead. Otherwise a dead cycle may not exist, the deletedgpoint
is reestablished and the original reference counts rektofdis
method can handle and detect cycles, but it may incorrecibgg
that some objects are in a cycle and cannot take advantagkeesf o
object reachability analyses.

Merlin does not perform any explicit reference countingyutiph
it marks objects whenever they lose an incoming refereneae
ally, reference counting methods cannot properly detegmihen
cycles of objects become unreachable. While methods, fii&k t
deletion, have been developed to avoid this problem, thexth-m
ods cannot guarantee that they will determine when eactttlsje
unreachable in addition to processing each object only.obise
ing Merlin, as opposed to reference counting, allows botthese
requirements to be met.
Lifetime Approximation: To cope with the cost of producing GC
traces, there has been previous research into approxigrhegrife-
times of objects. These approximations model the objeatation
and object death behavior of actual programs. One paperiledc
mathematical functions that model object lifetime chagdstics
based upon the actual lifetime characteristics of 58 Sallénd
Java programs [14]. Zorn and Grunwald compare severalrdiffe
ent models one can use to approximate object allocation lajedto
death records of actual programs [18]. Neither study attethip
generate actual traces, nor does either study considefféugsef



pointer updates; rather, these studies attempted to find wtiner

than trace generation to produce input for memory managemen

simulations.

9. SUMMARY

The use of granulated traces for garbage collection sinoulagises

a number of issues. We first develop a method by which any vari-

able that affects garbage collection simulations can hiesttally

tested. We then use this method to show that over a wide range

of variables, granulated traces produce results that gnéfisantly
different from those produced by perfect traces. Additiignave

show that there are ways of simulating granulated tracesattea

better at minimizing these issues. With these results, wpqae
changing the trace format standard to include additiorfakina-
tion.

Finally, we introduce and describe the Merlin Trace Gennanat

Algorithm. We show that the Merlin algorithm can producects

[10]

[11]

[12]

(23]

[14]

more than 800 times as fast as the common brute force method of

trace generation. By generating traces with Merlin, we caregate
perfect traces in less time than previously required fongiated
traces. Thus, the Merlin algorithm makes trace generatiookq
and easy, and eliminates the need for granulated traces.
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