
Error-Free Garbage Collection Traces:
How to Cheat and Not Get Caught �

Matthew Hertz† Stephen M Blackburn† J Eliot B Moss†

Kathryn S. McKinley‡ Darko Stefanović§

† Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
fhertz,steveb,mossg@cs.umass.edu

‡ Dept. of Computer Science
University of Texas at Austin

Austin, TX, 78712
mckinley@cs.utexas.edu

§ Dept. of Computer Science
University of New Mexico
Albuquerque, NM 87131

darko@cs.unm.edu

ABSTRACT
Programmers are writing a large and rapidly growing number of
programs in object-oriented languages such as Java that require
garbage collection (GC). To explore the design and evaluation of
GC algorithms quickly, researchers are using simulation based on
traces of object allocation and lifetime behavior. Thebrute force
method generates perfect traces using a whole-heap GC at every
potential GC point in the program. Because this process is pro-
hibitively expensive, researchers often usegranulated traces by
collecting only periodically, e.g., every 32K bytes of allocation.

We extend the state of the art for simulating GC algorithms intwo
ways. First, we present a systematic methodology and results on the
effects of trace granularity for a variety of copying GC algorithms.
We show that trace granularity often distorts GC performance re-
sults compared with perfect traces, and that some GC algorithms
are more sensitive to this effect than others. Second, we introduce
and measure the performance of a new precise algorithm for gener-
ating GC traces which is over 800 times faster than the brute force
method. Our algorithm, called Merlin, frequently timestamps ob-
jects and later uses the timestamps of dead objects to reconstruct
precisely when they died. It performs only periodic garbagecol-
lections and achieves high accuracy at low cost, eliminating any
reason to use granulated traces.

1. INTRODUCTION
While languages such as LISPand Smalltalk have always used gar-
bage collection (GC), the dramatic increase of people writing pro-
grams in Java and other modern languages has seen a correspond-

�This work is supported by NSF ITR grant CCR-0085792, NSF
grant ACI-9982028, NSF grant EIA-9726401, DARPA grant 5-
21425, DARPA grant F33615-01-C-1892 and IBM. Any opinions,
findings, conclusions, or recommendations expressed in this ma-
terial are the authors’ and do not necessarily reflect those of the
sponsors.

ing surge in GC research. A number of studies use object lifetime
traces and simulations to examine the effectiveness of new GC al-
gorithms [13, 19]. Others use traces to tune garbage collection via
profile feedback [5, 6, 12, 16]. The demand for traces is sufficient
that the GC research community is discussing a standard file format
to enable sharing of traces [7].

Producing perfectly accurate traces is currently a very time con-
suming process; for many benchmarks (such as SPEC202 jess,
SPEC 213 javac, or SPEC228 jack), thebrute forcemethod of
producing traces can require over a month for each trace, since it
performs a whole-heap collection at each allocation point.To re-
duce this cost, people often usegranulatedtraces, which they gen-
erate by collecting after everyk bytes of allocation. Unfortunately,
researchers have not studied the effects of granularity on garbage
collection simulations. While there has been research intobetter
methods of approximating traces [18], the research did not study
what effects these approximations have. We show here that gran-
ulated traces can producesignificantlydifferent results. Thus, past
research based on the simulation of granulated traces may beprob-
lematic. This result also suggests a new requirement for anystan-
dard trace format: that it should include information recording the
accuracy/granularity of the trace.

To address the efficiency problems of the brute force method and
the accuracy problems of granulated traces, we propose the Merlin
trace generation algorithm. The Merlin algorithm frequently time-
stamps live objects and later uses the timestamps to reconstruct the
time at which the object died. Because it uses timestamps rather
than collections to identify time of death, the new algorithm does
not require frequent collections. Rather, it makes use of normal
collections to identifywhichobjects have died and then uses time-
stamps to identifywhenthey died. Ordering the dead objects from
the latest timestamp to the earliest, the algorithm works from the
current time backwards. It thus determines when each objectwas
last alive, saving the trace generator from having to process the ob-
ject further. By avoiding frequent collections, the Merlinalgorithm
can run 800 faster than the brute force approach. It makes perfect
tracing efficient and obviates the need for granulated tracing.

The remainder of this paper analyzes the effects of trace granu-
larity on GC simulation fidelity for a number of GC algorithmsand
then introduces the Merlin trace generation algorithm. Section 2
gives some background on garbage collection, GC traces, andtrace
granularity. Section 3 describes the experimental methodology we
used to analyze the effects of trace granularity. Section 4 presents
the results of our granularity analysis and Section 5 discusses these



results. Section 6 then introduces our new trace generationalgo-
rithm and describes how it improves on the existing algorithm.
Section 7 presents and analyzes results from the new tracingal-
gorithm. Finally, Section 8 presents related studies and Section 9
summarizes this study.

2. BACKGROUND
Three concepts are central for understanding this research: garbage
collection, garbage collectiontraces, and garbage collectiontrace
granularity.

2.1 Garbage Collection
Garbage collection automates reclamation of objects that are not
needed from within the heap. While a wide variety of systems use
garbage collectors, we assume a system that uses an implicit-free
environment to make our explanations simpler, i.e., an explicit new
command allocates objects, but there is nofree command. In-
stead, an object is removed from the heap during a GC when the
collector determines that the object is no longer reachable.

Since, without additional information, GCs cannot know which
objects the program will use in the future, a garbage collector con-
servativelycollects only objects it determines the program cannot
reach and therefore cannot use now or in the future. To determine
reachability, GCs begin at a program’s roots. The roots contain
all the pointers from outside of the heap into the heap, such as the
program stack and static variables. Any objects in the heap not in
the transitive closure of these pointers are unreachable. Since once
an object becomes unreachable it remains unreachable (and cannot
be updated or used), these objects can be safely removed fromthe
heap.

In whole-heap collection, the collector determines the reachabil-
ity of every object and removes all unreachable objects. Many col-
lectors (e.g., generational collectors) often collect only part of the
heap, limiting the work at each collection. Because the collector
reclaims only unreachable objects, it must conservativelyassume
that the regions of the heap not examined contain only live objects.
If objects in the unexamined region point to objects in the examined
region, the target objects also remain in the heap. Since objects in
the uncollected region are not even examined, collectors use write
barriers to find pointers into the collected region. The write barri-
ers are instrumentation invoked at every pointer store operation. A
write barrier typically tests if the pointer target is in a region that
will be collected before the region containing pointer source and
records such pointers in some data structure.

We assume that every pointer store is instrumented with a write
barrier. In many systems this assumption is not true for rootpoint-
ers, such as those in the stack. In this case, we enumerate theroot
pointers at each potential GC point, which is much less expensive
than a whole-heap collection, and can be further optimized using
the techniques of Cheng et al. [6].

2.2 Copying Garbage Collection Algorithms
We use four copying garbage collection algorithms for our evalu-
ation: a semi-space collector, a fixed-nursery generational collec-
tor [15], a variable-sized nursery generational collector[3], and an
Older-First collector [13]. We briefly describe each of these here
for the reader who is unfamiliar with the GC literature.

A semi-space collector (SS) allocates intoFrom space using a
bump pointer. When it runs out of space, it collects this entire
region by finding all reachable objects and copying them intoa
secondTo space. The collector then reversesFrom andTo space

and continues allocating. Since all objects inFrom space may be
live, it must reserve half the total heap for theTo space, as do the
generational collectors that generalize this collector.

A fixed-nursery (FN) two generation collector divides theFrom
space of the heap into a nursery and an older generation.1 It al-
locates into the nursery. When the nursery is full, it collects the
nursery and copies the live objects into the older generation. It
repeats this process until the older generation is also full. It then
collects the nursery together with the older generation andcopies
survivors into theTospace (the older generation).

A variable-size nursery collector (VN) also divides theFromspace
into a nursery and an older generation, but does not fix their bound-
ary. In steady state, the nursery is some fraction ofFromspace and
when it fills up, VN copies live objects into the older fraction. The
new nursery size is reduced by the size of the survivors. Whenthe
nursery gets too small, VN collects all ofFromspace.

The Older-First collector (OF) organizes the heap in order of ob-
ject age. It collects a fixed size window that it slides through the
heap from older to younger objects. In the steady state and when
the heap is full, OF collects the window, returns the free space to
the nursery, compacts the survivors, and then positions thewindow
for the next collection over objects just younger than thosethat sur-
vived. If the window bumps into the allocation point, it resets the
window to the oldest end of the heap. It need only reserve space
the size of a window for a collection.

2.3 Garbage Collection Traces
A garbage collection trace is a chronological recording of every
object allocation, heap pointer update, and object death (object be-
coming unreachable) over the execution of a program. These events
include all the information that a memory manager needs for its
processing. Processing an object allocation requires an identifier
for the new object and how much memory it needs; pointer up-
date records include the object and field being updated and the new
value; object death records define which object became unreach-
able. These events comprise the minimum amount of information
that GC simulations need.2

Simulators use a single trace file to analyze any number of differ-
ent GC algorithms and optimizations applied to a single program
run. The trace contains all the information to which a garbage col-
lector would actually have access in a live execution and allof the
events upon which the collector may be required to act, indepen-
dent of any specific GC implementation. Traces do not record all
aspects of program execution. Thus, researchers can simulate a
single implementation of a garbage collector with traces from any
number of different languages. For these reasons, GC simulators
are useful when prototyping and evaluating new ideas. Since(non-
concurrent) garbage collection is deterministic, simulations can re-
turn exact results for a number of metrics. When accurate trace files
are used as input, results from a GC simulator can be relied upon,
making simulation attractive and accurate traces critical.

Garbage collection trace generators must be integrated into the
memory manager of the interpreter or virtual machine in which the
program runs. If the program is compiled into a stand-alone exe-
cutable, the compiler back end must generate code for trace gen-

1The obvious generalization ton generations applies.
2While some optimizations and collectors may need additional in-
formation, it can be added to the trace file so that the majority of
simulations do not need to process it. Since most GC algorithms
use only this information, here we assume only this minimal infor-
mation.



eration instead of ordinary memory management code at each ob-
ject allocation point and pointer update. The trace can log pointer
updates by instrumenting pointer store operations; this instrumen-
tation is particularly easy if the language and GC implementation
use write barriers, since it then simply instruments those write bar-
riers.

A reachability analysis of the heap from the program’s root set
determines object deaths. The common brute force method of trace
generation determines reachability by performing a whole-heap gar-
bage collection. Since the garbage collector marks and processes
exactly the reachable objects, any objects unmarked (unprocessed)
at the end of the collection must be unreachable and the tracegen-
erator produces object death records for them.

For a perfectly accurate trace, we must analyze the program at
each point in the trace at which a garbage collection could bein-
voked. For most GC algorithms, collection may be needed when-
ever memory may need to be reclaimed: immediately before al-
locating each new object, assuming only object allocation triggers
GC. Thus, brute force trace generators have the expense of collect-
ing theentireheap prior to allocatingeachobject. If the simulated
GC algorithms allow more frequent garbage collection invocations,
the reachability analyses must be undertaken more often, aswell.
These frequent reachability analyses are also difficult because of
the stress they place on the system and how they expose errorsin
the interpreter or virtual machine.

2.4 Garbage Collection Trace Granularity
A common alternative to generating perfect traces is to perform the
reachability analysis only periodically. Limiting the analysis to ev-
ery N bytes of allocation makes the trace generation process faster
and easier. It also causes the trace to be guaranteed accurate only
at those specific points; the rest of the time it may over-estimate
the set of live objects. Any simulation should assume that objects
become unreachable only at the accurate points. Thegranularity
of a trace is the period between these moments of accurate death
knowledge.

Although trace granularity is related to time, its most appropri-
ate unit of measurement depends on how GC is triggered. Since
most collectors perform garbage collection only when memory is
exhausted, the most natural measure of granularity is the number
of bytes allocated between accurate points in the trace.

3. EXPERIMENTAL DESIGN
This section describes our methodology for evaluating experimen-
tally the effect of trace granularity on simulating the fourcopying
garbage collectors. We start by describing our simulator and pro-
grams. We then describe how to deal with granularity in simulation.

3.1 Simulator Suite
For our trace granularity experiments, we usedgc-sim, a GC simu-
lator suite from the University of Massachusetts with front-ends for
Smalltalk and Java traces. In our simulator, we implementedfour
different garbage collection algorithms: SS, FN, VN, and OF, as de-
scribed in Section 2.2. The first three collectors are in widespread
use. For each collector, we simulated eight differentFrom space
sizes from 1.25 to 3 times the maximum size of the live objects
within the heap, at .25 increments. For FN and VN we simulated
each heap size with five different nursery sizes and for OF with five
window sizes. These latter parameters ranged from1

6 to 5
6 of From

space, in1
6 increments.

3.2 Granularity Schemes
We designed and implemented four different schemes to handle
trace granularity. Each of these schemes works independently of
the simulated GC algorithm. They explore the limits of tracegran-
ularity by affectingwhenthe collections occur.
Unsynced: When we began this research, our simulator used this
naive approach to handling trace granularity: it did nothing; we
call this methodUnsynced. Unsynced simulations allow a GC to
occur at any time in the trace; collections are simulated at the nat-
ural collection points for the garbage collection algorithm (such as
when the heap or nursery is full). This scheme allows the simulator
to run the algorithm as it is designed and does not consider trace
granularity when determining when to collect. Unsynced simula-
tions may treat objects as reachable because the object death record
was not reached in the trace, even though the object is unreachable.
However, they allow a GC algorithm to perform collections attheir
natural points, unconstrained by the granularity of the input trace.

Three other schemes, which we callSynced(synchronized), sim-
ulate garbage collection invocations within the trace onlyat points
with accurate knowledge of unreachable objects. The schemes
check if a garbage collection is needed, or will be needed soon,
only at the accurate points and perform a collection only at these
points. Figure 1 shows how each of the Synced schemes makes
collection decisions. In each of these figures, the solid line N is
the natural collection point for the algorithm. The triangles denote
points with perfect knowledge. The shaded region is as largeas
one granule of the trace. Each scheme performs the collection at
the point in the trace with perfect knowledge within the shaded re-
gion. This point is shown by the arrow labeled G.
SyncEarly: The first scheme we callSyncEarly. Figure 1(a) shows
how SyncEarly decides when to collect. If, at a point with per-
fect knowledge, the simulator determines that the natural collection
point will be reached within the following period equal to one gran-
ule of the trace, SyncEarly forces a GC invocation. SyncEarly al-
ways performs a collectionat or beforethe natural point is reached.
SyncEarly simulations may perform extra garbage collections, e.g.,
when the last natural collection point occurs between the end of the
trace and what would be the next point with perfect knowledge.
But, SyncEarly ensures that the simulated heap will never grow be-
yond the bounds it is given.
SyncLate: The second scheme isSyncLate. Figure 1(b) shows
how SyncLate decides when to collect. At a point with perfect
knowledge, if SyncLate computes that the natural collection point
occurred within the preceding time of one granule of the trace,
SyncLate invokes a garbage collection. SyncLate collectsat or
after the natural point is reached. SyncLate simulations may GC
too few times, e.g., when the last natural collection point occurs
between the last point with perfect knowledge and the end of the
trace. SyncLate allows the heap and/or nursery to grow beyond
their nominal bounds between points with perfect knowledge, but
enforces the bounds whenever a collection is completed.
SyncMid: The last Synced scheme isSyncMid. Figure 1(c) shows
how SyncMid decides when to collect. SyncMid forces a GC invo-
cation at a point with perfect knowledge if a natural collection point
is within half of the trace granularity in the past or future.SyncMid
requires a collection at the point with perfect knowledgeclosest
to the natural collection point. Doing this, SyncMid simulations
try to balance the times they invoke collections too early and too
late to achieve results close to the average. SyncMid simulations
may, like SyncEarly, perform more or may, like SyncLate, perform
fewer garbage collections. Between points with perfect knowledge,



SyncMid simulations may also require the heap and/or nursery to
grow beyond their nominal bounds. However, heap bounds are still
enforced immediately following a collection.

G

N

G

N

(a) SyncEarly

G

N

G

N

(b) SyncLate

G

N

G

N

(c) SyncMid

Figure 1: When each of the Sync schemes decides to collect.
The triangles denote points in the trace with perfect knowledge.
The natural collection point is shown as the solid line labeled
N. The shaded region is as large as one granule of the trace and
shows the region in which garbage collection is allowed. A GC
is forced at the point in the trace with perfect knowledge within
the shaded region, shown by the arrow labeled G.

4. TRACE GRANULARITY RESULTS
In this section, we present our data analysis and results.

4.1 GC Simulation Metrics
During a garbage collection simulation we measure a number of
metrics: the number of collections invoked, the mark/cons ratio,
the number of interesting stores, and the space-time product. Since
the metrics we consider are deterministic, simulators can quite ac-
curately return these results.

The mark/cons ratio is the number of bytes that the collector
copied divided by the number of bytes allocated. The ratio serves
as a measure of the amount of work done by a copying collector.
Higher mark/cons ratios suggest an algorithm will need moretime,
because it must process and copy more objects.

Another metric we report is the number of interesting storesfor a
program run. Since many garbage collectors do not collect the en-
tire heap, they use a write barrier to find pointers into the region cur-
rently collected (as we mentioned in Section 2.1). The writebarrier
instruments pointer store operations to determine if the pointer is
one of which the garbage collector needs knowledge. The number
of pointer stores, and the cost to instrument each of these, does not
vary in a program run, but the number of pointer stores that must
be remembered varies between GC algorithms at run time and will
affect their performance.

We also measure the space-time product. While this is not di-
rectly related to the time required by an algorithm, it measures an-
other important resource: space. This metric is the sum the number
of bytes used by objects within the heap at each allocation point
multiplied by the size of the allocation (or the integral of the num-
ber of bytes used by objects within the heap with respect to time

measured in bytes of allocation). Since the number of bytes allo-
cated does not vary between different algorithms, this metric mea-
sures how well an algorithm manages the size of the heap through-
out the program execution.

None of these metrics is necessarily sufficient in itself to deter-
mine how well an algorithm performs. Algorithms can perform
better in one or more of the metrics at the expense of another.The
importance of considering the totality of the data can be seen in the
models developed that combine the data to determine the total time
each algorithm needs [13].

4.2 GC Traces
We used 15 GC traces in this study. Nine of the traces are from
the Jalapeño JVM (now know as the Jikes RVM) [2, 1], a compiler
and run-time system for Java in which we implemented our trace
generator. The nine Java traces are: bloat-bloat (Bloat [11] using
its own source code as input), two different configurations of Olden
health (5 256 and 4 512), and SPEC compress, jess, raytrace, db,
javac, and jack. We also have six GC traces from the University
of Massachusetts Smalltalk Virtual Machine. The Smalltalktraces
are: lambda-fact5, lambda-fact6, tomcatv, heapsim, tree-replace-
random, and tree-replace-binary. More information about the traces
appears in Table 1.

We implemented a filter that takes perfect traces and a target
value and outputs traces with the targeted level of granularity. We
first generated perfectly accurate traces for each of the programs
and then our filter generated 10 versions of each trace with granu-
larity ranging from 1KB to 2048KB. Then our simulator used the
perfect and granulated traces as input.

4.3 Analysis
We began by simulating all combinations of program trace, trace
granularity, granularity scheme, GC algorithm, andFromspace and
nursery (window) size. We record the four metrics from abovefor
each combination. Table 2 shows an example of the simulator out-
put. With this large population of data (approximately 600 simu-
lations for each GC/granularity scheme combination), we perform
a detailed statistical analysis of the results. For this analysis, we
remove any simulation that required fewer than 10 garbage collec-
tions. In simulations with few GCs, the addition or removal of a
single collection can create dramatically different effects and fur-
thermore the garbage collector would rarely make a difference in
the program’s total running time. For these reasons, these results
would rarely be included in an actual GC implementation study ei-
ther. We also remove any simulation where the trace granularity
equaled 50% or more of the simulatedFromspace size, since trace
granularity would obviously impact these results. We prunethese
cases, since the data will only bolster our claims that granularity
is important. In addition, we only include simulations where both
the perfect trace and the granulated trace completed. Occasionally,
simulations of the granulated trace would complete merely because
the simulator expanded the heap and delayed collection until an ac-
curate point. There were also simulations of granulated traces that
did not finish because garbage collection was invoked earlier than
normal, causing too many objects to be promoted. Because any
metrics generated from simulations that did not finish wouldbe in-
complete, we did not include them in our analysis. The number
of experiments remaining at the 1KB granularity was about 90for
SS, 200 for VN, 250 for FN, and 425 for OF. The number of valid
simulations does not vary more than by 2% or 3% until the 32KB
granularity. At the 32KB granularity, there are 20% fewer simula-



Program Description Max. Live Total Alloc
bloat-bloat Bytecode-Level Optimization and Analysis Tool 98 using itsown source code as input 3 207 176 164 094 868
Olden Health (5 256) Columbian health market simulator from the Olden benchmarksuite, recoded in Java 2 337 284 14 953 944

(4 512) 1 650 444 9 230 756
SPEC 201 compress Compresses and decompresses 20MB of data using the Lempel-Ziv method. From SPECJVM98 8 144 188 120 057 332
SPEC 202 jess Expert shell system using NASA CLIPS. From SPECJVM98. 3 792 856 321 981 032
SPEC 205 raytrace Raytraces a scene into a memory buffer. From SPECJVM98. 5 733 464 154 028 396
SPEC 209 db Performs series of database functions on a memory resident database. From SPECJVM98. 10 047 216 85 169 104
SPEC 213 javac Sun’s JDK 1.0.4 compiler. From SPECJVM98. 11 742 640 274 573 404
SPEC 228 jack Generates a parser for Java programs. From SPECJVM98. 3 813 624 322 274 664
lambda-fact5 Untyped lambda calculus interpreter evaluating 5! in the standard Church numerals encoding 25 180 1 111 760
lambda-fact6 Untyped lambda calculus interpreter evaluating 6! in the standard Church numerals encoding 54 700 4 864 988
tomcatv Vectorized mesh generator 126 096 42 085 496
heapsim Garbage collected heap simulator 549 504 9 949 848
tree-replace-random Builds a binary tree then replaces random subtrees at a fixed height with newly built subtrees 49 052 2 341 388
tree-replace-binary Builds a binary tree then replaces random subtrees with newly built subtrees 39 148 818 080

Table 1: Traces used in the experiment. Sizes are expressed in bytes.

gc num alloc b alloc o copy b copy o xcopy b xcopy o garbge b garbge o mark/con xcp/cp mut. i/s gc i/s
6 5 221 236 148 532 1 098 480 27 504 268 088 5 558 3 770 048 121 022 0.210 387 0.244 054 14 243 0

10 9 230 756 353 094 1 552 152 48 481 284 404 6 379 6 622 732 278 931 0.168 150 0.183 232 40 675 0

(a) Perfect Trace

gc num alloc b alloc o copy b copy o xcopy b xcopy o garbge b garbge o mark/con xcp/cp mut. i/s gc i/s
6 4 787 328 125 037 1 443 608 32 306 355 768 7 173 2 824 328 92 722 0.301 548 0.246 444 11 644 0

11 9 230 756 353 094 200 7252 58 368 375 464 8 164 6 392 528 290 239 0.217 453 0.187 054 41 949 0

(b) SyncMid With 1KB Granularity

Table 2: Simulator output from a fixed-sized nursery simulation of Health (4, 512). The top lines are the metrics after sixcollections,
when the differences first become obvious; the bottom lines are the final results of the simulation.

tions. The numbers continue to drop as the granularity increases;
by the 2048KB granularity there are fewer than half the number of
usable simulations as at the lowest granularity.

The goal of this experiment is to determine if trace granularity
affects GC simulations. To aggregate the remaining data, wenor-
malize the granulated trace simulation results to the results of the
simulation using a perfect trace with an identical configuration. In
order that results that are too low and too high balance, we use
the logarithm of this ratio. For each metric and combinationof
garbage collector and granularity scheme we performed two-tailed
t-tests on the aggregated results. Following convention, we consid-
ered only differences at the 95% confidence level or higher (p�

0.05) to be statistically significant or more than the resultof ran-
dom fluctuations. When the t-test finds that the granulated results
are significantly higher at the 95% confidence level we expectthat
if the experiment is repeated with similarly granulated traces, 95%
of the time the means from these repeated experiments will also be
larger than the results generated from perfect traces [10].A similar
argument exists for results that the t-test determine are significantly
lower. Table 3 shows the smallest granularity, in kilobytes, at which
we observe a statistically significant difference for each combina-
tion of collector, metric, and simulation method.

Programs with smallerFrom space and nursery (window) sizes
will obviously be more sensitive to trace granularity. Justas we
removed simulations where the granularity was over half ofFrom
space size, we also re-ran our analysis using only those traces that,
at some point, had enough live objects to equal the largest trace
granularity. The excluded programs are small enough that the brute
force algorithm can generate perfect traces in under 8 hours. The
traces remaining in this analysis are those for which brute force
tracing would need to generate granulated traces. The number of

remaining simulations ranged from around 40 (for SS) to around
220 (for OF) at the 1KB granularity and does not vary by more
than 1 or 2 until the 2048KB granularity where the counts decrease
by about 10% of OF and all the Unsynced simulations. The results
of this analysis are shown in Table 4.

5. TRACE GRANULARITY DISCUSSION
The data in Table 3 are quite revealing about the effects of trace
granularity and the usefulness of the different schemes in handling
granulated traces. From these data it is clear that the use ofgranu-
lated traces distorts GC performance results, compared with perfect
traces. For a majority of the metrics, a granularity of only one kilo-
byte is enough to cause this distortion! Clearly, trace granularity
significantly affects the simulator results.

5.1 Unsynced Results
Unsynced collections dramatically distort the simulationresults.
In Table 3, two collectors (SS and OF) have statistically signifi-
cant differences for every metric at the 1KB granularity. Inboth
cases, the granulated traces copied more bytes, needed moreGCs,
and used more space. For both collectors the differences were
actually significant at the 99.9% confidence level or higher (p �
0.001), meaning we would expect similar results in 999 out of1000
experiments! The generational collectors did not fare muchbet-
ter. Both collectors saw granulated traces producing significantly
higher mark/cons ratios than the perfect traces. As one would ex-
pect, these distortions grew with the trace granularity. InUnsynced
simulations, collections may come at inaccurate points in the trace;
the garbage collector must process and copy objects that arereach-
able only because the trace has not reached the next set of death
records. Once copied, these objects increase the space-time prod-



Unsynced SyncLate SyncEarly SyncMid
SS FN VN OF SS FN VN OF SS FN VN OF SS FN VN OF

Mark/Cons 1 1 1 1 1 8 16 4 1 1 4 4 none 1 none 1
Space-Time 1 1 1 1 1 1 1 2 1 1 1 1 none 1 2 1

Num. of GCs 1 1 16 1 1 1 1 1 1 1 4 4 none 1 16 1
Int. Stores n/a 16 16 1 n/a 2 4 8 n/a 2 8 4 n/a 32 16 none

Table 3: Earliest granularity (in KB) at which each metric becomes significantly different, by simulation method and collector.
Differences were tested using a two-tailed t-test at the 95%confidence level (p = 0.05).

Unsynced SyncLate SyncEarly SyncMid
SS FN VN OF SS FN VN OF SS FN VN OF SS FN VN OF

Mark/Cons 1 1 4 32 32 1 1024 16 8 512 none 8 none 512 none 64
Space-Time 4 1 512 1 16 1 512 512 1 1 512 2 1 1 512 32

Num. of GCs 32 1 512 16 16 1 64 8 64 1 512 8 none 1 512 1024
Int. Stores n/a 512 2098 512 n/a 16 1024 16 n/a 32 1 8 n/a 16 1 none

Table 4: Earliest granularity (in KB) at which each metric becomes significantly different, by simulation method and collector.
Differences were tested using a two-tailed t-test at the 95%confidence level (p = 0.05). This table considers only data from traces
with a maximum live size of of 2MB or more

uct and cause the heap to be full sooner, thus require more fre-
quent GCs. This process snowballs, so that even small granular-
ities quickly produce significant differences. Only the number of
interesting stores for the generational collectors and thenumber of
collections required for VN are not immediately affected. There
are not significantly more pointers from the older generation to the
nursery because Unsynced collections tend to promote objects that
are truly unreachable and, therefore, do not have any pointer up-
dates.

We expect simulations using larger heaps to be less affectedby
these issues. The results in Table 4 show that this is true. The space-
time product and mark/cons results for SS show that objects are
staying in the heap longer. For VN simulations, however, we do not
see a significant increase in the number of collections; the extra ob-
jects require the collector to perform more whole-heap collections
and not just nursery collections. Therefore each collection does
more work: the number of collections remains similar to results
with perfect traces by producing a significantly higher mark/cons
ratio. No matter the collection algorithm, Unsynced simulations
clearly distort the results. This result suggests a new requirement
for the trace file format: it should clearly label the points in the
trace with perfect knowledge.

5.2 Synced Results
Synced simulations tend to require slightly higher granularities than
Unsynced before producing significant distortions. However, every
Synced scheme significantly distorts the results for each metric for
at least one collector. Examining the results from Table 3 and Ta-
ble 4, reveals a few patterns. Considering all the traces, SyncEarly
and SyncLate still produce differences from simulations using per-
fect traces, but slightly larger trace granularities may berequired
before the differences become statistically significant. SyncMid
has several cases where significant distortions do not appear, but
this result is both collector- and metric-dependent. In addition,
there are still statistically significant distortions at traces with gran-
ularities as small as 1KB. In Table 4, when considering only traces
with larger maximum live sizes, Synced simulations providebetter
estimates of the results from simulating perfect traces. But, there
still exist significant differences at fairly small granularities.

Because Synced simulations affect only when the collections oc-
cur, they do not copy unreachable objects merely because theob-
ject deletion record has not been reached. Instead, adjusting the
collection point causes other problems. Objects that are allocated
and those whose death records should occur between the natural
collection point and the Synced collection point are initially af-
fected. Depending on the Synced scheme, these objects may be
removed from the heap or processed and copied earlier than ina
simulation using perfect traces. Once the heap is in error (contain-
ing too many or too few objects), it is possible for the differences
to be compounded as the Synced simulation may collect at points
even further away (and make different collection decisions) than
the simulation using perfect traces. Just as with Unsynced simula-
tions, small initial differences can snowball.
SyncEarly: SyncEarly simulationstendto decrease the space-time
products and increase the number of GCs, interesting stores, and
mark/cons ratios versus simulations using perfect traces.At smaller
granularities, FN produces higher space-time products. Normally,
FN copies objects from the nursery because they have not had time
to die before collection. SyncEarly exacerbates this situation, col-
lecting even earlier and copying more objects into the oldergener-
ation than similar simulations using perfect traces. As trace gran-
ularity grows, however, this result disappears (the simulations still
show significant distortions, but in the expected direction) because
the number of points in the trace with perfect knowledge limits the
number of possible GCs.
SyncLate: In a similar, but opposite manner, SyncLate simulations
tend to decrease the mark/cons ratio and number of collections.
As trace granularity increases, these distortions become more pro-
nounced as the number of potential collection points beginsto limit
the collectors as well. Not every collector produces the same distor-
tion on the same metric, however. FN produces significantly higher
mark/cons ratios and more garbage collections at small granular-
ities. While SyncLate simulations allow it to copy fewer objects
early on, copying fewer objects causes the collector to delay whole-
heap collections. The whole-heap collections remove unreachable
objects from the older generation and prevent them from forcing
the copying of other unreachable objects in the nursery. Thecol-
lector eventually promotes more and more unreachable objects, so
that it often must perform whole-heap collections soon after nurs-



ery collection, boosting both the mark/cons ratio and the number of
GCs.
SyncMid: The best results we found are for SyncMid. From Ta-
ble 4, the largerFromspace sizes produce similar results for Sync-
Mid simulations and simulations using perfect traces at even large
granularities. The design of SyncMid tries to balance the times that
it collects too early with those times it collects too late. As a result,
it tends to balance collections distorting the results in one direction
and collections distorting results in the other. While thisis a ben-
efit, it also makes the effects of trace granularity hard to predict.
Both SyncEarly and SyncLate showed collector-dependent behav-
ior. While we showed that it would not be sound to base conclu-
sions for a new or unknown collector from their results, one could
make an assumption about their effect on the metrics. SyncMid
simulations, by comparison, produced biases that were dependent
upon both the metric and collector. When significant differences
occur, it is not clear in which way the metric will be skewed. While
the results were very good on the whole, there is still not a single
metric for which every collector returned results without statisti-
cally significant distortions.

5.3 Trace Granularity Conclusion
From the above, it is clear that trace granularity has a significant
impact on the simulated results of garbage collection algorithms.
When using traces to compare and measure new GC algorithms
and optimizations, there is not a clear way to use granulatedtraces
and have confidence that the results are valid.

6. MERLIN TRACE GENERATION
Life can only be understood backwards; but it must be lived for-
wards.—Søren Kierkegaard

In this section we present our newMerlin Trace Generation Algo-
rithm, which generates perfect traces up to 800 times faster than the
dominant brute force method of trace generation. Given the speed
with which it can generate perfect traces, the Merlin algorithm re-
moves the need to use granulated traces and avoids the issuesthat
their use can cause.

The Merlin algorithm has other advantages over brute force trace
generation. As discussed in Section 2.4, implementing the latter
algorithm is difficult. For brute force to work, all GC and GC-
affecting code must becompletelyerror-free and the system must
support whole-heap garbage collection. Our new trace generator
can work with almost any garbage collection algorithm and stresses
the system less.

According to Arthurian legend, the wizard Merlin began lifeas
an old man. He then lived backwards in time, dying at the time of
his birth. Merlin’s knowledge of the present was based on what he
had already experienced in the future. The Merlin tracing algorithm
works in a similar manner. Because it computes when each object
died backwards in time, the first time the Merlin trace generation
algorithm encounters an object in this calculation is the time of the
object’s death; any other possible death times would be earlier in
the running of the program (but later in Merlin’s processing), and
need not be considered. Merlin, both the mythical characterand
our trace generator, works in reverse chronological order so that
each decision, once made, never has to be revisited.

This remainder of this section overviews how Merlin computes
when objects transition from reachable to unreachable, then gives a
detailed explanation of why Merlin works, and discusses imple-
mentation issues. The method of finding object allocations and
pointer updates is similar to the above description, but we describe

how this works with the Merlin algorithm.

6.1 Merlin Algorithm Overview
The Merlin algorithm improves upon brute force trace generation
by computing when objects were last reachable rather than when
objects become unreachable. Knowing the last moment that anob-
ject was reachable, the death time for an object can be easilydeter-
mined: since time advances in discrete steps, the death timeof an
object is the time interval immediately following the one inwhich
the object was last reachable. By computing the last time objects
are reachable, Merlin needs to perform only occasional garbage
collections, saving substantial work.

To find when objects are last reachable, we stamp objects with
the current timewheneverthey may transition from reachable to
unreachable — whenever objects may lose an incoming reference.
If the object later loses another incoming reference (because the
earlier update did not leave it unreachable), then Merlin will simply
overwrite the previous timestamp with the current time.

Now suppose that the system runs, performing occasional gar-
bage collections. Consider the situation immediately following one
of these GCs. The collector determines which objects are unreach-
able and which may still be live. For tracing purposes, we need to
compute exactlywhenthe unreachable objects were last reachable.
The timestamps can be used to compute these times.

Consider a dead object with the latest timestamp. The object
must have been last reachable at that time, for if it were reachable
later, it would have been pointed to by an object with an even later
timestamp — but this is the latest time. Now consider the point-
ers in the dead object with the latest death time. Any objectsthat
are the target of these pointers would have also been reachable at
the time stamped into the original object. Thus we propagatethe
last reachable time from the first object to the objects to which it
points. In fact, we should propagate this last reachable time from a
dead object to the objects to which it points until we can propagate
it no further. To prevent infinite propagation through cycles, the al-
gorithm simply stops if an object was last reachable at a timeequal
to or later than the last reachable time of the source object.

Once this processing is completed for the object with the latest
timestamp, we have found the objects that were last reachable at
that time. We can then remove them from the set of dead ob-
jects and consider the latest timestamp among the remainingob-
jects. The last reachable time arguments apply iteratively, so we
can determine this time for every object that the GC found wasun-
reachable.

6.2 Merlin Details and Implementation
While the previous section provides an overview of Merlin, this
section presents a detailed discussion of why the Merlin algorithm
works and discusses implementation issues.

As discussed in Section 2.3, finding which objects are dead re-
quires a reachability analysis. Our new algorithm cannot change
this requirement, but instead improves upon the previous brute force
method in computing the last instant that an object was reachable.
To compute when objects were last reachable, the Merlin algorithm
does a small amount of work as the program runs and when the
trace must be accurate, and then performs less frequent GCs during
trace generation.

After the system invokes a GC, the Merlin algorithm works back-
ward in time to find exactly when each object the garbage collec-
tor found was unreachable was last reachable. In brute forcetrace
generation, a death record is appended to the trace when an ob-



A

E

F

CB

D

Figure 2: Objects A and B are reachable until their last incom-
ing reference is removed. Object C is last reachable when an
incoming reference is removed, even though it has others. Ob-
jects D, E, and F are reachable until an action that does not
affect their incoming references.

ject is found to be unreachable. Whenever objects could be dead,
the trace generator must find which objects are unreachable.Sep-
arating computingwhenobjects were last reachable fromwhether
objects are unreachable saves Merlin substantial amounts of work,
but requires the introduction oftime into trace generation. Where
in the trace to add these “death” records is specified by the object’s
last reachable time. Time is related to trace granularity; time must
advance wherever object death records may occur: at the points in
the trace with perfect knowledge.

6.2.1 How Objects Become Unreachable
To understand how the Merlin algorithm works backward in time
to compute when an object was last reachable, it is importantto
understand how objects become unreachable. Table 5 is a series of
generalizations about how objects within the heap transition from
reachable to unreachable. Scenarios 1 and 2 of this table describe
an object that is reachable until an action involves the object; Sce-
nario 3 describes an object that is last reachable without itbeing
directly involved in an action. Clearly, not all pointer stores are the
last time an object is reachable, but any object that does become
unreachable because of a pointer store must be in the transitive clo-
sure set of the object that lost an incoming reference.

6.2.2 Finding Potential Last Reachable Times
Knowing how objects transition from reachable to unreachable and
using the concept of time, is is now possible to find objects’ last
reachable time. Since it is not always clear if a pointer store is
the last time an object is reachable (if a pointer update leaves an
object with no incoming references, it is clear the pointer update is
the last time the object is reachable; if an update leaves theobject
with n remaining incoming references, it is not clear if the object
continues to be reachable), just counting the number of incoming
references (reference counting) is not sufficient to determine last
reachable times. The following paragraphs consider the different
methods by which objects transition from reachable to unreachable
and present the Merlin pseudo-code to compute these last reachable
times.
Instrumented Pointer Stores: Most pointer stores will be instru-
mented by a write barrier. Objects may be reachable until a pointer
store, caught by a write barrier, removes an incoming reference.
The Merlin trace generator stamps the object losing an incoming
reference (the old target of the pointer) with the current time. Since
time increases monotonically, each object will ultimatelybe stamped
with the final time it loses an incoming reference. If the lastin-

1. An object transitions from one to zero incoming references
via a pointer update. Objects A and B in Figure 2 are exam-
ples of this case.

2. An object transitions fromn to n�1 incoming references via
a pointer update, where alln�1 references are from unreach-
able objects. An example of this case is object C in Figure 2.

3. An object’s number of incoming references does not change,
but all the reachable objects pointing to it become unreach-
able. The objects labeled D, E, and F in Figure 2 are exam-
ples of this case.

Table 5: How objects become unreachable

coming reference is removed by an instrumented pointer store, the
Merlin code shown in Figure 4 stamps the object with the last time
it was reachable.
Uninstrumented Pointer Stores:Root pointers may not have their
pointer stores instrumented. An object that is reachable until a root
pointer update may not have the time it transitions from reachable
to unreachable detected by any instrumentation. Just as a normal
GC begins with a root scan, our trace generator performs a modi-
fied root scan when the trace must be accurate. This modified root
scan also enumerates the root pointers, but merely stamps the root-
referenced objects with the current time. While root-referenced,
objects are always stamped with the current time; if an object was
reachable until a root pointer update, the timestamp will hold the
last time the object was reachable. Figure 5 shows Merlin’s pseudo-
code executed whenever the root scan enumerates a pointer.
Referring Objects Become Unreachable:We also compute the
time an object was last reachable for objects unreachable only be-
cause the object(s) pointing to them are unreachable (Scenario 3
of Table 5). For chains of these objects, updating the last reachable
time for one object requires recomputing the last reachabletimes of
objects to which it points. We simplify this process by noting that
each of these object’s last reachable time is the latest lastreachable
time of an object containing the former in its transitive closure set.

6.2.3 Computing When Objects Become Unreachable
Because the Merlin algorithm is concerned withwhenan object was
last reachable and cannot always determinehow the object became
unreachable, the issue is to find a single method that computes ev-
ery object’s last reachable time. The methods from Figures 4and
5 timestamp the correct last reachable time for those objects that
are last reachable as described in Scenarios 1 and 2 of Table 5.
By combining the two timestamping methods with computing last
reachable times by membership in transitive closure sets, Merlin
can determine the last reachable time of every object.

To demonstrate that this combined method works, we consider
each scenario from Table 5. Since no object continues to point to
an object last reachable as described by Scenario 1 of Table 5af-
ter it is last reachable, the latter object will only be a member of its
own transitive closure set. Therefore, the last reachable time Merlin
computes will be the object’s own timestamp. The last reachable
time computed for an object that is last reachable as in Scenario 2
of Table 5 will also be the time with which it is stamped. This ob-
ject was last reachable when its timestamp was last updated.Since
any objects that point to it must be unreachable, the pointing ob-
jects could not have later last reachable times. Thus, the transitive



closure computation will determine the object was last reachable at
the time with which it is already stamped. We show above that this
combined method computes last reachable times for objects that are
last reachable as in Scenario 3 of Table 5, so Merlin can compute
last reachable times by combining timestamping and computing the
transitive closures and need not know how each object transitioned
from reachable to unreachable.

6.2.4 Computing Death Times Efficiently
Computing the full transitive closure sets is a time consuming pro-
cess, requiringO(n2

) time. But finding an object’s last reachable
time requires knowing only thelatestobject containing the former
object in its transitive closure set. Rather than formally comput-
ing the transitive closure sets, Merlin performs a depth-first search
from each object, propagating the last reachable time forward to
the objects visited in the search. To save time, Merlin begins by
ordering the objects from the earliest timestamp to the latest and
then pushing them onto the search stack so the latest object will
be popped first. Figure 3(a) shows this initialization. Uponre-
moving an object from the stack, the Merlin algorithm analyzes its
fields to find pointers to other objects. If a pointed-to object could
be unreachable and is stamped with an earlier time than the refer-
ring object, then the pointed-to object is stamped with thislater
time. If the object is definitely unreachable, it is pushed onto the
stack after its timestamp is updated (e.g., Figure 3(b) and 3(c)). If a
pointed-to object’s time is equal to that of the referring object, then
either we have found a cycle (e.g., Figure 3(c)) or the pointed-to
object is already on the stack to propagate this time. Eitherway,
the pointed-to object does not need to be pushed on the stack.If
a pointed-to object’s time is later, then the object remained reach-
able after the time being propagated and this possible last reach-
able time is unimportant. Pushing objects onto the stack from the
earliest stamped time to the latest means each object is processed
only once. The search proceeds from the latest stamped time to
the earliest; later examinations of an object are computingearlier
last reachable times. This method of finding last reachable times
requires onlyΘ(nlogn) time, the sorting of the objects being the
limiting factor. Figure 6 shows the code the Merlin algorithm uses
for this modified depth-first search.

6.3 The Merlin Trace Generator
As described so far, Merlin is able to reconstructwhenobjects were
last reachable. However, it is unable to determinewhichobjects are
no longer reachable: it still needs a reachability analysis. The Mer-
lin algorithm uses two simple solutions to overcome this. When-
ever possible, it delays computation until immediately after gar-
bage collection. Before any memory is cleared, the trace genera-
tion algorithm has access to objects within the heapandthe garbage
collector’s reachability analysis. This piggy-backing saves a lot of
duplicative analysis. At other times (e.g., when a program termi-
nates), garbage collection may not be invoked but the algorithm
needs a reachability analysis. We first stamp the root-referenced
objects with the current time and then compute the last reachable
times of every object in the heap. Objects with a last reachable
time equal to the current time must be reachable from the program
roots and therefore are still alive. All other objects are unreachable
and their death records are added to the trace. This method offind-
ing unreachable objects enables the Merlin algorithm to work with
any garbage collector. Even if the garbage collector cannotguar-
antee that it will collect all unreachable objects, when theprogram
terminates Merlin performs the combined object reachability / last

reachable time analysis to find the unreachable objects and their
last reachable times.

As stated in Section 2.1, we rely upon a couple of assumptions
about the host GC. First, that any unreachable object the GC is
treating as live will have the objects it points to treated aslive, as is
required among many GC algorithms. Thus no object is removed
from the heap until all objects pointing to it are removed. Sec-
ond, the Merlin algorithm assumes that there are no pointer stores
involving an unreachable object. Therefore, we assume thatonce
an object becomes unreachable, its incoming and outgoing refer-
ences are constant. Both of these preconditions are important for
our transitive closure computation, and languages such as Java and
Smalltalk satisfy them.

The order in which the Merlin trace generator adds information
to the trace is an issue. As discussed in Section 6.2, our trace gener-
ator needs the concept of time to determine where in the traceeach
object death record should be placed. The object death records ei-
ther must be added to the trace in chronological order beforewrit-
ing the trace to disk, or can be appended to the trace with a post-
processing step placing the trace into proper order. Holding all the
trace records in memory until all object deaths are found is adiffi-
cult challenge; with larger traces holding these records can require
significant amounts of memory. Our implementation of the Merlin
algorithm uses an external post-processing step that sortsand inte-
grates the object death records. Either way of handling thisissue
has advantages and disadvantages, but adds very little timeto trace
generation.

6.4 Object Allocations and Pointer Updates
Trace generation is already efficient at finding and reporting ob-
ject allocations and pointer updates. As discussed in Section 2.3,
even the brute force method of trace generation can find and record
these actions in linear time. Our new algorithm, like those before
it, instruments the host system’s memory manager to determine
when memory is allocated for new objects. At those times, Mer-
lin records the ongoing object allocation.

Finding and reporting pointer updates also does not change.Like
brute force trace generation, the Merlin algorithm instruments the
heap pointer store operations (preferably by augmenting existing
write barriers). Our new trace generation algorithm does add an
additional requirement, the reasons for which are explained in Sec-
tion 6.2.2. Unlike brute force, our trace generator requires access
to the object being updated, the new value of the pointer, andthe
old value of the pointer. As many write barriers are already im-
plemented to access these values (e.g., a write barrier capable of
reference counting), this additional requirement is not a hardship.
Allowing our trace generator to work with almost any garbagecol-
lector (rather than requiring a semi-space collector) makes the in-
strumentation to record pointer updates easier to add. While a semi-
space collector does not require a write barrier, many algorithms
(e.g., generational and OF collectors) do. Moreover, specific lan-
guages/systems require a write barrier for their own reasons. Com-
bining our trace generator with these algorithms allows theuse of
the existing write barriers, enabling the Merlin trace generator to
leverage this code.

7. EVALUATION OF MERLIN
We implemented both Merlin and the brute force trace algorithm
within the Jikes virtual machine. We then performed some initial
timing runs on a Macintosh Power Mac G4, with two 533 MHz
processors, 32KB on-chip L1 data and instruction caches, 256KB



t0

DA

B

C

t

t

t

2

3

Stack

Object D

1

Object A
Object C
Object B

(a) Before Processing Object A

t0

DA

B

C

t

t

t

2

3

Stack

Object D

Object C
Object B

Object B

3

(b) Before Processing Object B

t0

DA

B

C

t

t

t

3

3

Stack

Object D

Object C
Object B

3

Object C

(c) Before Processing Object C

Figure 3: Computing object death times, whereti < ti+1. Since Object D doesn’t have any incoming references, Merlin’s computation
cannot change its timestamp. Although Object A was last reachable at its timestamp, care is needed so that the last reachable time
does not change via processing its incoming reference. In (a), Object A is processed finding the pointer to Object B. Object B’s
timestamp is earlier, so Object B is added to the stack and last reachable time set. We process Object B and find the pointer to
Object C in (b). Object C has an earlier timestamp, so it is added to the stack and timestamp updated. In (c), Object C is processed.
Object A is pointed to, but it does not have an earlier timestamp and is not added to the stack. After (c), the cycle has finished being
processed. The remaining objects in the stack will be examined, but no further processing is needed.

void PointerStoreInstrumentation(ADDRESS source, ADDRESS newTarget)
ADDRESS oldTarget = getMemoryWord(source);
if (oldTarget 6= null)

oldTarget.timeStamp = currentTime;
addToTrace(pointerUpdate, source, newTarget);

Figure 4: Code for Merlin’s pointer store instrumentation

void ProcessRootPointer(ADDRESS rootAddr)
ADDRESS rootTarget = getMemoryWord(rootAddr);
if (rootTarget 6= null)

rootTarget.timeStamp = currentTime;

Figure 5: Code for Merlin’s root pointer processing

void ComputeObjectDeathTimes()
Time lastTime = ∞
sort unreachable objects from the earliest timestamp to the latest;
push each unreachable object onto a stack from the earliest timestamp to the latest;
while (!stack.empty())

Object obj = stack.pop();
Time objTime = obj.timeStamp;
if (objTime <= lastTime)

lastTime = objTime;
for each (field in obj)

if (isPointer(field) && obj.field 6= null)
Object target = getMemoryWord(obj.field);
Time targetTime = target.timeStamp;
if (isUnreachable(target) && targetTime < lastTime)

target.timeStamp = lastTime;
stack.push(target);

Figure 6: Code of Merlin trace generation last reachable time computation



0.1

1

10

100

1000

Perfect 1024 4096 16384 65536 1048576

S
pe

ed
up

 o
f P

er
fe

ct
 M

er
lin

 T
ra

ci
ng

 (
lo

g)

Granularity of Brute Force Trace (log)

Speedup of Perfect Merlin Tracing v. Brute Force Tracing

SPEC Compress
First 4MB of SPEC Javac

First 8MB of SPEC Jack
First 4MB of Health(5 256)

Figure 7: The speedup of Merlin versus Brute Force trace gen-
eration. Note the log-log scale.

unified L2 cache, 1MB L3 off-chip cache and 384MB of memory,
running PPC Linux 2.4.3. We used only one processor for our ex-
periments, which were run in single-user mode with the network
card disabled. We built two versions of the VM, one for each ofthe
algorithms. Whenever possible we used identical code for the two
JVMs, so Merlin is implemented with a semi-space collector.

Merlin’s running time is spent largely in performing the modified
root scan that is required at every accurate point in the trace. We
further improved Merlin’s running time by including a number of
optimizations that minimize the number of root pointers that must
be enumerated at each of these locations. The first optimization
was to instrument pointer store operations involving static (global)
pointers. With this instrumentation Merlin does not need toenu-
merate the static pointers at each accurate point, as the instrumenta-
tion marks objects whenever they lose an incoming referencefrom
the static fields. Because Java allows functions to access only their
own stack frame, repeated scanning within the same method always
enumerates the same objects from the pointers below this method’s
frame. We implemented a stack barrier that is called when frames
are popped off the stack, enabling Merlin to scan the stack less
deep and further reduce the time needed for Merlin tracing [6]. Be-
cause they would not improve brute-force tracing, these optimiza-
tions were used only with Merlin tracing.

We generated traces at different granularities across a small range
of programs. Because of the time required for brute force trace gen-
eration, we limited some traces to only the initial few megabytes of
data allocation. Working with common benchmarks and generating
traces of identical granularity, Merlin achieved speedup factors of
up to 816. In the time that brute force needed to generate traces with
16 to 1024KB of granularity, Merlin generated perfect traces. Fig-
ure 7 shows the speedup Merlin, generating perfect traces, achieves
over the brute force algorithm generating traces at different levels
of granularity. Clearly, Merlin can greatly reduce the timeneeded
to generate a trace. However, as seen in Figure 7, the speedupis
less as granularity increases. The time required depends onthe time
needed to generate object death records and, therefore, on trace
granularity. Brute force limits object death time processing to only
when the trace must be accurate; as the granularity increases the
time needed greatly diminishes. While Merlin needs to perform

only periodic collections, it also must perform a small set of ac-
tions at each pointer update and location in the trace with perfect
knowledge. Even with brute force performing more frequent GCs,
the cost of Merlin’s frequent root enumerations and updating time-
stamps becomes too great.

These results are promising, but we can speed up performanceof
the Merlin tracing algorithm even more. As a program’s memory
footprint grows, and as more accurate points are needed, theMerlin
algorithm is far less affected than brute force.

8. RELATED WORK
We do not know of any previous research into the effects of trace
granularity or different methods of generating garbage collection
traces. In this section, we discuss the research from which this
study draws its roots.
Using Knowledge of the Future: Belady’s [4] optimal virtual
memory page replacement policy, MIN, decided which blocks should
not be paged to disk by analyzing future events. At each decision
point, the MIN algorithm considers future memory accesses, stored
within an available file, until it determines the single block to evict.
Because the algorithm did not cache results, at each decision point
the MIN algorithm begins a new analysis. While Belady’s algo-
rithm used knowledge of future events to perform optimally,it pro-
cesses events in chronological order. Each time it is invoked, the
M IN algorithm looks only far enough into the future as is necessary
to make the current decision.
Cyclic Reference Counting: One of the earliest methods of gar-
bage collection was to use reference counts: each object hasa count
of its incoming references so, when the count reaches 0, the object
can be freed [8]. McBeth was the first to appreciate that this ap-
proach cannot collect cycles of objects, since the reference counts
would never reach zero [9]. Many different schemes have beende-
veloped to deal with cycles. Trial deletions [17] collects cycles of
objects by removing a pointer thought to be within a cycle. After
removing the pointer, trial deletion updates the referencecounts. If,
in updating the reference counts, the source object for the removed
pointer is found unreachable, then a cycle exists and the objects are
dead. Otherwise a dead cycle may not exist, the deleted pointer
is reestablished and the original reference counts restored. This
method can handle and detect cycles, but it may incorrectly guess
that some objects are in a cycle and cannot take advantage of other
object reachability analyses.

Merlin does not perform any explicit reference counting, though
it marks objects whenever they lose an incoming reference. Gener-
ally, reference counting methods cannot properly determine when
cycles of objects become unreachable. While methods, like trial
deletion, have been developed to avoid this problem, these meth-
ods cannot guarantee that they will determine when each object is
unreachable in addition to processing each object only once. Us-
ing Merlin, as opposed to reference counting, allows both ofthese
requirements to be met.
Lifetime Approximation: To cope with the cost of producing GC
traces, there has been previous research into approximating the life-
times of objects. These approximations model the object allocation
and object death behavior of actual programs. One paper described
mathematical functions that model object lifetime characteristics
based upon the actual lifetime characteristics of 58 Smalltalk and
Java programs [14]. Zorn and Grunwald compare several differ-
ent models one can use to approximate object allocation and object
death records of actual programs [18]. Neither study attempted to
generate actual traces, nor does either study consider the effects of



pointer updates; rather, these studies attempted to find ways other
than trace generation to produce input for memory management
simulations.

9. SUMMARY
The use of granulated traces for garbage collection simulation raises
a number of issues. We first develop a method by which any vari-
able that affects garbage collection simulations can be statistically
tested. We then use this method to show that over a wide range
of variables, granulated traces produce results that are significantly
different from those produced by perfect traces. Additionally, we
show that there are ways of simulating granulated traces that are
better at minimizing these issues. With these results, we propose
changing the trace format standard to include additional informa-
tion.

Finally, we introduce and describe the Merlin Trace Generation
Algorithm. We show that the Merlin algorithm can produce traces
more than 800 times as fast as the common brute force method of
trace generation. By generating traces with Merlin, we can generate
perfect traces in less time than previously required for granulated
traces. Thus, the Merlin algorithm makes trace generation quick
and easy, and eliminates the need for granulated traces.

AcknowledgmentsWe would like to thank John N. Zigman for
his work in developinggc-simand also Aaron Cass for his help
processing much of this data.

10. REFERENCES
[1] A LPERN, B., ATTANASIO, D., BARTON, J. J., BURKE, M.,

CHENG, P., CHOI, J., COCCHI, A., FINK , S., GROVE, D., HIND ,
M., HUMMEL , S. F., LIEBER, D., LITVINOV, V., NGO, T.,
MERGEN, M., SARKAR , V., SERRANO, M., SHEPHERD, J.,
SMITH , S., SREEDHAR, V., SRINIVASAN , H., AND WHALEY, J.
The Jalepeño virtual machine.IBM Systems Journal 39(1)(Feb.
2000).

[2] A LPERN, B., ATTANASIO, D., BARTON, J. J., COCCHI, A.,
HUMMEL , S. F., LIEBER, D., MERGEN, M., NGO, T., SHEPHERD,
J.,AND SMITH , S. Implementing Jalepeño in Java. InProceedings
of SIGPLAN 1999 Conference on Object-Oriented Programming,
Languages, & Applications(Denver, CO, Oct. 1999), vol. 34(10) of
ACM SIGPLAN Notices, ACM Press, pp. 314–324.

[3] A PPEL, A. W. Simple generational garbage collection and fast
allocation.Software Practice and Experience 19(2)(1989), 171–183.

[4] BELADY, L. A. A study of replacement algorithms for a
virtual-storage computer.IBM Systems Journal 5(2)(1966), 78–101.

[5] BLACKBURN , S. M., SINGHAI , S., HERTZ, M., MCK INLEY,
K. S., AND MOSS, J. E. B. Pretenuring for Java. InProceedings of
SIGPLAN 2001 Conference on Object-Oriented Programming,
Languages, & Applications(Tampa, FL, Oct. 2001), vol. 36(10) of
ACM SIGPLAN Notices, ACM Press, pp. 342–352.

[6] CHENG, P., HARPER, R., AND LEE, P. Generational stack
collection and profile-driven pretenuring. InProceedings of
SIGPLAN 1998 Conference on Programming Language Design and
Implementation(Montreal, Canada, June 1998), vol. 33(5) ofACM
SIGPLAN Notices, ACM Press, pp. 162–173.

[7] CHILIMBI , T., JONES, R. E.,AND ZORN, B. Designing a trace
format for heap allocation events. InISMM 2000 Proceedings of the
Second International Symposium on Memory Management
(Minneapolis, MN, Oct. 2000), vol. 36(1) ofACM SIGPLAN Notices,
ACM Press, pp. 35–49.

[8] COLLINS, G. E. A method for overlapping and erasure of lists.
Communications of the ACM 3(12)(Dec. 1960), 655–657.

[9] M CBETH, J. H. On the reference counter method.Communications
of the ACM 6(9)(Sept. 1963), 575.

[10] NATRELLA , M. G. Experimental Statistics. US Department of
Commerce, Washington, DC, 1963.

[11] NYSTROM, N. Bytecode-level analysis and optimization of Java
classfiles. Master’s thesis, Purdue University, West Lafayette, IN,
May 1998.

[12] SHAHAM , R., KOLODNER, E. K., AND SAGIV, M. On the
effectiveness of GC in Java. InISMM 2000 Proceedings of the
Second International Symposium on Memory Management
(Minneapolis, MN, Oct. 2000), vol. 36(1) ofACM SIGPLAN Notices,
ACM Press, pp. 12–17.

[13] STEFANOVIĆ, D., MCK INLEY, K. S.,AND MOSS, J. E. B.
Age-based garbage collection. InProceedings of SIGPLAN 1999
Conference on Object-Oriented Programming, Languages, &
Applications(Denver, CO, Oct. 1999), vol. 34(10) ofACM SIGPLAN
Notices, ACM Press, pp. 379–381.

[14] STEFANOVIĆ, D., MCK INLEY, K. S.,AND MOSS, J. E. B. On
models for object lifetimes. InISMM 2000 Proceedings of the
Second International Symposium on Memory Management
(Minneapolis, MN, Oct. 2000), vol. 36(1) ofACM SIGPLAN Notices,
ACM Press, pp. 137–142.

[15] UNGAR, D. M. Generation scavenging: A non-disruptive
high-performance storage reclamation algorithm. InProceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments(Pittsburgh, PA, Apr.
1984), vol. 19(5) ofACM SIGPLAN Notices, ACM Press,
pp. 157–167.

[16] UNGAR, D. M., AND JACKSON, F. An adaptive tenuring policy for
generational scavengers.ACM Transaction of Programming
Languages and Systems 14(1)(Jan. 1992), 1–27.

[17] VESTAL, S. C.Garbage Collection: An Exercise in Distributed,
Fault-Tolerant Programming. PhD thesis, University of Washington,
Seattle, WA, Jan. 1987.

[18] ZORN, B., AND GRUNWALD , D. Evaluating models of memory
allocation. Tech. Rep. CU-CS-603-92, University of Colorado at
Boulder, Boulder, CO, July 1992.

[19] ZORN, B. G.Comparative Performance Evaluation of Garbage
Collection Algorithms. PhD thesis, University of California at
Berkeley, Berkeley, CA, Mar. 1989.


