
The character of the instruction scheduling problem

Darko Stefanović
Department of Computer Science

University of Massachusetts

March 1997

Abstract

Here I present some measurements that serve to characterizethe nature of the problem of
basic block instruction scheduling, as it is encountered inpractice. Finding optimal schedules
is known to be NP-hard [Hennessy and Gross, 1983]; but it is worth knowing how hard the task
is in an average sense, where the average is with respect to aninput space of problems (ba-
sic blocks) found in the everyday practice of compiling. Thespace I consider is the set of all
basic blocks in all of SPEC95 benchmarks, produced by compiling on the Digital Alpha archi-
tecture [Bhandarkar, 1996]. It is also worth knowing how close a heuristic scheduler comes to
the optimum, especially when one wants to design a new heuristic scheduler; I present one such
evaluation for a scheduler made available by Digital and show that it is almost optimal (with
respect to its own cost measure).

1 SPEC95 properties

The SPEC95 benchmark suite comprises 18 programs, of which 10 are written inFORTRAN and 8 in
C. The programs are listed in Table 1. The distinction between languages and compilers should be
made, as it is possible that there are inherent differences between object codes produced by the native
FORTRAN and C compilers with respect to basic block structure.

2 Search space size

The number of permutations that can be arranged out ofn instructions isn!, a very large number. It
is quite clear that if no systematic way to explore this spaceefficiently is available, and that is in the
nature of NP-hardness, then finding an optimal schedule requires one to generate a very large number
of schedules and simulate each one. Now, not all permutations are legal schedules: data dependence
constraints rule out some. One would like to know how many schedules are legal out of the possible
n!, and whether this remaining number is perhaps sufficientlysmall to allow finding optima by brute
force. Since the nature of the data dependence constraints is nota priori known, it is best to explore
this question empirically. Hence I performed an exhaustivesearch of the space of legal schedules,
without simulating the costs of each, with the express purpose of finding how many legal schedules
there are. It turns out that the number of legal schedules still grows very fast, perhaps exponentially,
in absolute terms, even though this number in relative terms(as a fraction of the maximum possible,
or n!) falls rapidly.

Let us observe this behavior in the plot of distribution of this fraction in Figure 1, and in the
summary in Table 2. Consider the median size of the search space: for blocks of size 5, it is 6, or

1



Benchmark SPEC95 classification SPEC95 description Source
lines

Number
of blocks

Number of
instructions

Average
size of
block (in-
structions)

FORTRANprograms
110.applu Parabolic and elliptic partial differential equa-

tions
3817 25475 129853 5.097

141.apsi FORTRAN scientific benchmark with double
precision floating point arithmetic

Solves for the mesoscale and synoptic varia-
tions of potential temperature, wind, velocity,
and distribution of pollutants

4211 29077 159482 5.485

145.fpppp FORTRAN scientific benchmark with double
precision floating point arithmetic

Quantum chemistry 2122 25693 132139 5.143

104.hydro2d a vectorizable FORTRAN program with dou-
ble precision floating-point arithmetic

Astrophysics: hydrodynamical Navier-Stokes
equations are solved to compute galactical jets

2522 26789 129568 4.837

107.mgrid Multi-grid solver in a 3D potential field 368 25555 121750 4.764
103.su2cor a vectorizable FORTRAN program with dou-

ble precision floating-point arithmetic
Quantum physics: Monte Carlo calculation of
elementary particle masses

1614 26972 135837 5.036

102.swim a FORTRAN scientific benchmark with sin-
gle precision floating point arithmetic

Shallow water model with 512�512 grid 259 25109 119333 4.753

101.tomcatv a highly vectorizable double precision floating
point FORTRAN benchmark

A mesh-generation program 107 23856 117515 4.926

125.turb3d Simulates isotropic, homogeneous turbulence
in a cube

1280 26285 127884 4.865

146.wave5 FORTRAN scientific benchmark with double
precision floating point arithmetic

Plasma physics: solves Maxwell’s equations
and particle equations of motion on a Carte-
sian mesh with a variety of field and particle
boundary conditions

6430 28932 152655 5.276

Subtotal FORTRAN 22730 263743 1326016 5.028

C programs
129.compress a CPU-intensive integer benchmark with a sig-

nificant I/O component
Reduces the size of files using adaptive
Lempel-Ziv coding

1422 4596 20152 4.385

126.gcc a CPU-intensive integer benchmark written in
C

based on the GNU C compiler version 2.5.3,
builds SPARC code

133049 77269 332184 4.299

099.go a CPU-bound integer benchmark Artificial intelligence: plays the game ofgo 25362 16095 80900 5.026
132.ijpeg C Graphic compression and decompression 17449 12033 70928 5.894
130.li a CPU-intensive integer benchmark written in

C. The benchmark performs minimal I/O
LISP interpreter running the Gabriel bench-
marks

4323 8056 36668 4.552

124.m88ksim essentially an integer program Motorola 88100 microprocessor simulator:
runs test program

12026 10121 46438 4.588

134.perl C Manipulates strings (anagrams) and prime
numbers in Perl

21078 22590 111849 4.951

147.vortex a single-user object-oriented database transac-
tion benchmark which which exercises a sys-
tem kernel coded in integer C

Subset of a full object oriented database pro-
gram called VORTEx (Virtual Object Runtime
EXpository)

41034 32624 180331 5.528

Subtotal C 255743 183384 879450 4.796

Total 447127 2205466 4.933

Table 1: Properties of SPEC95 benchmarks.

2



0:05�5!; for blocks of size 11, it is 3600, or only 0:0002�11!. The cumulative distribution curves in
the log-lin plot are certainly not exactly linear, but they seem to be similar to linear. That is, all degrees
of magnitude (of the relative number of legal schedules) areapproximately equally represented. This
is illustrated in the scatter plot of Figure 2, and is an indication that the instruction scheduling problem
remains intractable in spite of the data dependence constraints imposed by typical basic blocks.

0

0.2

0.4

0.6

0.8

1

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

F
ra

ct
io

n 
of

 b
lo

ck
s 

be
lo

w
 th

at
 r

at
io

Ratio of number of legal schedules to n!

Distribution of the search space sizes for all of SPEC95

n=12
n=11
n=10

n=9
n=8
n=7
n=6
n=5
n=4
n=3

Figure 1: Relative search space size (cumulative distributions).

3 The infeasibility of exhaustive search

I found that the practical limit of scheduling by exhaustivesearch is atL = 10 or 11 instructions, in
the sense that it is possible to construct and simulate all legal schedules of all blocks in SPEC95 up to
the sizeL within a reasonable amount of time: forL= 10, within several hours on an Alpha 21164.1

In SPEC95, blocks of size 10 or smaller account for 92.34% of all blocks, as shown in Figure 3.
One might be tempted to conclude that exhaustive instruction scheduling is feasible after all. However,
the blocks of size 10 or smaller account for only 30.47% of total execution cost, calculated as the
number of cycles dynamically executed (ignoring inter-block effects and memory system effects), as
shown in Figure 4. Hence, only about 30% of the execution costcan be reliably covered by exhaustive
scheduling;eo ipso, exhaustive basic block instruction scheduling is truly not feasible in practice.2

1As it happens, constructing schedules without simulation raises theL barrier by just one.
2A somewhat greater portion can be covered, if one includes well-behaved larger blocks.

3



Block sizen Number of
blocks

Total legal sched-
ules for blocks of
sizen

Average number
of legal schedules

Average num-
ber of legal
schedules as
fraction ofn!

Median num-
ber of legal
schedules

1 70576 70576 1.000 1.000 1
2 92724 96868 1.045 0.522 1
3 64098 103799 1.619 0.270 1
4 50993 193069 3.786 0.158 3
5 39909 405731 10.166 0.0847 6
6 33130 1728894 52.185 0.0725 30
7 20711 4415816 213.211 0.0423 60
8 18147 28669077 1579.825 0.0392 420
9 10809 79020734 7310.642 0.0201 336

10 11762 687775949 58474.405 0.0161 9072
11 6465 2824527921 436895.270 0.0109 3600
12 5888 13162975344 2235559.671 0.00467 11088

Table 2: Search space size measures (all of SPEC95).

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1 2 3 4 5 6 7 8 9 10 11 12

N
um

be
r 

of
 le

ga
l s

ch
ed

ul
es

Block size n

Scatter plot of the search space sizes for all of SPEC95

n!
Observed sizes in SPEC95

Figure 2: Observed search space sizes (scatter plot).

4



0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

1 10 100 1000 10000

N
um

be
r 

of
 b

lo
ck

s 
up

 to
 th

at
 b

lo
ck

 s
iz

e

Block size

Distribution of block sizes

SPEC95-ALL

Figure 3: Block size for all SPEC95 basic blocks, not weighted (cumulative distribution).

0

2e+11

4e+11

6e+11

8e+11

1e+12

1.2e+12

1 10 100 1000 10000

E
xe

cu
tio

n 
co

st
 o

f b
lo

ck
s 

up
 to

 th
at

 b
lo

ck
 s

iz
e

Block size

Distribution of block sizes, weighted

SPEC95-ALL

Figure 4: Block size for all SPEC95 basic blocks, weighted byexecution cost (cumulative distribu-
tion).

5



4 Assessment of the DEC scheduler

The DEC scheduler is a basic block instruction scheduler forthe Alpha architecture and its 21064
implementation [Bhandarkar, 1996]. It was made available by Digital together with a basic block
execution simulator: the simulator calculates how many cycles the presented sequence of instructions
takes to execute without reordering. This scheduler is not,as far as I know, the same as that found in
Digital’s compilers.

As I mentioned above, I carried out an exhaustive search of legal schedules for all basic blocks of
up to 11 instructions. I simulated each of these schedules using the DEC simulator, and thus I found
the optimal schedules and optimal costs for all such blocks.I also scheduled all basic blocks using
the DEC scheduler.

The DEC scheduler comes very close to optimum in almost all examined blocks. Indeed, it
produces optimal schedules for 99.13% of the examined blocks. It never produces a schedule longer
than 150% of the optimal schedule, and only in one case longerby more than 3 cycles than the
optimal schedule. In Figures 5 and 6 I show how the suboptimalschedules are distributed. Note that
the quality of schedules diminishes as the blocks grow larger, but it remains quite good; 94.04% of
blocks with exactly 11 instructions still receive optimal schedules.

0.99

0.992

0.994

0.996

0.998

1

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

F
ra

ct
io

n 
of

 b
lo

ck
s 

be
lo

w
 th

is
 r

at
io

Ratio DEC cost / optimal cost

Distribution of the DEC scheduler optimality ratio for all of SPEC95

All blocks up to 3 inst.
All blocks up to 5 inst.
All blocks up to 7 inst.
All blocks up to 9 inst.

All blocks up to 11 inst.

Figure 5: Suboptimality of the DEC scheduler (cumulative distribution of ratio).

In summary, the DEC scheduler is quite close to optimal in therange that permitted comparison.
One can only speculate about its optimality for larger basicblocks. Although the observed quality
of produced schedules decreases with increasing block size, it probably remains sufficiently high to
allow one to use the DEC scheduler as the benchmark against which other heuristic scheduler are
compared.

6



0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

0 1 2 3

F
ra

ct
io

n 
of

 b
lo

ck
s 

be
lo

w
 th

is
 r

at
io

Difference DEC cost - optimal cost

Distribution of the DEC scheduler optimality difference for all of SPEC95

All blocks up to 3 inst.
All blocks up to 5 inst.
All blocks up to 7 inst.
All blocks up to 9 inst.

All blocks up to 11 inst.

Figure 6: Suboptimality of the DEC scheduler (cumulative distribution of difference).

5 The variation of schedule costs

When the instruction scheduling of a basic block is viewed asa search task of minimizing the execu-
tion cost of the block, and a heuristic needs to be devised to guide this search, then it is well worth
knowing what variation there is among possible costs. In particular, if there is little variation in the
cost of legal schedules, then the (automated) constructionof such heuristics on the basis of the cost
as the optimality criterion becomes difficult. The same can be said if a large number of different
schedules are tied for the optimum. In Figure 7, I show the measure of suboptimality of the schedule
cost averaged over all legal schedules of a block. There is considerable variation in cost. Looking at
all examined blocks (the lowest curve), one can see that for 68% of them, the average schedule cost
is the same as the optimal cost. In other words, all schedulesare equally good. If a heuristic is to be
inferred (learned) from the schedule cost alone, then none of these blocks contributes to the learning.
However, the remaining 32% of the blocks produce a fairly wide range of outcomes—almost an oc-
tave wide. This variation at the outcome side should be sufficient for learning techniques: how the
input side should be devised is beyond the scope of this report.

References

[Bhandarkar, 1996] Bhandarkar, D. P. (1996).Alpha implementations and architecture : complete
reference and guide. Digital Press, Boston, Mass.

[Hennessy and Gross, 1983] Hennessy, J. and Gross, T. (July 1983). Postpass code optimization of
pipeline constraints.ACM Transactions on Programming Languages and Systems, 5(3):422–448.

7



0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

F
ra

ct
io

n 
of

 b
lo

ck
s 

be
lo

w
 th

is
 r

at
io

Ratio average cost / optimal cost

Distribution of the average schedule optimality ratio for all of SPEC95

All blocks up to 3 inst.
All blocks up to 5 inst.
All blocks up to 7 inst.
All blocks up to 9 inst.

All blocks up to 11 inst.

Figure 7: Suboptimality of average schedules (cumulative distribution of ratio).

8


