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Abstract

We survey the biochemical constraints useful for the desiddNA code words
for DNA computation. We define the DNA/RNA Code Constrainblgdem and
cover biochemistry topics relevant to DNA libraries. We mae which biochemi-
cal constraints are best suited for DNA word design.

1 Introduction

Most DNA! computation models assume that computation is error-ffee.ex-
ample, Adleman [AdI94] and Lipton [Lip95] used randomly gested DNA strings

in their experiments because they assumed that errors daés¢opositives are

rare. However, it has been experimentally shown that ramglgenerated codes

are inadequate for accurate DNA computation as the sizegftthlem grows [DMG99],
since a poorly chosen set of DNA strands can cause errorgefbne for many

types of DNA computers, it may be practical or even necedsarieate a ‘library’

or ‘pool’ of DNA word codes suitable for computatidn.

1Even though we describe most of the constraints in terms o& JRINA computers also exist
(for an example see [FCLLOOQ]) and all of the constraints #se eelevant to RNA.

2For an overview of library design see [BCO1]. For a surveylgbethms that have been used
to solve the DNA/RNA Code Design Problem see [MFO04].



A properly constructed library would help to minimize es@o that DNA
computation is more practical, reliable, scalable, and testly in terms of ma-
terials and laboratory time. The construction of a librayon-trivial for two
reasons. First, there ar& 4inique DNA strings of lengtiN; thus the number of
candidate molecules grows exponentially in the length ef@NA string. Sec-
ond, the constraints used to find a library are complex siheg are subject to
the laws of biochemistry as well as the specific algorithm @m@putation style.
Deaton states that it is likely that the construction of &dily “is as difficult [i.e.,
NP-hard or harder] as the combinatorial optimization peoid they are intended
to solve” [DG98].

Given an algorithm for a type of DNA computer, the DNA Code Staint
Problem is to find a set of constraints that the DNA strandst isatssfy to mini-
mize the number of errors due to the choice of DNA strands. cbmstraints are
determined by the physical reality of performing the altfori in the laboratory
and the specific algorithm and computation style. We exaittiaédiomolecular
constraints typically used to choose a set of DNA stringtable for computa-
tion. A combination of these constraints are a possibletmwito the DNA Code
Constraint Problem.

2 Positive And Negative Design

Even though there are many types of DNA computers, most sariéar bio-
chemical requirements because they use the same fundatiectaemical pro-
cesses for computation. The fundamental computation stemdést DNA com-
puters occurs through the bonding (hybridization) and wdbay (denaturation)
of oligonucleotides (short strands of DNA). A single straridNA is composed
of a sequence of nucleotides. Each nucleotide contains ar $dgoxyribose or
ribose), a phosphate group, and one of four bases, adenjnth#nine (T), gua-
nine (G), or cytosine (C). RNA is composed similarly excédyattthymine is re-
placed by the closely related uracil (U). The nucleotidely éarm stable bonds
in certain combinations: A hydrogen-bonds to T or U, and Grbgdn-bonds to
C. Thus A is the Watson-Crick complement of T/U, and G is theséa-Crick
complement of C. In addition, the “wobble pair”’, G and U, cami weak bonds.
Hybridization or annealing occurs when a sequence of ntidembonds to the
nucleotides of another sequence, starting from the 5’ drer(bose end) of one
sequence and the 3’ end (the phosphate end) of the otherrsgqu&or more
comprehensive information about DNA chemistry, see [W18R, AJLT02].



Creating an error-free library typically requires thatrplad hybridizations
and denaturations (between a word and its Watson-Crick mmnent) do occur
and unplanned hybridizations and denaturations (betwikethar combinations
of code words and their complements) do not occur. The fositeation is re-
ferred to as theositive design problemand the latter is referred to as thegative
design problem [MF04, DLWPO04].

The positive design problem requires that there exists aesegp of reactions
that produces the desired outputs starting from the givpaten Thus, positive
design attempts to “optimize affinity for the target struety DLWPO04]. These
reactions must occur within a reasonable amount of timedasible concentra-
tions. Usually the strands must satisfy a specified secgratancture criterion
(e.g., the strand must have a desired secondary structuraverno secondary
structure at all). Since a strand is typically identified kyphdization with its
perfect Watson-Crick complement, the positive design lgrmlrequires that each
Watson-Crick duplex is stable. In addition, for computatstyles that use denat-
uration, the positive design problem often requires alhefgtrands in the library
to have similar melting temperatures, or melting tempeestabove some thresh-
old. In short, positive design tries to maximize hybridiaatbetween perfect
complements.

The negative design problem requires that (1) no strand hdesired sec-
ondary structure such as hairpin loops, (2) no string in theaty hybridizes
with any string in the library, and (3) no string in the libyarybridizes with the
complement of any string in the library. Thus negative desigempts to “op-
timize specificity for the target structure” [DLWPO04]. Umpined hybridizations
can cause two types of potential errors: false positivedalsd negatives. False
negatives occur when all (except an undetectable amoumN&f that encodes
a solution is hybridized in unproductive mismatches. Simtematched strands
are generally less stable than perfectly matched straatfe hegatives can be
controlled by adjusting strand concentrations. Deatoregrpentally verified the
occurrence of false positives, which happen when a mistmedt&ybridization
causes a strand to be incorrectly identified as a solution@D®B]. False posi-
tives can be prevented by ensuring that all unplanned higlatidns are unstable.
In short, negative design problem tries to minimize noregmehybridization.

Positive design often uses GC-content and energy minifoizas heuristics
(see below). Negative design uses combinatorial method$ @s Hamming dis-
tance, reverse complement Hamming distance, shifted Haghdistance, and se-
guence symmetry minimization), and thermodynamic metl@ash as minimum
free energy). Constraints which incorporate both posuive negative design are
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probability, average incorrect nucleotides, energy geghgbility gap, and energy
minimization in combination with sequence symmetry miraation. The best-
performing models for designing single-strand secondanctire use simulta-
neous positive and negative design and significantly ofdpareither method
alone; however, kinetic constraints must be consideredraggly since low free
energy does not necessarily imply fast folding [DLWPO04]. Wédieve that this
same principle holds for designing hybridizations betweains of strands.

3 Structure

Structure calculations attempt to predict which reactiaisoccur (i.e., which
bonds will form and which will break). The tendency of theratin a molecule
to bond together is referred to as the molecule’s stabiBtability is affected by
the sequence of bases, as well as environmental factorsasueimperature, pH,
the time given to allow reaction to complete, salt concdiana and the concen-
trations of the chemical components; temperature is the sigsificant of these
environmental factors. The DNA folding problem refers te fhrediction of the
structure and folding energy of a given sequence. The iavefrshis problem is
the selection of a sequence with a given structure.

DNA and RNA can fold back upon itself into loops or other inugy complex
twisted shapes. In order to maintain a secondary strucws®and must have at
least one stem section, i.e., a double-stranded sectidhe base of a single strand
these stem sections are created by the same strand twistungdsand binding to
itself. In the case of mismatched duplexes, at least one séetion must bond
the two strands together. The remaining sections can be hination of different
types of loop structures, which are single-stranded sestimunded by bonded
base pairs (stem sections). A strand that has no stems iglecet to have no
secondary structure.

Loops can be classified into several categories, Figure laifin loop is a
loop with a single stem. Internal loops are loops with sifgees on both sides of
the stem. Bulging loops are loops with single bases on ondysiate of the stem.
Loops with three or more stems are called branching loops.

The structure of DNA is categorized in a four-level hiergtcfihe primary
structure refers to the sequence of bases. The secondariusérdescribes which
individual molecules bond to each other. Tertiary struettefers to the three-
dimensional folding—the actual positions of the molecwgthin a single chain
in three-dimensional space. Quaternary structure dessctite three-dimensional
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Figure 1: DNA loops. Solid areas represent double stranéetosns. Lines
represent single stranded sections.

interaction between two or more chains. The structure of CANA RNA can be
fairly accurately predicted from just the secondary stitetecause the tertiary
interactions are much weaker than the secondary interectithis assumption is
particularly appropriate for random sequences since theg b low probability of
having tertiary structures [SHO4]. In contrast, sequeseéected by evolution are
likely to have tertiary interactions; however, even thotigé approximation will
be less accurate, the structure and folding energy of nodera sequences can
still be approximated from just the secondary structureq&H Unfortunately,
there is an exponential number (approximateBV}) of possible secondary struc-
tures for a sequence of length[SHO04, Sch04].

The stability of a DNA structure is a result of the change eefenergy owing
to bonding. The simplest explanation of free energy is thrae“energy is energy
that has the ability to do work” [WHR88]. When a spontaneous reaction occurs
(at constant temperature and pressure), there is a decérefise energy. This
decrease in free energy is equal to the maximum amount of thatkhe system
can do on its surroundings. Conversely, for a non-spontaezaction, the free
energy is the amount of work that must be done to cause théardo occur.
The change in free energy is denot&d. If AG < 0, the reaction is spontaneous
in the forward direction. IAG = 0, the reaction is at equilibrium. &G > 0,
the reaction is spontaneous in the reverse direction. Whremd between atoms
forms, stronger bonds produce bigger changes in free enavggequently, atoms
that bond strongly together are more likely to exist in bahfbem.

DNA is more stable when it has lower free energy and in mogtsasvill fold
into the structure that has the minimum free energy. Howehiesrstructure is not
necessarily the most likely structure to form. In fact, tlggiiébrium structure
may not be a single structure at all; “what actually occursthe time scale of
most enzymatic reactions relevant for biological functismather an ensemble of
related structures interchanging more or less rapidly it another” [McC90].
For example, the structure of the DNA of the bacterial virdshas several forms
in solution including a tight coil and an extended form [TSV2P
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The most widely used method to estimate the free energy of BNenear-
est neighbor model, which predicts the free energy of a duplex as the sum of
the free energy of each nearest neighbor pair plus a fewatmmnefactors. The
model is valid for single strands, Watson-Crick compleragntduplexes, and
mismatched duplexes, and it can be adjusted for variousesatpe, pH, and
salt conditions. Nearest neighbor parameters have beesuneebfor several dif-
ferent types of nearest neighbors including matched peitsrnal mismatched
pairs, dangling ends, internal loops, hairpin loops, arlgéloops. However, the
fastest algorithms assume that the structure has no pseoi3okA pseudoknot is
an occurrence of two pairs of bonded bases at positiokgand(j,1) such that
i < j <k<.) Probabilistic measurements of free energy can also lieeddrom
the nearest neighbor model to predict the most likely stmact

For a summary of nearest-neighbor thermodynamics see [[SHB4r more
information about nucleotide structures see [SSR97, Schagy more informa-
tion about structure prediction algorithms see [TSF88].

3.1 Secondary Structure of Single Strands

Most DNA computation styles need strands with no secondangtsire (i.e., no
tendency to hybridize with itself). There are, on the othemndy cases where spe-
cific secondary structures are desired, such as for demgyibe logic gates [SS03].
Even there, structures different from the desired must eirehted. Figure 2
shows the desired structure.

3.1.1 Heuristicsfor Eliminating Secondary Structure

There are several heuristics that are used to prevent sagostiucture. Some-
times, repeated substrings and complementary substriitggva single strand
which are non-overlapping and longer than some minimumtkeage forbidden
to prevent stem formation; this heuristic is often calkeguence symmetry mini-
mization [DLWPO04] or substring uniqueness. Another heuristic is to forbid par-
ticular substrings; thesm@rbidden substrings are usually strings known to have
undesired secondary structure. Alternatively, strandsdasigned using only a
three-letter alphabet (A, C, T for DNA, A, C, U for RNA) to eliminate the poten-
tial for GC pairs which could cause unwanted secondary stre¢Mir99].
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Figure 2. Example of secondary structure in Stojanovic amefaSovic's
DNA automaton [SS03] as computed by MFold [Zuk03, San980Bkwsing
140 mM Na", 2 mM Mg" ™, and 25C. The strand has three hairpin loops, which
is the desired secondary structufés is —12.3 kcal/mol.



3.1.2 MetricsBased on Free Energy for Secondary Structure Design

In order to design a strand with a desired secondary steictbe nucleotides
at positions which bond together must be complementarys Simple approach
can be improved by also requiring the strands to satisfy doeeeenergy-based
criteria, such as those described below from Dirks et al VP104].

Theminimum free energy constraint is used to choose sequences such that the
target structure is the structure with the minimum free gnerhis method, how-
ever, does not ensure that there are no other structurethéhaequence is likely
to form. Minimum free energy can be calculatedd(N?®) time for structures with
no pseudoknots [ZS81].

The energy minimization constraint is used to chose sequences which have a
low free energy in the target structure, but not necesstrdyminimum free en-
ergy. To design strands with this constraint, first geneaatendom string that
satisfies the complementary requirements of the desirexhdacy structure. For
each step (Dirks used 38teps) choose a random one-point mutation. 4_&e
the sequence with this random one-point mutation (and atrootan the corre-
sponding base required by the structure constraint, if.aAggept the mutation
by replacings with s if:

AG(F)—-AG(s)

e RT Zp

wherep € [0, 1] is a random number drawn from a uniform distribution. Thus th
eguation always accepts any mutations which result in nogdar a decrease in
free energy, and accepts with some probability any mutatidmich increase the
free energy. The free energy of a structure can be calcula®N) time.
Sequences can also be chosen which maximizetblgability of sampling
the target structure. The probabilitys) that every nucleotide in the sequeree
exactly matches the target structgrat thermodynamic equilibrium is calculated
by:
1 acy
= — RT
p(s) o°
whereAG(s) is the free energy of sequenagen secondary structur® The parti-
tion function,Q, is:



whereQ is the set of all secondary structures that sequencan form in equi-
librium. If s* is the target secondary structure gn@*) ~ 1 theno has a high
affinity and high specificity fos*. An optimal dynamic programming algorithm
calculatesp(s®) for structures with no pseudoknots@iN3) time [McC90]. p(s*)
for secondary structures with pseudoknots can be calclia@®(N®) time.
Additionally, sequences can be chosen to minimizeaVverage number of
incorrect nucleotides n(s) over all equilibrium secondary structur® For 1<
i <N and 1< j < N, the structure matrig(s) for the sequence of lengthN in
structuresis:

S = 1, if basel is paired with basg in s
17 0, otherwise

Ss) _ | 1,if basei is unpaired irs
WNTL7 0, otherwise

S(s) can be thought of as a matrix with elements that are O or 1. Tihedf each
row of §(s) is 1. For 1<i <N and 1< j < N, the probability matriX(s) is:

P(s)i,j = Z)P(S)S(S)i,i

whereP(s); j is the probability of forming a base pair between the nudatiestat
positioni and j. P(s)i n+1 is the probability that baskis unpaired.P(s) can be
thought of as a matrix with elements that are real numbej8,ij, and the sum
of each row ofP(s) is 1.

n(s) is the average number of incorrect nucleotides over thelibguim en-
semble of secondary structur@s If s* is the target structure then:

N N+1

nis) = N=% % P(s)i;S(s)i,
. ]
i=1j=

n(s*) can be calculated i®(N3) time in structures with no pseudoknots and
O(NP®) in structures with pseudoknots.

The best-performing models are probability, average mabrnucleotides,
and energy minimization in combination with sequence sytnymainimization
for the substrings that are not constrained by the desirazhskary structure. The
middle-performing models are the negative design methoilsifhum free en-
ergy, and sequence symmetry minimization alone). The wadbrming model
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is energy minimization (a positive design method). Sumpgly, minimum free

energy performs similarly to sequence symmetry minimazati These results
show that free energy measurements do not guarantee goioeh;das effective

search must use both positive and negative design methods.

3.2 Secondary Structure of Duplexes

The Watson-Crick complement of a strand is obtained by sgwgrit and then
complementing each base. ‘Perfectly matched’ strands atedi-Crick comple-
ments of each other. In general, two DNA strands that are Ma@ick comple-
mentary tend strongly to bind together. However differegguences have rela-
tively stronger or weaker tendencies to bind with their petrfcomplements. In
addition, some mismatched pairs of strands can also forbtesstructures, and
different mismatched pairs can also have stronger or wdakelencies to bond.
In general, mismatched strands are less stable than Waisckrcomplementary
sequences.

3.2.1 Heuristicsfor Measuring the Stability of Matched Duplexes

DNA has two types of bonds that determine its secondary tsireic The nu-
cleotides in a single strand are held together by phosphtatibonds. Hydrogen
bonds form between nucleotides of separate chains. Thegeharfree energy
when a perfectly matched duplex forms is often estimatedthgie(1) the type of
hydrogen bonds, AT vs. GC, expressed as the percentage lebtides that are
G and C bases in a strand or duplex, which is know@scontent; or (2) both
the hydrogen and the phosphodiester bonds, which is thesteagighbor model.
Since GC base pairs are held together by three hydrogen laowd&T base
pairs are held together by only two hydrogen bonds, douinégrded DNA with
a high GC content isften more stable than DNA with a high AT content. Many
DNA library searches require each strand to have a 50% G@uobto balance the
requirement of stable matched hybridizations for iderdtfan purposes with the
requirements of denaturation. The advantage of using the@@nt heuristic
is that it is simple to calculate; only the length and the namif GC bases are
needed, where the length refers to the number of nucleoéise pairs. However
a disadvantage is that the nearest-neighbor heuristic e @ccurate than the
GC-content heuristic because the nearest neighbor bas@engi@nergies account
for more of the change in free energy than the energy of thedggh bonding
between nucleotide bases. Thus the GC-content measureasedeuristic for
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indirectly estimating the stability of a duplex, whereas tiearest-neighbor model
attempts to approximate the actual change in free energy.

3.2.2 Heuristicsfor Measuring the Dissimilarity of Pairsof Strands

Digital codes and DNA are similar because codes are usedisformation in
digital strings, and DNA can be thought of as their biologeguivalent. Thus,
many early attempts to describe the differences betweerDiMA strings used
results from coding theory. Requiring all pairs of stringgthe library to have
at least a given minimurtlamming distance (i.e., the number of characters in
corresponding places which differ between two stringsptisnded to satisfy the
requirement that no pair of strings in the library should igize. Other exten-
sions to Hamming distance have been developed in the literator example,
the reverse complement Hamming distance is the number of corresponding posi-
tions which differ in the complement &f and the reverse & (wheres; ands,
are not Watson-Crick complementary). This constraint edus reduce the false
positives that occur from hybridization between a word d&reverse of another
word in the library. For more information on algorithms farisgs see [Gus99].

The advantage of Hamming distance (and its variations$ ihéoretical sim-
plicity and the vast body of extant work in coding theory. Marounds have
been calculated on the optimal size of codes with various Hzng-distance-
based constraints [MCCO01]. Many early search algorithnesl wsly Hamming
distance as a constraint to develop combinatorial algostbased on the results
from coding theory. However, Hamming distance alone apptabe a problem-
atic constraint.

One problem with Hamming-distance-based heuristics igtimmeasure as-
sumes that position of the first string is aligned with positionof the second
string. However, since duplexes can be formed with dangdimds and loops, this
is not the only possible alignment. Variottamming distance slides and sub-
string uniqueness [FRB0O3] have been developed to fix the alignment problem.
However, if a duplex forms internal loops or bulge loops, alignment may be
more complicated than just a simple offset.

Another problem with heuristics based on Hamming distasdbat the per-
centage of matching base pairs necessary to form a dupleatisatessarily
known. Melting temperature can be used to approximate wiantinimum
Hamming distance should BeHowever, for a given temperature and word set,

3Deaton estimates the melting temperature of mismatcheléxkmby decreasing € per 1%
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there can be significant variation in the required minimustatice, because the
necessary distance depends on the reaction conditioresiabpthe temperature.

3.2.3 FreeEnergy Based Measures of Duplexes (Matched and Mismatched)

Now that accurate free-energy information is availableafblbut the most compli-
cated secondary structures (e.g., branching loops), #w@steneighbor model is
a much more accurate method to use than the constraints dbas¢ginming dis-
tance. One possible way of using free-energy-based c#imuteas a constraint
to prevent mismatched duplexes is to maximize the gap betiveefree energy
of the weakest specific hybridization and the free energyrohgest nonspecific
hybridization, which we refer to as themergy gap; this approach was used by
Penchovsky [PA03]. The probabilitp(s*), measurement could also be applied
to duplexes . A reasonable heuristic would be to maximizegdgebetween the
lowest probability of the desired specific hybridizatiomslahe highest probabil-
ity of undesired non-specific hybridizations, which we refieas theprobability
gap. Algorithms to calculate the probabilitp(s*), for all possible combinations
of single and double stranded foldings between a pair ohdg§DZ04].

4 Méelting Temperature

Melting temperature is typically used as a constraint in Dp&kadigms that use
multiple hybridization and denaturation steps to identifg¢ answer, for an ex-
ample see [FCLLOO]. When DNA is heated considerably abowssiplogical
temperatures, to 10Q, the hydrogen bonds that bind two bases together tend to
break apart, and the strands tend to separate from each ©kiegprobability that
a bond will break increases with temperature. This proliglman be described
by the melting temperature, which is the temperature inlgxgjiwim at which 50%
of the oligonucleotides have hybridized to their perfeahptements and 50% of
the oligonucleotides are separated. Since temperatuteot@often used to help
denature the strands in between steps, it is advantageotisei®e paradigms to
require all of the strands in the library to have similar nmgjttemperatures or
melting temperatures above some threshold.

mismatch between oligonucleotides [DM@9]. Since this calculation is outdated (see Section 4),
if this heuristic is used for a library search, it is recomuhetthat the melting temperature should
be estimated from free energy calculations.
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The melting temperature of a perfectly matched duplex carobghly esti-
mated from the 2—4 rule [BCO1] which predicts the meltingpenature as twice
the number of AT base pairs plus 4 times the number of GC base. pAn-
other rough estimate of the change in melting temperatuestdumismatched
duplexes can also be obtained by decreasing the meltingetertope of a corre-
sponding matched duplex by@ per 1% mismatch; unfortunately, the inaccuracy
is typically greater than @ [SHO4]. Neither method is recommended. A better
method is to use the nearest-neighbor model regardless ethetthe duplex is
perfectly matched or mismatched. This method produces iexarerate results
because melting temperature is closely related to fregygraerd can be predicted
from the nearest-neighbor model. Melting temperature tsmlze used to pre-
dict the state of the structure of two strands (duplex orlsisggands), but melting
temperatures of different duplex cannot be compared tarobttative rankings
of stability.

5 Reaction Rates

Once the structure of candidate strands is known, the ngitdbquestion to ask
is how fast do these reactions occur and what concentragioreded. Kinetics
deals with the rate of change of reactions. For some impléatiens of DNA
computers, the rate of the reaction could be an additiomatheconstraint.

6 Evaluating a Set of DNA Strands for DNA Com-
putation

Of the heuristics previously mentioned, the most approprigethod for obtaining
an estimate of the absolute or relative rate of hybridizegiwor is thermodynam-
ics and statistical thermodynamics. For exampls;), n(s*), pair probabilities,
and free energy have been used to evaluate whether a singhdstl sequence
will have the desired secondary structuse[DLWPO04]. Statistical thermody-
namics (the partition function of all hybridized configuaais) has been used to
evaluate the set of strands used in Adleman’s original Hamidn Path problem
by predicting the error rate [DR00]. An algorithm exists eintests that a given
set of singly-stranded DNA strands have no unspecific hygattbns for word
sets used as a comma-free language , based on the minimum@niegy con-
straint [ADS"03]. In addition, the energy gap or probability gap could kedl
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for evaluation. The final evaluation criterion must be how strands perform in
the laboratory, since this is what the library is ultimatégsigned for.

7 DNA Prediction Software

RNA free energy nearest neighbor parameters are availaiotethe Turner Group
[MDC*04]. MFold [Zuk03], Hyther [PSS, San98, PSAS99], the VieRagkage
[Hof03], RNAstructure [MDC 04], Dynalign [MT02], and RNAsoft [AAHCHO3]
are DNA/RNA structure prediction software which is avaitabn the web. Visual
OMP (Oligonucleotide Modelling Platform; DNA Software I)§Vis] is commer-

cially available software. Kinfold [FFHSO00] is for kinetsimulation.

8 Conclusion

Structure prediction can be separated into two problems fifbt is to under-
stand how DNA folds in nature. The second is to understand ¢tawwputers
should fold DNA strands to obtain the structure. Since rahas the advantage
of parallel processing and the proximity of the moleculesgace, the way nature
finds the solution to the folding problem should not necelssbe the same as
the way a computer finds the solution. Early algorithms to A word sets
focused on the Hamming distance constraint or variatioesetsf to achieve a
theoretical abstraction of the constraints, which allowerluse of combinatorial
algorithms and proofs of completeness (i.e., that the sizbeopool is optimal
or near optimal). However, in the process the constraisenplified so much
that they no longer accurately predict DNA structure. Quiriedgorithms tend
to use a more complex combination of the constraints. Howeuge these con-
straints are difficult to abstract, more recent programsrtés genetic algorithms,
random search, exhaustive search, and local stochastahsagorithms.
Thermodynamics, melting temperature and kinetics aredb@sedicting DNA
structure and reaction rates. Calculating thermodynanck kinetics can be
costly, however. According to the requirements mentiomedfe negative design
problem, checking that a library of sia@ meets specifications requir€M?)
string comparisons, where each comparison of a pair ofgstrof lengthN is
potentially polynomial inN. However, this does not mean that the weaker com-
binatorial and heuristic predictors are useless. Many egéhalternative structure
heuristics could be used to quickly filter a candidate seitbo&aty molecules, and
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then the free energy model could be used to more accuratetkchis set. If this
approach is adopted, the correlation between these altetsuristics and free
energy measurements should be explored. Alternativadg, énergy or proba-
bility approximation algorithms could be used. This appiohas the advantage
that technigues from randomized algorithm analysis coeldifed to prove the
correctness of the approximation.

Research in DNA libraries has two main goals: (1) to furthesterstand DNA
chemistry, and (2) to understand search techniques usefabhstructing sets of
DNA codes. Although there is a growing consensus that DNA maters will
never be as practical or as fast as conventional computeteglrtal computers
have the advantage that their style of computation is cltuseatural processes.
Successful research in DNA libraries will help to reduceesin DNA compu-
tation and may discover new information about how DNA int&sawith itself.
Although current DNA computers are simplistic in companido natural bio-
chemical processes, DNA computation may help to devel@redtive theories
for how cells work or could have evolved [Smi96]. In additieasearch in DNA
design also pertains to DNA nanotechnology, PCR-basedcapiphs, and DNA
arrays. Breakthroughs in this field will add to the currenowtedge of DNA
chemistry as well as DNA computers.
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