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Abstract

Many remote attacks against computer systems inject binary code into the execu-
tion path of a running program, gaining control of the program’s behavior. If each
defended system or program could use a machine instruction set that was both unique
and private, such binary code injection attacks would become extremely difficult if not
impossible. A binary-to-binary translator provides an economic and flexible imple-
mentation path for realizing that idea. As a proof of concept, we describe a randomized
instruction set emulator (RISE) based on the open-source Valgrind x86-to-x86 binary
translator. Although currently very slow and memory-intensive, our prototype RISE
can indeed disrupt binary code injection attacks against a program without requiring
its recompilation, linking, or access to source code. We describe the RISE imple-
mentation, give evidence demonstrating that RISE defeats common attacks, consider
consequences of the dense x86 instruction set on the method’s effects, and discuss
limitations of the RISE prototype as well as design tradeoffs and extensions of the
underlying idea.

1 Introduction

Standardizing the interface between software and hardware has proved to be a double-edged
sword. On the one hand, it allows independent development of hardware and software,
which creates tremendous efficiencies by allowing highly optimized hardware to be com-
bined with flexible software. On the other hand, wide deployment of standardized hard-



ware/software systems has created significant increased risks, by providing a large fixed
target for malicious code to attack.

If any flaw in software can be found that allows insertion of foreign information into the
execution path of a running machine, that same underlying standardized machine instruc-
tion set now becomes a liability, because it allows an attacker to craft a single sequence of
code that will have identical deleterious effects on thousands or millions of systems.

If, by contrast, each machine (or program, or process, or other level of execution unit)
had a different instruction set, the risks of such code injection attacks would be greatly
reduced. In that case, a different code sequence would be required for each system attacked.
To the degree that the number of possible instruction sets is large and to the degree that it can
be made difficult to determine, from the outside, what specific instruction set any particular
machine or program is using, the cost of developing an attack against that machine rises as
well, and the cost of attacking multiple machines becomes linear rather than constant in the
number of machines.

Is it possible to achieve the benefits of standardization without continuing to accept
the increased epidemic risks of the widespread computing monoculture we have created?
In this paper we answer that question in the affirmative, demonstrating one way to do so
via randomized instruction set emulation (RISE), a technique that deliberately obscures the
standardized machine instruction set using a private randomized scrambling mechanism.
With RISE, even if a software flaw allows machine code injection, the attacker will also
require hard-to-obtain information specific to the machine in order to craft a successful
binary code attack. The basic perspective underlying RISE is that when an attempt to
exploit a software flaw occurs, it is far better for the victim program to crash or even behave
randomly than to yield control to the attacker.

The scrambling function is designed so that it is infeasible to create code sequences to
perform a desired function (e.g., an attack) without access to a long secret key that is unique
to each program execution. However, with knowledge of the scrambling mechanism and
the key, code designed for the unique randomized machine can easily be transformed back
into code for the standardized physical hardware.

In this paper we provide a proof-of-concept RISE system, building randomized instruc-
tion set support into a version of the Valgrind x86-to-x86 binary translator [23]. We adopt
an attack model focusing on network code injection into running programs and assume that
the contents of local disks are trustworthy before the attack has occurred. Given that model,
we describe a randomizing loader for Valgrind that randomly scrambles code sequences
loaded into emulator memory from the local disk using a hidden key. Then during Val-
grind’s emulated instruction fetch cycle, we unscramble the fetched instruction, yielding
unaltered x86 machine code runnable on the physical machine.

When binary attack code, arriving over the network, exploits a bug and manages to in-
terpose itself into the emulator execution path, the injected code will not have been scram-
bled by the loader. Consequently, when the attack code is fetched and unscrambled by the
emulated instruction unit, it will appear as an essentially random string of bits. Despite
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the density of the x86 instruction set, our initial studies suggest that most random code se-
quences will encounter an address fault or illegal instruction quickly, aborting the program.
Thus with RISE, an attack that would otherwise take control of a program is downgraded
into a denial-of-service attack against the exploitable program. Regardless of what flaw
is exploited in a protected program—whether well-known or entirely novel—the network
binary code injection attack will fail with very high probability.

2 Background and Related Work

Our randomization technique is an example of automated diversity, an idea that has long
been used in software engineering to improve fault tolerance [4, 21, 5], and, more re-
cently, has been proposed as a method for improving security [8, 14, 9]. At least two other
(nondiversifying) approaches have been developed for protecting against stack-smashing
attacks—the primary example of the threat model we have adopted. The first of these in-
volves inserting additional controls and explicit checking for pre- and post-conditions. The
second approach relies on special hardware support and/or kernel modifications in combi-
nation with additional checks. In the following three subsections we discuss related work
in automated diversity as well as these two different approaches to protecting against stack-
smashing attacks. Our diversification approach should be viewed as complementary to these
other methods.

2.1 Automated diversity and arms races

Diversity in software engineering is quite different from diversity for security. In software
engineering, the basic idea is to generate multiple independent solutions to a problem (e.g.,
multiple versions of a software program) with the hope that they will fail independently,
thus greatly improving the chances that some solution out of the collection will perform
correctly in every circumstance. The different solutions may or may not be produced man-
ually, and the number of solutions is typically quite small, say around ten.

Diversity in security is introduced for a different reason. Here, the goal is to reduce the
risk of widely replicated attacks, by forcing the attacker to redesign the attack each time
it is applied. For example, in the case of a buffer overflow attack, the goal is to force the
attacker to manually rewrite the attack code for each new computer that is attacked. Here
the number of different diverse solutions is very high, potentially equal to the total number
of program copies for any given program. Manual methods are infeasible here, and the
diversity must be produced auomatically.

Cowan et al. introduced a classification of diversity methods applied to security (called
“security adaptations”) which classifies adaptations based on what is being adapted: either
the interface or the implementation [9]. Interface adaptations modify code layout or access
controls to interfaces, without changing the underlying implementation to which the inter-
face gives access. Implementation adaptations, on the other hand, do modify the underlying
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implementation of some portion of the system to make it resistant to attacks. RISE can be
viewed as an interface randomization at the machine code level.

Earlier work in automated diversity for security has experimented with diversifying data
layouts [8, 20], file systems [9], and system-call interfaces [24]. In addition, several projects
address our code-injection threat model directly, and we now describe those projects briefly.

In 1997, Forrest et al. presented a general view of the possibilities of diversity for
security [14], introducing the idea of deliberately diversifying data layouts as well as code,
and demonstrated an example of diversification that randomly padded stack frames so that
exact return address locations would be less predictable, making it harder for an attacker to
locate the return address and other key stack offsets. Developers of buffer overflow attacks
have developed a variety of workarounds—such as “ramps” and “landing zones” of no-ops
and multiple return addresses—aimed at coping with variations across different versions
or different compilations of the vulnerable software. Deliberate diversification via random
stack padding coerces an attacker to use such generalization techniques; it also necessitates
larger and larger attack codes in proportion to the size range of random padding employed.

The StackGuard system [10] provides a counter-defense against landing zones and sim-
ilar attack techniques by interposing a hard-to-guess “canary word” before the return ad-
dress, the value of which is checked before the function returns. An attempt to overwrite
the return address via linear stack smashing will almost surely change the canary value and
thus be detected.

Such examples illustrate some general points about automated diversity. First, the diver-
sifications will be most successful if they are designed in such a way that a knowledgable
adversary cannot easily create an automated method to overcome the diversification. In
many cases, this consideration will force the diversifier to use secondary information hid-
ing and obfuscation methods in order to protect the diversification. A second consideration,
which applies to many areas of security, including diversity, is that a defense or an attack
does not have to be 100% effective to be useful, and that “arms races” between attackers
and defenders are common. Random stack padding defeats the most specific attacks cheaply
and increases the need for more generalized attack techniques; a technique such as Stack-
Guard counters more sophisticated stack-smashing attacks but requires more overhead, and
so forth.

As the complexity of systems grows, and 100% provable overall system security seems
an ever more distant goal, the principle of diversity suggests that having a variety of defen-
sive techniques based on different mechanisms with different properties stands to provide
increased robustness, even if the techniques address partially or completely overlapping
threats. Exploiting the idea that it’s hard to get much done when you don’t know the lan-
guage, RISE is another technique in the defender’s arsenal against binary code injection
attacks.
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2.2 Enforcing security with optimizing interpreters

It has been noted that the current trend in binary-to-binary optimizing interpreters could
be used for more detailed inspection of executing code, because every control transfer is
detected during the interpretation process. Kiriansky et al. [16] proposed a method called
“code shepherding” in which various policies are defined to govern allowable control trans-
fers. Two of those types of policies—those based on code origins, and those based on
restricted control transfers—are particularly relevant to the RISE approach.

Code origins policies grant differential access based on the source of the code. When
it is possible to establish if the instruction to be executed came from a disk binary (modi-
fied or unmodified) or from dynamically generated code (original or modified after gener-
ation), policy decisions can be made based on that origin information. In our model, we
are implicitly implementing a code-origin policy, in that only unmodified code from disk is
allowed to execute. An advantage of the RISE approach is that the “origin check” cannot
be avoided—only properly-sourced code is mapped into the private instruction set so it ex-
ecutes successfully. Currently, the only exception we have to the disk-origin code policy is
the code deposited in the stack by signals, which is handled specially by Valgrind.

Another relevant policy type in the code shepherding approach is restricted control
transfers, in which a transfer is allowed or disallowed according to its source, destination,
and type. Although we use a restricted version of this policy to allow signal code on the
stack, instead of trying to detect and block all unintended control transfers, we let them
happen and rely on the RISE ‘language barrier’ to ensure the injected code will fail. Note
that the possibility of an unintended transfer to existing code—rather than to injected code—
is outside the threat model that RISE most naturally addresses, and there is thus a potential
for loss of control that needs to be blocked via other mechanisms (see Sec. 5).

An attraction of RISE, compared to an approach such as code shepherding, is that in-
jected code is stopped by an inherent property of the system, without requiring any explicit
or manually-defined checks before execution. In general, although divorcing policy from
mechanism is a valid design principle, when it comes to security it is too easy to make
mistakes in defining policies, and a mechanism that inherently enforces a correct policy is
preferable. We are currently developing a randomized version of control transfers to expand
the threat model to cover unintended transfers to existing code. Combinations of RISE and
code shepherding techniques could also be considered.

2.3 Other approaches to dealing with buffer overflows

In addition to the stack-frame padding and canary methods described earlier, several other
solutions have been proposed to deal specifically with buffer overflows [11]. These solu-
tions employ compiler extensions, hardware characteristics, kernel modifications, library
modifications, or static analysis to prevent and detect exploitation of buffer overflow vul-
nerabilities.

If the source code to a security-critical application is available, compiler extensions
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can be used to instrument the executable with additional controls and explicit checking.
For example, both Stack Shield [26] and StackGuard [10] instrument subroutine prologues
to check the integrity of the return address in the subroutine linkage before transferring
control to that location. Stack Shield does this by ensuring that the return address is within
the process text segment or by matching the return address with a copy kept in an out-of-
band return address stack in the data segment. These methods protect against basic stack
smashing buffer overflows, but they do not protect against all code injection attacks, and
exploitation via stack overflows is still possible [22].

When application source code is not available, modifications to the operating system
kernel or shared libraries can provide system-wide buffer overflow defense mechanisms by
taking advantage of specific hardware characteristics. For example, StackGhost [15] makes
clever use of register windows on the SPARC architecture, so that if the return address is
overwritten by an attacker while it is stored on the stack, the resulting value will not be
valid. Similarly, the PaX Linux kernel patch relies on a property of newer x86 implemen-
tations (dual translation lookaside buffers) to implement non-executable memory pages on
the Intel architecture. Although these solutions have the advantage of not forcing recompi-
lation of user applications, they are by definition architecture-specific and non-portable. In
addition, StackGhost does not protect all control transfers, only stack return addresses, so
other exploit vectors may still be possible.

A nonexecutable stack is also implemented by Solar Designer’s Openwall Linux kernel
non-executable stack patch [12]. Solar Designer’s system modifies the kernel to ensure
that control is never returned from the kernel to user code executing in the stack segment.
Although non-executable stacks (and the more general PaX non-executable memory pages)
do prevent injected code from executing on the stack, a clever attacker can still bypass
non-executable segments through return-into-libc exploits [17].

Yet another approach modifies the loading process to change the characteristics of the
process segments. In particular, PaX [19] randomizes the address space layout, loading
libraries at random addresses in the process address space, which makes it difficult for
exploits to jump directly to the address of a needed function. Openwall changes the default
loading addresses of the segments, making it almost impossible for injected code to specify
its absolute virtual address. Although this approach is close to ours because it protects
individual processes, it focuses on the address space rather than the code.

Finally, there are other static solutions, such as library call wrappers [1] and code ex-
amination to check for known error conditions [27]. Wrappers around library calls have the
limitation of not necessarily covering all libraries or all calls, and the overflow can happen
in the main program code instead of the library. Also, this method can incur signficant ex-
ecution time penalties. Code examination tools are useful, primarily to program designers,
but they are less practical for the end-user who wants to run an application in a secure way.
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3 Technical Approach and Implementation

In this section we describe our prototype implementation of RISE using Valgrind [23] for
the Intel x86 architecture. The RISE strategy is to design a system that provides each
program copy its own unique and private instruction set. To do this, we consider what is the
most appropriate machine abstraction level, how to scramble and descramble instructions,
when to apply the randomization and when to descramble, and how to protect interpreter
data. We also describe idiosyncrasies of Valgrind that affected our implementation.

3.1 Machine abstraction level

Not all levels of machine abstraction are equally amenable to a randomization strategy. We
identified the following requirements for a computational level to be a promising candidate:
Risk of attack: At least one of the source languages that are compiled to the machine lan-
guage must be vulnerable to programming errors that can produce undesirable machine
behavior. C provides an example of a commonly used source language that has many con-
structs that make it prone to subtle errors that give an attacker access to private areas of
memory. If such vulnerabilities did not exist, then there would be no point in protecting
against them.
Clear trust boundary: Local and trusted programs must be easily identifiable. For example,
we assume in our experimental setup that program files on local disks can be trusted.
Majority of trusted code: The set of local (and trusted) programs must constitute a sig-
nificant proportion of the executing programs on the machine. If we choose a machine
which runs mostly external code, then we will need a different policy for distinguishing
trusted from untrusted code. For example, randomizing Javascript in web browsers would
fare poorly under our scheme because most of the code the web browser runs is external.
Even though external Javascript can be a source of dangerous code, its identification as
trusted or untrusted must be made according to signatures, origination address, or a similar
authentication mechanism, in which case the RISE approach becomes superfluous.

For these reasons, we selected the native instruction set that runs in x86 processors.
Machine language (or C) is certainly a risky language as described above; local programs
are easily identifiable; and new code is presumably well-authenticated before it is installed
for general use. Clearly, the set of local trusted programs is much larger than the set of
“import-on-the-fly” programs.

Compared to higher-level virtual machines, however, native instruction sets have the
drawback that they are most often physically encoded and not modifiable. Thus, we chose
to work at an intermediate level with interpreters that perform binary-to-binary translation.
Several such tools have been developed [6, 7], and their reported slowdown is very small; in-
deed, they occasionally improve the performance of programs. However, most dynamic op-
timizers are not open source, and the proposed randomization requires access to the source
code of the interpreter itself. To overcome this obstacle, we decided to use Valgrind [23]
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for our prototype implementation. We are currently developing our own binary-to-binary
translator and plan to port RISE to it when it is mature.

Valgrind was designed to be a tool for detecting memory leaks, but it contains a com-
plete binary-to-binary translator. Because of the extensive memory access checking per-
formed by Valgrind, it is slow. However, as our intention is to present a proof of principle,
correctable inefficiencies of the interpreter are tolerable. As we discuss in Section 4, the
time and space costs of adding RISE to Valgrind are generally insignificant. Though scram-
bling is performed byte-by-byte, it is only done once, at load time. Descrambled code
sequences are kept in a suitably protected cache and run at full processor speed.

3.2 Byte-level encoding

There are at least two basic approaches to creating private new instruction sets: (1) mod-
ifying the operation codes and layouts in the virtual machine itself, or (2) encrypting the
machine code and then decrypting it before it is executed by the virtual machine. The first
option would require a new virtual machine for every randomized program, or alternatively,
all the programs on a single machine would have to share the virtual machine. The sec-
ond option allows much greater flexibility, and makes it possible to load ELF files directly,
without either recompiling or recalculating offsets for each new language instruction set.

We chose an extremely straightforward encryption scheme: Select a key of length n
bytes, where n is a parameter of the system; XOR the key with the first n bytes of the
machine code, and repeat the operation with the same key until the executable is scrambled.
The key is generated randomly for every new process. When decoding, the byte to be
decoded is XOR-ed with its corresponding part (subkey) of the key. The subkey index in the
key is easily recovered from the instruction pointer (EIP) by the following operation: (EIP
mod n). This allows memory that was encoded linearly to be decoded correctly regardless
of the order of instruction execution, even though x86 instructions have varying lengths. It
also makes our method less likely to be circumvented as decoding happens at the byte fetch
level.

3.3 Load time randomization of code segments

There are also choices about when to recode the executable. Scrambling ELF files on disk
has liabilities ranging from user inconvenience to increased risk of key discovery to prob-
lems dealing with dynamic libraries. For such reasons, we decided to recode the executable
at load time. This allows us to create new keys for each execution, and solves the library
problem; because we are writing to memory that belongs to shared objects, which are copy-
on-write, a private copy of the code we encode is stored in the virtual memory of the pro-
cess. This is a one-time cost and will have a very small effect for most processes. We still
have the benefit of not having the plaintext code in memory, but we pay the price of using
additional memory (defeating the purpose of shared libraries).
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3.4 Decoding at fetch time

An emulator such as Valgrind simulates the operation of the CPU and goes through a fetch
cycle. We interpose at the point where the next byte(s) are read from program memory,
and decode them before passing the decoded result to the emulator. The code in mem-
ory is never modified. Eventually, however, an instrumented (or optimized), semantically-
equivalent version of the basic block read is written to the cache. We do not interfere with
the generation of the cached code, which is the only plaintext version of the process code.
The next subsection describes how we protect the cache.

3.5 Protecting Interpreter Data

Translation is slow. Completely separating the interpreter’s address space and the address
space of the target process slows down data accesses to an extreme degree, and this prob-
lem is exacerbated when the interpreter uses a native code cache to speed up execution.
For efficiency, the RISE interpreter is best located in the same address space as the target
binary, but of course this introduces some security concerns. If an attacker is aware that the
vulnerable program is being run under RISE, the attacker could attempt to design an attack
that overwrites RISE data (rather than process data). This is a problem because RISE’s own
internal code cannot be encrypted. Therefore we must protect RISE’s code and any code
located in the code cache (often stored in the heap). We write-protect the cache whenever
it executes outside the interpreter, and we carefully control how the interpreter inserts new
code fragments into the cache. Because RISE will inspect all code executed by the target
program, RISE can catch any attempts by the program to manipulate the protection of RISE
structures. This simple check adds little to the overhead of interpreting a system call.

3.6 Implementation issues

The major unexpected problem that we encountered during the implementation was that
the boundary between Valgrind and the process Valgrind emulates is not strictly enforced.
We found that Valgrind occasionally jumped into the target binary to execute low-level
functions (e.g., umoddi and udivdi). When that happened, the processor attempted
to execute never-descrambled instructions, causing Valgrind to abort.

In a sense, it is a testament to the robustness of the RISE approach that these latent
‘boundary crossings’ were made so immediately apparent. Although references to most
common libc functions were eliminated in the Valgrind implementation, a few symbols
referring to very low-level compiler-version or system-specific functions remained. We
worked around these dangling unresolved references by creating inline function definitions
in the Valgrind binary. Although not an ideal solution, this quick fix allowed us to develop
a working implementation of RISE within Valgrind.

These dangling-reference problems are endemic in binary translation work, and creating
a self-contained interpreter is a highly non-trivial task. One of the benefits of the SIND [18]
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dynamic binary translation system (currently under development), is that it will be wholly
self-contained precisely to support applications such as RISE.

4 Experimental Results

Our prototype RISE implementation has only recently begun working and so our data is
still thin. However, we can report early successes both on running programs successfully
under normal conditions and on disrupting machine code injection attacks. As sample pro-
grams, we have run both ls—a relatively small program—and Apache—a somewhat
larger one—under RISE without problems. At the expense of substantially increased space
and time requirements (discussed below), useful programs can be protected with RISE to-
day.

We have also tested RISE against two synthetic attacks and a vulnerability test for the
Apache chunk encoding [3]. The synthetic attacks we use, published in [13], create a
vulnerable buffer—in one case on the heap and in the other case on the stack—and inject
shellcode into it. Without RISE, both attacks successfully spawn a root shell (when run by
a root process). On the other hand, with RISE, both attacks are successfully stopped—the
system detects an invalid x86 operation and aborts, printing the address of the offending
instruction (in these two attacks, a heap address and a stack address, respectively). The
attack code was descrambled without ever having been scrambled, turning it effectively
into random bits.

These synthetic attacks provide baseline data showing that the RISE approach—that of
guarding the code itself, rather than guarding the access to it—can stop some of the same
sorts of attacks that existing buffer overflow solutions address.

The vulnerability test for the chunk encoding vulnerability [25] was run on an unpatched
Apache version 1.3.12. As expected, it segfaults when run directly—since that is what the
vulnerability test is designed to do. When run under RISE, rather than segfaulting it reports
an illegal memory access, owing to the scrambling. We are in the process of modifying
the vulnerability test to inject some code (without attempting to gain access), to show that
RISE operates just as well in large applications.

These early data only give confidence that we successfully implemented what we knew
had to work from first principles: That randomizing the instruction set would disrupt ma-
chine code injections unaware of the effective instruction set. More important is attempting
to develop and defeat attacks given awareness of the RISE strategy. We discuss the ‘unin-
tended transfer to existing code’ problem in Sections 2 and 5.

4.1 What happens when an attack fails

There is also a question about how safe it is to be executing effectively random bits.
Suppose a software flaw is exploited and foreign machine code is injected into the

execution path of a RISE protected program. Since the foreign code was created without
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access to the program’s hidden random key, when the foreign code is unscrambled for
execution it will be essentially random bit values and will not perform any specific function
on behalf of the attacker. But if such random code does not do the attacker’s bidding, what
does it do? The expectation is that such random code strings will be likely to cause the
attacked program to crash quickly—but is that actually true?

Our prototype RISE produces randomized instruction sets that are in a byte-for-byte
correspondence with actual x86 instructions. This has the significant advantage that the
transformation process doesn’t affect either the code size or the layout, allowing us to per-
form the randomization task more simply and very late in the game, at load time. However,
this size correspondence also has a potential drawback, in that so much of the x86 opcode
space has been defined that executing a random byte might be quite likely to do something,
rather than just being an illegal instruction. Just how far should we expect an x86 processor
to get through a random byte sequence before dying?

To get a feel for the likelihoods involved, we performed the following test: We built
a small test program that contained a rootshell exploit coded into it in x86 machine code
(specifically, the shellcode from ‘testsc2.c’ in [2]). When the program ran, it first ran-
domized the exploit code in place using a random number seed supplied on the command
line, and then it transferred control to the beginning of the scrambled sequence via a func-
tion call. We ran this test program 10 � 000 times varying only the random seed. Table 1
summarizes the results.

Count Percent Cumulative
Signalled 9783 97.83% 97.83%
Returned 188 1.88% 99.71%
Looped(timeout) 29 0.29% 100.0%
Acquired shell 0 0% 0.0%

Total tests 10000

Table 1: Outcomes of executing randomized shell acquisition code. Distribution of signals
was SIGSEGV=8 � 721, SIGILL=1 � 010, SIGBUS=37, SIGFPE =15.

In this experiment, about 97.8% of randomizations lead to the program aborting by
one of four signals. SIGILL is an illegal instruction, SIGFPE is a floating point exception
(such as division by zero), and SIGSEGV and SIGBUS are two varieties of bad addressing
problems. Of the remaining cases, somewhat less than 2% of the time the randomized code
managed to effect a return to the caller, and under one third of a percent of cases lead to
the program entering an (apparently) infinite loop. In none of the 10 � 000 test cases, of
course, did the attack code succeed in accessing the command interpreter /bin/sh as it
was designed to do.

There are caveats to this data. Note that SIGSEGV’s are by far the most commonly
emitted signal—but that could be misleading since the test program is so small. A larger
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program would have a correspondingly larger space of legal addresses and would expect
to generate fewer SEGV’s. Also, interpreting the 2% of ‘returned’ cases are somewhat
problematic. For one thing, attack code is often ‘returned into’ rather than being called
directly so returning in this way wouldn’t be an option; since our test driver does not actually
smash its own stack the possibility of a clean return is likely much higher here than during
an actual attack. (We are in the process of developing better tools for estimating these
probabilities). In addition, although the code appeared to return successfully, it is also
possible that some machine state may have been randomly altered before the return in ways
that would lead to a crash sometime later.
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Figure 1: Distribution of signal locations relative to the beginning of the randomized attack
code.

Nonetheless, this case study is heartening in the sense that the vast majority of ran-
domizations of a genuine attack do indeed simply cause a program crash. Although our
preliminary data does not directly answer the question of how fast the crashes tend to occur,
Figure 1 provides some encouraging indirect data on that point, illustrating where the pro-
gram counter was when the signal occurred in the 9 � 783 cases that lead to a signal. There
is a strong peak at 0—in over one quarter of all test cases, when the program was stopped
it was at the very beginning of the randomized attack code,1 and the fraction of attacks fall
off rapidly away at increasing offsets. Due to random control transfers, we also observed
signals from locations outside the randomized attack window a total of 7.78% of the time
(573 cases beyond the end of the window and 205 before the beginning).

More thorough and theoretically pleasing, if perhaps more invasive as well, RISE ar-
chitectures could avoid worrying about this problem by mapping to a larger instruction set,
which can be tuned in size so that whatever percentage desired of incorrect unscramblings

1Since we did not actually count instructions executed, we cannot completely rule out the possibility that a
random code sequence may actually have executed for a time, modifying itself, and then returned to where it
started and died.
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will likely lead immediately to an illegal instruction.

4.2 Performance

Although we are willing to pay the heavy cost introduced by the memory checking engine
of Valgrind in order to build our proof of concept, it is possible to get an approximation to
the overhead of RISE over that of Valgrind.

Table 2 shows the cost in time and memory space imposed by Valgrind alone and RISE
against the baseline native application for an Apache server. The time measured is the
cumulative time for 10 GET operations of the main index page.

Native Valgrind RISE
space (KB) 1008 11872 12060
time (s) 0.010 0.850 0.890

Table 2: Space and time overhead of Valgrind and RISE over native execution of the Apache
server.

5 Discussion

Randomized instruction sets prevent dynamically injected machine code from being exe-
cuted, as do non-executable stack and heap techniques. And, RISE shares many of the
advantages of these earlier projects, including the ability to randomize ordinary executable
files and no special compilation requirements. Our approach differs, however, from non-
executable stacks and heaps in important ways. First, most non-executable stack/heap sys-
tems (such as PaX) are applied systemwide, while RISE can be selectively employed on a
per-process basis. This distinction becomes important, for example, when we consider Java
Virtual Machines, where a runtime compilation process generates code, places it on the
heap, then later jumps to it. In a system with a traditional non-executable heap, JVMs can-
not run at all. In RISE, however, the JVM process can simply be run outside of RISE with-
out compromising the security of other running processes. Second, enabling non-executable
stack/heap protection on a system often requires additional hardware or operating system
modification. RISE, however, is a user-level application, and requires no special hardware
or OS changes. RISE is capable of running on any binary-to-binary translator, and so can
run on any system with such software. As implemented, RISE can be seamlessly deployed
on stock Linux distributions by any user capable of expanding a tarball.

Because RISE uses simple runtime encryption to achieve security, a naive observer
might ask: How is this different from TCPA? While the published TCPA trusted computing
system places encrypted code in memory and decrypts it on the fly, the TCPA system does
much more. One of the main focuses of the TCPA is to facilitate Digital Rights Management
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(DRM), and the TCPA system contains an extensive document examination and revocation
system. RISE is neutral about digital rights and aims only to increase the runtime security
of software. Consequently, RISE contains none of the extensive machinery found in TCPA
for supporting DRM. RISE is also meant to be fully user-controllable, and so suffers from
none of the control issues raised by TCPA. For instance, a RISE installation is answerable
only to the user who is using it. No outside authority can alter RISE’s behavior without user
consent.

In its current state, RISE does not explicitly protect against return-into-libc techniques
[17, 12] in which a code pointer is rewritten to point to code already loaded into the process
address space, a technique commonly employed to evade non-executable stack and heap
segments. Return-into-libc exploits could be prevented by loading libc at a low memory
address or by randomizing the load addresses of all executable memory regions in the pro-
cess. A system using RISE could also implement a randomized address space to combat
exploits that reuse already loaded code. It is also possible that RISE by itself would increase
the difficulty of return-into-libc attacks by preventing the attacker from ’droping down to
machine code’ to execute bits of glue code putting the attack together.

There are other important examples of “code-reuse” attacks, such as the format string
vulnerability, in which a series of directives is inserted into the format string to print out
successive words from the stack, revealing variable data and subroutine return addresses.
This gives the attacker the dynamic location of a known instruction, the subroutine call
to the vulnerable function. A second example is the recent buffer overflow in the Solaris
login program, which was exploited by overwriting a flag variable that indicated whether
or not the user needed to be authenticated. A system implementing randomized address
spaces by randomizing load addresses could be successfully exploited in some of these
situations. A more thorough randomization of the address space, including instruction and
procedure reordering may be called for, and this can easily be accomplished within RISE.
Although neither the system described in this paper nor any other published techniques,
address “code-reuse” attacks, randomized instruction sets with address space randomization
would stop all code injection attack techniques that have so far been demonstrated “in the
wild.” And, they would do so efficiently and conveniently, without specialized hardware or
OS support, leaving the user in control.

Although Valgrind has some limitations, discussed in Section 3, we are optimistic that
improved designs and implementations of “randomized machines” would vastly increase
performance and reduce resource requirements, and potentially expand the range of attacks
the approach can mitigate. Aside from performance issues, the greatest weakness in the
current implementation arises from the dense packing of legal x86 instructions in the space
of all possible byte patterns. A random scrambling of bits is likely to produce a different
legal instruction, which is executable. Even doubling the size of the encoding (in bits) for
each instruction would enormously reduce the risk of a processor successfully executing a
long enough sequence of undescrambled instructions to do damage. Although our prelim-
inary analysis shows that this risk is very low, even with the current implementation, we
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believe that emerging architectures, similar to Crusoe, will make it possible to reduce the
risk even further.

6 Conclusions

In this paper, we introduced the concept of a randomized instruction set emulator as a
defense against binary code injection attacks. We demonstrated the feasibility and util-
ity of this concept with a proof-of-concept implementation based on Valgrind. Our im-
plementation successfully scrambles binary code at load time, unscrambles it instruction-
by-instruction during instruction fetch, and executes the unscrambled code correctly. The
implementation was successfully tested on several code-injection attacks, some real and
some synthesized to exhibit common injection techniques. Although our main goal in de-
veloping RISE was to enhance security, we note that there are other potential advantages to
our randomization, such as additional protection for proprietary code while it is resident in
memory.

The current RISE implementation does not offer 100% protection against code-injection
attacks. As mentioned earlier, there is a small probability that any given undescrambled bi-
nary code sequence could be executed for at least a few instructions. Even if it were not
executing with the intended semantics of its author, there is some risk that the random in-
struction sequence could still do damage, most likely causing a process to die. We argue
that even in this case, RISE provides an important advantage, because it turns a focused
attack into a form of denial-of-service. Certainly, it is desirable to have provable absolute
methods of defense, and it’s conceivable that a future implementation of RISE might pro-
vide the same kind of guarantee that modern cryptographic methods provide. But, that level
of certainty is rare in systems of nontrivial complexity. As we have argued in the past [14],
inexpensive and imperfect methods which raise the security arms race to a new level make
important contributions to the security of our computing infrastructure.

Although our paper illustrates the idea of randomizing instruction sets at the machine
code level, the basic concept should be applicable wherever it is possible to (1) distinguish
code from data, (2) identify all sources of trusted code, and (3) introduce hidden diversity
into all and only the trusted code. A RISE for protecting printf format strings, for exam-
ple, might rely on compile-time detection of legitimate format strings, which might either be
randomized upon detection, or flagged by the compiler for randomization sometime closer
to runtime. Certainly, it is essential that a running program interact with external informa-
tion, at some point, or else no externally useful computation can be performed. However, as
the recent SQL attacks illustrate, it is increasingly dangerous to express running programs
in externally-known languages. Randomized instruction set emulators are one step towards
reducing that risk. More generally, the technique presented here illustrates the importance
of developing unique properties for each program copy, i.e., the importance of diversity,
such that widely replicated attack methods are unlikely to succeed.
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