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Abstract

We survey the biochemical constraints useful for the designof DNA code words
for DNA computation. We define the DNA/RNA Code Constraint problem and
cover biochemistry topics relevant to DNA libraries. We examine which biochemi-
cal constraints are best suited for DNA word design.

1 Introduction

Most DNA1 computation models assume that computation is error-free.For ex-
ample, Adleman [Adl94] and Lipton [Lip95] used randomly generated DNA strings
in their experiments because they assumed that errors due tofalse positives are
rare. However, it has been experimentally shown that randomly generated codes
are inadequate for accurate DNA computation as the size of the problem grows [DMG+99],
since a poorly chosen set of DNA strands can cause errors. Therefore for many
types of DNA computers, it may be practical or even necessaryto create a ‘library’
or ‘pool’ of DNA word codes suitable for computation.2

1Even though we describe most of the constraints in terms of DNA, RNA computers also exist
(for an example see [FCLL00]) and all of the constraints are also relevant to RNA.

2For an overview of library design see [BC01]. For a survey of algorithms that have been used
to solve the DNA/RNA Code Design Problem see [MF04].



A properly constructed library would help to minimize errors so that DNA
computation is more practical, reliable, scalable, and less costly in terms of ma-
terials and laboratory time. The construction of a library is non-trivial for two
reasons. First, there are 4N unique DNA strings of lengthN; thus the number of
candidate molecules grows exponentially in the length of the DNA string. Sec-
ond, the constraints used to find a library are complex since they are subject to
the laws of biochemistry as well as the specific algorithm andcomputation style.
Deaton states that it is likely that the construction of a library “is as difficult [i.e.,
NP-hard or harder] as the combinatorial optimization problems they are intended
to solve” [DG98].

Given an algorithm for a type of DNA computer, the DNA Code Constraint
Problem is to find a set of constraints that the DNA strands must satisfy to mini-
mize the number of errors due to the choice of DNA strands. Theconstraints are
determined by the physical reality of performing the algorithm in the laboratory
and the specific algorithm and computation style. We examinethe biomolecular
constraints typically used to choose a set of DNA strings suitable for computa-
tion. A combination of these constraints are a possible solution to the DNA Code
Constraint Problem.

2 Positive And Negative Design

Even though there are many types of DNA computers, most sharesimilar bio-
chemical requirements because they use the same fundamental biochemical pro-
cesses for computation. The fundamental computation step for most DNA com-
puters occurs through the bonding (hybridization) and unbonding (denaturation)
of oligonucleotides (short strands of DNA). A single strandof DNA is composed
of a sequence of nucleotides. Each nucleotide contains a sugar (deoxyribose or
ribose), a phosphate group, and one of four bases, adenine (A), thymine (T), gua-
nine (G), or cytosine (C). RNA is composed similarly except that thymine is re-
placed by the closely related uracil (U). The nucleotides only form stable bonds
in certain combinations: A hydrogen-bonds to T or U, and G hydrogen-bonds to
C. Thus A is the Watson-Crick complement of T/U, and G is the Watson-Crick
complement of C. In addition, the “wobble pair”, G and U, can form weak bonds.
Hybridization or annealing occurs when a sequence of nucleotides bonds to the
nucleotides of another sequence, starting from the 5’ end (the ribose end) of one
sequence and the 3’ end (the phosphate end) of the other sequence. For more
comprehensive information about DNA chemistry, see [WHR+88,AJL+02].
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Creating an error-free library typically requires that planned hybridizations
and denaturations (between a word and its Watson-Crick complement) do occur
and unplanned hybridizations and denaturations (between all other combinations
of code words and their complements) do not occur. The formersituation is re-
ferred to as thepositive design problem and the latter is referred to as thenegative
design problem [MF04,DLWP04].

The positive design problem requires that there exists a sequence of reactions
that produces the desired outputs starting from the given inputs. Thus, positive
design attempts to “optimize affinity for the target structure” [DLWP04]. These
reactions must occur within a reasonable amount of time for feasible concentra-
tions. Usually the strands must satisfy a specified secondary structure criterion
(e.g., the strand must have a desired secondary structure orhave no secondary
structure at all). Since a strand is typically identified by hybridization with its
perfect Watson-Crick complement, the positive design problem requires that each
Watson-Crick duplex is stable. In addition, for computation styles that use denat-
uration, the positive design problem often requires all of the strands in the library
to have similar melting temperatures, or melting temperatures above some thresh-
old. In short, positive design tries to maximize hybridization between perfect
complements.

The negative design problem requires that (1) no strand has undesired sec-
ondary structure such as hairpin loops, (2) no string in the library hybridizes
with any string in the library, and (3) no string in the library hybridizes with the
complement of any string in the library. Thus negative design attempts to “op-
timize specificity for the target structure” [DLWP04]. Unplanned hybridizations
can cause two types of potential errors: false positives andfalse negatives. False
negatives occur when all (except an undetectable amount) ofDNA that encodes
a solution is hybridized in unproductive mismatches. Sincemismatched strands
are generally less stable than perfectly matched strands, false negatives can be
controlled by adjusting strand concentrations. Deaton experimentally verified the
occurrence of false positives, which happen when a mistmatched hybridization
causes a strand to be incorrectly identified as a solution [DMG+99]. False posi-
tives can be prevented by ensuring that all unplanned hybridizations are unstable.
In short, negative design problem tries to minimize non-specific hybridization.

Positive design often uses GC-content and energy minimization as heuristics
(see below). Negative design uses combinatorial methods (such as Hamming dis-
tance, reverse complement Hamming distance, shifted Hamming distance, and se-
quence symmetry minimization), and thermodynamic methods(such as minimum
free energy). Constraints which incorporate both positiveand negative design are
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probability, average incorrect nucleotides, energy gap, probability gap, and energy
minimization in combination with sequence symmetry minimization. The best-
performing models for designing single-strand secondary structure use simulta-
neous positive and negative design and significantly outperform either method
alone; however, kinetic constraints must be considered separately since low free
energy does not necessarily imply fast folding [DLWP04]. Webelieve that this
same principle holds for designing hybridizations betweenpairs of strands.

3 Structure

Structure calculations attempt to predict which reactionswill occur (i.e., which
bonds will form and which will break). The tendency of the atoms in a molecule
to bond together is referred to as the molecule’s stability.Stability is affected by
the sequence of bases, as well as environmental factors suchas temperature, pH,
the time given to allow reaction to complete, salt concentration, and the concen-
trations of the chemical components; temperature is the most significant of these
environmental factors. The DNA folding problem refers to the prediction of the
structure and folding energy of a given sequence. The inverse of this problem is
the selection of a sequence with a given structure.

DNA and RNA can fold back upon itself into loops or other irregular complex
twisted shapes. In order to maintain a secondary structure,a strand must have at
least one stem section, i.e., a double-stranded section. Inthe case of a single strand
these stem sections are created by the same strand twisting around and binding to
itself. In the case of mismatched duplexes, at least one stemsection must bond
the two strands together. The remaining sections can be a combination of different
types of loop structures, which are single-stranded sections bounded by bonded
base pairs (stem sections). A strand that has no stems is considered to have no
secondary structure.

Loops can be classified into several categories, Figure 1. A hairpin loop is a
loop with a single stem. Internal loops are loops with singlebases on both sides of
the stem. Bulging loops are loops with single bases on only one side of the stem.
Loops with three or more stems are called branching loops.

The structure of DNA is categorized in a four-level hierarchy. The primary
structure refers to the sequence of bases. The secondary structure describes which
individual molecules bond to each other. Tertiary structure refers to the three-
dimensional folding—the actual positions of the moleculeswithin a single chain
in three-dimensional space. Quaternary structure describes the three-dimensional
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Hairpin Loop Bulge Loop Internal LoopStem Branching Loop

Figure 1: DNA loops. Solid areas represent double stranded sections. Lines
represent single stranded sections.

interaction between two or more chains. The structure of DNAand RNA can be
fairly accurately predicted from just the secondary structure because the tertiary
interactions are much weaker than the secondary interactions. This assumption is
particularly appropriate for random sequences since they have a low probability of
having tertiary structures [SH04]. In contrast, sequencesselected by evolution are
likely to have tertiary interactions; however, even thoughthe approximation will
be less accurate, the structure and folding energy of non-random sequences can
still be approximated from just the secondary structure [SH04]. Unfortunately,
there is an exponential number (approximately 1.8N) of possible secondary struc-
tures for a sequence of lengthN [SH04,Sch04].

The stability of a DNA structure is a result of the change in free energy owing
to bonding. The simplest explanation of free energy is that “free energy is energy
that has the ability to do work” [WHR+88]. When a spontaneous reaction occurs
(at constant temperature and pressure), there is a decreasein free energy. This
decrease in free energy is equal to the maximum amount of workthat the system
can do on its surroundings. Conversely, for a non-spontaneous reaction, the free
energy is the amount of work that must be done to cause the reaction to occur.
The change in free energy is denoted∆G. If ∆G < 0, the reaction is spontaneous
in the forward direction. If∆G = 0, the reaction is at equilibrium. If∆G > 0,
the reaction is spontaneous in the reverse direction. When abond between atoms
forms, stronger bonds produce bigger changes in free energy; consequently, atoms
that bond strongly together are more likely to exist in bonded form.

DNA is more stable when it has lower free energy and in most cases it will fold
into the structure that has the minimum free energy. However, this structure is not
necessarily the most likely structure to form. In fact, the equilibrium structure
may not be a single structure at all; “what actually occurs, on the time scale of
most enzymatic reactions relevant for biological function, is rather an ensemble of
related structures interchanging more or less rapidly withone another” [McC90].
For example, the structure of the DNA of the bacterial virus T4 has several forms
in solution including a tight coil and an extended form [TSWP02].
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The most widely used method to estimate the free energy of DNAis thenear-
est neighbor model, which predicts the free energy of a duplex as the sum of
the free energy of each nearest neighbor pair plus a few correction factors. The
model is valid for single strands, Watson-Crick complementary duplexes, and
mismatched duplexes, and it can be adjusted for various temperature, pH, and
salt conditions. Nearest neighbor parameters have been measured for several dif-
ferent types of nearest neighbors including matched pairs,internal mismatched
pairs, dangling ends, internal loops, hairpin loops, and bulge loops. However, the
fastest algorithms assume that the structure has no pseudoknots. (A pseudoknot is
an occurrence of two pairs of bonded bases at positions(i,k) and( j, l) such that
i < j < k < l.) Probabilistic measurements of free energy can also be derived from
the nearest neighbor model to predict the most likely structure.

For a summary of nearest-neighbor thermodynamics see [SH04]. For more
information about nucleotide structures see [SSR97, Sch04]. For more informa-
tion about structure prediction algorithms see [TSF88].

3.1 Secondary Structure of Single Strands

Most DNA computation styles need strands with no secondary structure (i.e., no
tendency to hybridize with itself). There are, on the other hand, cases where spe-
cific secondary structures are desired, such as for deoxyribozyme logic gates [SS03].
Even there, structures different from the desired must be eliminated. Figure 2
shows the desired structure.

3.1.1 Heuristics for Eliminating Secondary Structure

There are several heuristics that are used to prevent secondary structure. Some-
times, repeated substrings and complementary substrings within a single strand
which are non-overlapping and longer than some minimum length are forbidden
to prevent stem formation; this heuristic is often calledsequence symmetry mini-
mization [DLWP04] or substring uniqueness. Another heuristic is to forbid par-
ticular substrings; theseforbidden substrings are usually strings known to have
undesired secondary structure. Alternatively, strands are designed using only a
three-letter alphabet (A, C, T for DNA, A, C, U for RNA) to eliminate the poten-
tial for GC pairs which could cause unwanted secondary structure [Mir99].
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Figure 2: Example of secondary structure in Stojanovic and Stefanovic’s
DNA automaton [SS03] as computed by MFold [Zuk03, San98, Pey00] using
140 mM Na+, 2 mM Mg++, and 25◦C. The strand has three hairpin loops, which
is the desired secondary structure.∆G is −12.3 kcal/mol.
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3.1.2 Metrics Based on Free Energy for Secondary Structure Design

In order to design a strand with a desired secondary structure, the nucleotides
at positions which bond together must be complementary. This simple approach
can be improved by also requiring the strands to satisfy somefree-energy-based
criteria, such as those described below from Dirks et al. [DLWP04].

Theminimum free energy constraint is used to choose sequences such that the
target structure is the structure with the minimum free energy. This method, how-
ever, does not ensure that there are no other structures thatthe sequence is likely
to form. Minimum free energy can be calculated inO(N3) time for structures with
no pseudoknots [ZS81].

Theenergy minimization constraint is used to chose sequences which have a
low free energy in the target structure, but not necessarilythe minimum free en-
ergy. To design strands with this constraint, first generatea random strings that
satisfies the complementary requirements of the desired secondary structure. For
each step (Dirks used 106 steps) choose a random one-point mutation. Lets′ be
the sequence with this random one-point mutation (and a mutation in the corre-
sponding base required by the structure constraint, if any). Accept the mutation
by replacings with s′ if:

e−
∆G(s′)−∆G(s)

RT ≥ ρ

whereρ ∈ [0,1] is a random number drawn from a uniform distribution. Thus this
equation always accepts any mutations which result in no change or a decrease in
free energy, and accepts with some probability any mutations which increase the
free energy. The free energy of a structure can be calculatedin O(N) time.

Sequences can also be chosen which maximize theprobability of sampling
the target structure. The probabilityp(s) that every nucleotide in the sequenceσ
exactly matches the target structures at thermodynamic equilibrium is calculated
by:

p(s) =
1
Q

e−
∆G(s)

RT

where∆G(s) is the free energy of sequenceσ in secondary structures. The parti-
tion function,Q, is:

Q = ∑
s∈Ω

e−
∆G(s)

RT
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whereΩ is the set of all secondary structures that sequenceσ can form in equi-
librium. If s∗ is the target secondary structure andp(s∗) ≈ 1 thenσ has a high
affinity and high specificity fors∗. An optimal dynamic programming algorithm
calculatesp(s∗) for structures with no pseudoknots inO(N3) time [McC90]. p(s∗)
for secondary structures with pseudoknots can be calculated in O(N5) time.

Additionally, sequences can be chosen to minimize theaverage number of
incorrect nucleotides n(s) over all equilibrium secondary structuresΩ. For 1≤
i ≤ N and 1≤ j ≤ N, the structure matrixS(s) for the sequenceσ of lengthN in
structures is:

S(s)i, j =

{

1, if basei is paired with basej in s
0, otherwise

S(s)i,N+1 =

{

1, if basei is unpaired ins
0, otherwise

S(s) can be thought of as a matrix with elements that are 0 or 1. The sum of each
row of S(s) is 1. For 1≤ i ≤ N and 1≤ j ≤ N, the probability matrixP(s) is:

P(s)i, j = ∑
s∈Ω

p(s)S(s)i, j

whereP(s)i, j is the probability of forming a base pair between the nucleotides at
positioni and j. P(s)i,N+1 is the probability that basei is unpaired.P(s) can be
thought of as a matrix with elements that are real numbers in[0,1], and the sum
of each row ofP(s) is 1.

n(s) is the average number of incorrect nucleotides over the equilibrium en-
semble of secondary structuresΩ. If s∗ is the target structure then:

n(s∗) = N −

N

∑
i=1

N+1

∑
j=1

P(s)i, jS(s∗)i, j

n(s∗) can be calculated inO(N3) time in structures with no pseudoknots and
O(N5) in structures with pseudoknots.

The best-performing models are probability, average incorrect nucleotides,
and energy minimization in combination with sequence symmetry minimization
for the substrings that are not constrained by the desired secondary structure. The
middle-performing models are the negative design methods (minimum free en-
ergy, and sequence symmetry minimization alone). The worstperforming model
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is energy minimization (a positive design method). Surprisingly, minimum free
energy performs similarly to sequence symmetry minimization. These results
show that free energy measurements do not guarantee good design; an effective
search must use both positive and negative design methods.

3.2 Secondary Structure of Duplexes

The Watson-Crick complement of a strand is obtained by reversing it and then
complementing each base. ‘Perfectly matched’ strands are Watson-Crick comple-
ments of each other. In general, two DNA strands that are Watson-Crick comple-
mentary tend strongly to bind together. However different sequences have rela-
tively stronger or weaker tendencies to bind with their perfect complements. In
addition, some mismatched pairs of strands can also form stable structures, and
different mismatched pairs can also have stronger or weakertendencies to bond.
In general, mismatched strands are less stable than Watson-Crick-complementary
sequences.

3.2.1 Heuristics for Measuring the Stability of Matched Duplexes

DNA has two types of bonds that determine its secondary structure. The nu-
cleotides in a single strand are held together by phosphodiester bonds. Hydrogen
bonds form between nucleotides of separate chains. The change in free energy
when a perfectly matched duplex forms is often estimated by either (1) the type of
hydrogen bonds, AT vs. GC, expressed as the percentage of nucleotides that are
G and C bases in a strand or duplex, which is known asGC-content; or (2) both
the hydrogen and the phosphodiester bonds, which is the nearest-neighbor model.

Since GC base pairs are held together by three hydrogen bondsand AT base
pairs are held together by only two hydrogen bonds, double-stranded DNA with
a high GC content isoften more stable than DNA with a high AT content. Many
DNA library searches require each strand to have a 50% GC-content to balance the
requirement of stable matched hybridizations for identification purposes with the
requirements of denaturation. The advantage of using the GC-content heuristic
is that it is simple to calculate; only the length and the number of GC bases are
needed, where the length refers to the number of nucleotide base pairs. However
a disadvantage is that the nearest-neighbor heuristic is more accurate than the
GC-content heuristic because the nearest neighbor base stacking energies account
for more of the change in free energy than the energy of the hydrogen bonding
between nucleotide bases. Thus the GC-content measure is a coarse heuristic for
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indirectly estimating the stability of a duplex, whereas the nearest-neighbor model
attempts to approximate the actual change in free energy.

3.2.2 Heuristics for Measuring the Dissimilarity of Pairs of Strands

Digital codes and DNA are similar because codes are used to store information in
digital strings, and DNA can be thought of as their biological equivalent. Thus,
many early attempts to describe the differences between twoDNA strings used
results from coding theory. Requiring all pairs of strings in the library to have
at least a given minimumHamming distance (i.e., the number of characters in
corresponding places which differ between two strings), isintended to satisfy the
requirement that no pair of strings in the library should hybridize. Other exten-
sions to Hamming distance have been developed in the literature. For example,
thereverse complement Hamming distance is the number of corresponding posi-
tions which differ in the complement ofs1 and the reverse ofs2 (wheres1 ands2

are not Watson-Crick complementary). This constraint is used to reduce the false
positives that occur from hybridization between a word and the reverse of another
word in the library. For more information on algorithms for strings see [Gus99].

The advantage of Hamming distance (and its variations) is its theoretical sim-
plicity and the vast body of extant work in coding theory. Many bounds have
been calculated on the optimal size of codes with various Hamming-distance-
based constraints [MCC01]. Many early search algorithms used only Hamming
distance as a constraint to develop combinatorial algorithms based on the results
from coding theory. However, Hamming distance alone appears to be a problem-
atic constraint.

One problem with Hamming-distance-based heuristics is that this measure as-
sumes that positioni of the first string is aligned with positioni of the second
string. However, since duplexes can be formed with danglingends and loops, this
is not the only possible alignment. VariousHamming distance slides and sub-
string uniqueness [FRB03] have been developed to fix the alignment problem.
However, if a duplex forms internal loops or bulge loops, thealignment may be
more complicated than just a simple offset.

Another problem with heuristics based on Hamming distance is that the per-
centage of matching base pairs necessary to form a duplex is not necessarily
known. Melting temperature can be used to approximate what the minimum
Hamming distance should be.3 However, for a given temperature and word set,

3Deaton estimates the melting temperature of mismatched duplexes by decreasing 1◦C per 1%
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there can be significant variation in the required minimum distance, because the
necessary distance depends on the reaction conditions, especially the temperature.

3.2.3 Free Energy Based Measures of Duplexes (Matched and Mismatched)

Now that accurate free-energy information is available forall but the most compli-
cated secondary structures (e.g., branching loops), the nearest-neighbor model is
a much more accurate method to use than the constraints basedon Hamming dis-
tance. One possible way of using free-energy-based calculations as a constraint
to prevent mismatched duplexes is to maximize the gap between the free energy
of the weakest specific hybridization and the free energy of strongest nonspecific
hybridization, which we refer to as theenergy gap; this approach was used by
Penchovsky [PA03]. The probability,p(s∗), measurement could also be applied
to duplexes . A reasonable heuristic would be to maximize thegap between the
lowest probability of the desired specific hybridizations and the highest probabil-
ity of undesired non-specific hybridizations, which we refer to as theprobability
gap. Algorithms to calculate the probability,p(s∗), for all possible combinations
of single and double stranded foldings between a pair of strands [DZ04].

4 Melting Temperature

Melting temperature is typically used as a constraint in DNAparadigms that use
multiple hybridization and denaturation steps to identifythe answer, for an ex-
ample see [FCLL00]. When DNA is heated considerably above physiological
temperatures, to 100◦C, the hydrogen bonds that bind two bases together tend to
break apart, and the strands tend to separate from each other. The probability that
a bond will break increases with temperature. This probability can be described
by the melting temperature, which is the temperature in equilibrium at which 50%
of the oligonucleotides have hybridized to their perfect complements and 50% of
the oligonucleotides are separated. Since temperature control is often used to help
denature the strands in between steps, it is advantageous for these paradigms to
require all of the strands in the library to have similar melting temperatures or
melting temperatures above some threshold.

mismatch between oligonucleotides [DMG+99]. Since this calculation is outdated (see Section 4),
if this heuristic is used for a library search, it is recommended that the melting temperature should
be estimated from free energy calculations.
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The melting temperature of a perfectly matched duplex can beroughly esti-
mated from the 2–4 rule [BC01] which predicts the melting temperature as twice
the number of AT base pairs plus 4 times the number of GC base pairs. An-
other rough estimate of the change in melting temperature due to mismatched
duplexes can also be obtained by decreasing the melting temperature of a corre-
sponding matched duplex by 1◦C per 1% mismatch; unfortunately, the inaccuracy
is typically greater than 10◦C [SH04]. Neither method is recommended. A better
method is to use the nearest-neighbor model regardless of whether the duplex is
perfectly matched or mismatched. This method produces moreaccurate results
because melting temperature is closely related to free energy and can be predicted
from the nearest-neighbor model. Melting temperature can also be used to pre-
dict the state of the structure of two strands (duplex or single strands), but melting
temperatures of different duplex cannot be compared to obtain relative rankings
of stability.

5 Reaction Rates

Once the structure of candidate strands is known, the next logical question to ask
is how fast do these reactions occur and what concentration is needed. Kinetics
deals with the rate of change of reactions. For some implementations of DNA
computers, the rate of the reaction could be an additional search constraint.

6 Evaluating a Set of DNA Strands for DNA Com-
putation

Of the heuristics previously mentioned, the most appropriate method for obtaining
an estimate of the absolute or relative rate of hybridization error is thermodynam-
ics and statistical thermodynamics. For example,p(s∗), n(s∗), pair probabilities,
and free energy have been used to evaluate whether a singly stranded sequence
will have the desired secondary structure,s∗ [DLWP04]. Statistical thermody-
namics (the partition function of all hybridized configurations) has been used to
evaluate the set of strands used in Adleman’s original Hamiltonian Path problem
by predicting the error rate [DR00]. An algorithm exists which tests that a given
set of singly-stranded DNA strands have no unspecific hybridizations for word
sets used as a comma-free language , based on the minimum freeenergy con-
straint [ADS+03]. In addition, the energy gap or probability gap could be used
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for evaluation. The final evaluation criterion must be how the strands perform in
the laboratory, since this is what the library is ultimatelydesigned for.

7 DNA Prediction Software

RNA free energy nearest neighbor parameters are available from the Turner Group
[MDC+04]. MFold [Zuk03], Hyther [PSS, San98, PSAS99], the ViennaPackage
[Hof03], RNAstructure [MDC+04], Dynalign [MT02], and RNAsoft [AAHCH03]
are DNA/RNA structure prediction software which is available on the web. Visual
OMP (Oligonucleotide Modelling Platform; DNA Software Inc.) [Vis] is commer-
cially available software. Kinfold [FFHS00] is for kineticsimulation.

8 Conclusion

Structure prediction can be separated into two problems. The first is to under-
stand how DNA folds in nature. The second is to understand howcomputers
should fold DNA strands to obtain the structure. Since nature has the advantage
of parallel processing and the proximity of the molecules inspace, the way nature
finds the solution to the folding problem should not necessarily be the same as
the way a computer finds the solution. Early algorithms to findDNA word sets
focused on the Hamming distance constraint or variations thereof to achieve a
theoretical abstraction of the constraints, which allowedthe use of combinatorial
algorithms and proofs of completeness (i.e., that the size of the pool is optimal
or near optimal). However, in the process the constraints are simplified so much
that they no longer accurately predict DNA structure. Current algorithms tend
to use a more complex combination of the constraints. However, since these con-
straints are difficult to abstract, more recent programs resort to genetic algorithms,
random search, exhaustive search, and local stochastic search algorithms.

Thermodynamics, melting temperature and kinetics are bestat predicting DNA
structure and reaction rates. Calculating thermodynamicsand kinetics can be
costly, however. According to the requirements mentioned for the negative design
problem, checking that a library of sizeM meets specifications requiresO(M2)
string comparisons, where each comparison of a pair of strings of lengthN is
potentially polynomial inN. However, this does not mean that the weaker com-
binatorial and heuristic predictors are useless. Many of these alternative structure
heuristics could be used to quickly filter a candidate set of library molecules, and
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then the free energy model could be used to more accurately check this set. If this
approach is adopted, the correlation between these alterative heuristics and free
energy measurements should be explored. Alternatively, free energy or proba-
bility approximation algorithms could be used. This approach has the advantage
that techniques from randomized algorithm analysis could be used to prove the
correctness of the approximation.

Research in DNA libraries has two main goals: (1) to further understand DNA
chemistry, and (2) to understand search techniques useful for constructing sets of
DNA codes. Although there is a growing consensus that DNA computers will
never be as practical or as fast as conventional computers, biological computers
have the advantage that their style of computation is closerto natural processes.
Successful research in DNA libraries will help to reduce errors in DNA compu-
tation and may discover new information about how DNA interacts with itself.
Although current DNA computers are simplistic in comparison to natural bio-
chemical processes, DNA computation may help to develop alternative theories
for how cells work or could have evolved [Smi96]. In addition, research in DNA
design also pertains to DNA nanotechnology, PCR-based applications, and DNA
arrays. Breakthroughs in this field will add to the current knowledge of DNA
chemistry as well as DNA computers.
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