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Abstract

We analyze the performance of several copying garbagectioltealgorithms in a large address space
offered by modern architectures. In particular, we desdtile design and implementation of RRealOF
garbage collector, an algorithm explicitly designed toleitghe features of 64-bit environments. This
collector maintains a correspondence between object adjelgiact placement in the address space of
the heap. It allocates and copies objects within designatgidns of memory calledonesand per-
forms garbage collection incrementally by collecting omemwre ranges of memory calledindows
The address-ordered heap allows us to use the same inexpamie barrier that works for traditional
generational collectors. We show that for server applcetithis algorithm improves throughput and
reduces heap size requirements over the best-throughpatagmnal copying algorithms such as the
Appel-style generational collector.

1 Introduction

Server-side 64-bit computing today is characterized by V&mge physical memory support, very large
application virtual address spaces, and 64-bit integempcoation using 64-bit general-purpose registers. In
such systems, an application’s virtual address space isureghin terabytes and an increasing number of
programs can exploit this opportunity. Database serveralerge address space for scalability, maintaining
buffer pools, caches, and sort heaps in memory to reducedivene of 1/0 they perform. Simulation
and other computationally intensive programs benefit fraapikng much larger arrays of data entirely
in memory. Finally, another large group of programs, appiin servers, has been deployed on 64-bit
platforms for some time now.

Some of these applications heavily rely on Java technolagy, this has forced leading companies
like IBM, Sun, and BEA to introduce 64-bit versions of theava Virtual Machine. As a result, 64-bit

*Work done while the first author was at the University of Newxide.
IWe survey commercial 64-bit JVM platforms elseweh&ré [12].



computing introduces a new set of research opportunitiglarfield of virtual machines related both to
evaluating previously existing 32-bit solutions in thel@itworld and inventing brand-new approaches that
specifically exploit the benefits of 64-bit architectures.

Server-side applications tend to have a very high heap phjExation rate. When the heap is full,
garbage collection must free some space in the heap to dilevapplication to continue running. Con-
current collectors can be used for the old generation of g¢ineal collectors. However, employing a
concurrent collector as the only collector, in order to ctetely remove garbage collection pauses, may not
be acceptable under the prevailing circumstances today,sdrver systems with one or two processors, as
such collectors tend to reduce throughput significantlyr @gperimental results are obtained on a system
of this kind. For such systems “stop-the-world” garbagdemtion remains a good option as long as the
collection pauses are reasonably short.

Previosly, we proposed an older-first garbage colletdy; [Affich differs from generational collectors in
that it does not always collect the youngest data along Wwétotder data. Similar to generational collectors,
it relies only on relative object age, deduced from objedifimm in the heap, to make decisions about
which sets of objects to collect. As described and as impheadkein the present paper, it does not take
advantage of static analys|s [9] or profiling-based heigaqf,10], though it could. We demonstrated that
an emulation of this algorithm in a 32-bit address space e@e good performancé [[16]. Here for the first
time we have an implementation of the algorithm as origynativisaged, in a large address space, except
that special treatment of permanent data is still lackingth® results will show, excellent throughput results
are achieved with this algorithm, especially in tight heapere it matters the most.

2 Implementation

2.1 Infrastructure

Our implementation framework is the Jikes Research VirMathine (Jikes RVM), developed by IBM
Research]1]2], an open-source virtual machine capableofmg a wide variety of Java programs. It offers
two compilers, baseline and optimizing, but has no intagoréVe ported Jikes RVM version 2.0.3 to the 64-
bit PowerPC/AIX platform[[1l, 13], and then we extended f¥ost to the PowerPC/Linux architecture and
specifically the Apple G5. When we began our work, this wasottlg 64-bit open-source virtual machine
that provided a flexible testbed for implementing new menmnmanagements algorithms, owing to its easily
pluggable Garbage Collection Toolkit GCTk (now MMTK [E])Ne implemented the RealOF collector and
allocator within GCTKk; other collectors we use in our studsrevalready provided in GCTk.

2.2 Collector and Allocator

The conceptual design of the RealOF collector has beenideddully elsewherel {17, 15]; here for com-
pleteness we sketch the main points. A traditional germratigarbage collector always collects a youngest
subset of heap objects (i.e., some number of youngest gemea An older-first collector, on the other
hand, chooses a middle-aged subset of heap objects. Inmb&egdogically laid out with objects in the or-
der of their age: this is the picture shown in Figlire 1, witthest objects on the right, and the most recently
allocated objects on the left. The older-first collector ates to collect a subs€}, called the collection
window, which is immediately to the left of the survivors b&tprevious collection. The current collection’s
survivorsS are left in place (logically). After a collection, an amouwfdtfree spacdC — S is available for

2http://www.cs.umass.edu/ gctk/



new allocation. In this logical view of the heap, it remaiaglout in age order, so the free space shows
up on the far left (green arrows indicating the space nowlawai for new allocation). Thus, the window
sweeps the heap from older to younger, hence the name aislerHfitially, objects fill the entire heap and
the window is positioned at the old end of the heap. Eventubt window reaches the young end; after
collecting the young end of the heap, the window is resetdmttl end. The rest of Figuté 1 shows a series
of eight collections, and indicates how the window movess&ithe heap when the collector is performing
well. If the window is in a position that results in small samr sets (Collections 4-8), the window moves
by only that small amount from one collection to the next. As window continues to move slowly, it
remains for a long time in the same logical region, corredpanto the same age of objects. In a copying-
collector implementation, this means that a great deallo€ation takes place without much copying work,
in other words, that the performance is good. The reason hikybehavior might be expected to arise in
some programs is that the position of the window in the heapesponds to object age, and it has been
observed that object lifetimes tend to cluster around a femvidant values. Whilst a generational collector
takes advantage of the cluster around zero (“most objeetyaling”), the older-first collector may take
advantage of middle-aged lifetime clusters.
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Figure 1: Older-first window motion example.

Like generational collectors, the older-first collectollects less than the entire heap each time, and
thus it must maintain a write barrier and remember certaintppupdates. The general rule is that when a
store creates a referenpe— g, then we need to remember it onlygimight be collected beforp. Figure2
illustrates this rule applied to the older-first collectbhe crossed-out pointers need not be remembered. It



might seem complicated to apply this rule in a write barrdowever, if a large address space is available,
objects can be laid out in age order, as we detail below. Tlbeation starts into highest addresses in an
allocation zone, and copying is into lower addresses intemaone. Once the allocation zone is exhausted,
the copying zone becomes the new allocation zone, and andthek of address space is made into the
new copying zone. In a large address space we can do this gnydong time. Now the rule for the write
barrier filtering is littte more than an address comparisas shown in Figur€l3, the same as in efficient
write barriers of generational collectors. Here for the firae we present a complete implementation of the
older-first collector in a large address space, which we radgllRealOF. Previously we reported a 32-bit
implementation that had to resort to indirection throughaga lookup table to resolve write barriersi[16];
we label it OF in the results section of the present paper.
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Figure 2: Directional filtering of pointer stores: crossmd-pointers need not be remembered.
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Figure 3: Directional filtering with an address-orderedphea

The implementation of the RealOF algorithm supports thenstofzonesandwindows but they are of
necessity discretized and tied into the functioning of thecator. Azoneis a contiguous region of memory
and the largest logical memory unit of the RealOF collectlt. zones are of equal, power-of-2 size (in
our experiments, 8 GB), and are allocated from higher to fadelresses in order to maintain the address-
order heap. At any moment in time the algorithm has two zotiesallocation zoneand thecopy zone
Newly created objects are placed in the allocation zonen fnagher addresses to lower. During a garbage
collection, survivors are placed in the copy zone, from bighddresses to lower.

A zone consists of a number windows A windowis a contiguous, power-of-2 size, region of memory,
smaller than a zone, allocated within a particular zone frogher to lower addresses. In our implemen-
tation a window is the smallest unit of memory allocation aedllocation. Thus every garbage collection
increment collects exactly one window. The size of a windswmited from below by the minimum size
of mappable virtual memory, which in our system is 4 MB.

The RealOF allocator is a relatively simple and fast bumioteo allocator, attached to the current
allocation windovil

We illustrate the progress of the algorithm in Figlle 4. At tinset of virtual machine execution, both

3The allocator actually implements allocation in eitheredtion, but our experiments have shown, somewhat surghysithat
there is no performance difference between the two. If aquaar architecture supports hardware data prefetchingralies on
the fact that allocation traditionally goes from lower tgher addresses, we might suffer a performance hit allagatijects from
higher to lower addresses. In reality, there is none. Naewtiith either directions of allocation the object layouni@ns the same,
with array objects laid out from lower to higher addressed saalar objects laid out from higher to lower addressks ifidl] tae
address access pattern of the object initialization semuémus remains unaffected. There is apparently no obdervaémory
system effect spanning multiple consecutively allocataéigats.
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Figure 4: The RealOF algorithm shown operating with threedaiws in the heap and one copy reserve
window (CR). Allocation proceeds from higher addresseswel (right to left); similarly copying into the
copy zone proceeds from higher addresses to lower. Snapsbpto bottom: (1) before any GC occurred;
(2) after several GCs, with most windows residing in theatmn zone; (3) after several more GCs, with
most windows residing in the copy zone; (4) right after a za®et; (5) after several GCs following a zone
reset, with most windows residing in the allocation zone.

the allocation and the copy zone are empty. We allocate thefivst window inside the allocation zone and
start placing newly created objects inside this window gisiar simple bump pointer allocator. When the
first window fills up, we allocate another window inside thiedtion zone and proceed without garbage
collection (1). The first garbage collection happens whemiimber of windows in the heap becomes equal
to the maximum allowed number of windows:

heapsize 1

windows= window_size

whereheanpsizeis rounded down to fit an integer number of windows and 1 adsoian the copy reserve
window. The maximum number of windows in the heap is alwaystamed as an invariant during virtual
machine execution. At every garbage collection incremeatcollect the highest (rightmost) window in the
heap, copy its survivors to a window allocated in the copyez@md deallocate the collected window (2).
If the ratio of surviving objects is relatively high, in omdi® satisfy the allocation request we may need to
perform several garbage collection increments and catece than one window in allocation zone, creating
additional windows in the copy zone.

At some point, the number of windows in the copy zone may becamger than the number of windows
in the allocation zone (3) and eventually all allowed windaway end up in the copy zone. This situation
is calledzone reset When the zone reset occurs we rebind the current copy zofumétion as the new
allocation zone and create a hew copy zone right below ther¢d(4). Note that here we have a situation
similar to the one before the first garbage collection, whHetha windows reside in the allocation zone.
After the zone reset we can proceed as described before (5).

Another possible situation is the exhaustion of the aliocazone. When this situation is detected we
perform several garbage collection increments to deakoathwindows from the allocation zone, which in
turn triggers the zone reset mechanism.



In the unlikely case that we reach the bottom of availableesidspace we perform a full-heap garbage
collection and move all live data back to the highest end efatidress space. Our implementation goes
beyond the original description of the OF algorithm in tharovides a mechanism for full-heap collections,
which makes RealOF eompleteGC algorithm in the sense that all garbage is guaranteed folel
eventually. Full-heap collections are triggered if theradd space is exhausted by a particularly poorly-
behaved application; however no programs we have testesk dhis to happen, so we omit a detailed
description of the mechanism.

2.2.1 WriteBarrier

By using the heap in address order we are able to use the serpesive write barrier as the one used in
traditional generational collectorlsl [6], conceptuallfided by this code:

public static final void writeBarrier
(ADDRESS source, ADDRESS target)
{if (source < ((target >>> WINDOW_SIZE_LOG)
<< WINDOW_SIZE_LOG))
GCTk_WriteBufferSlot.insert(source);
}

As we show later, it gives a consistent performance imprarerover the indirect write barrier used in
the previous implementation of the Older-First algoritli@]| which performed table lookups to map object
addresses in a small address space to logical object ages.

2.2.2 Remembered Sets

In order to keep the overhead of remembered sets relatioelyit is beneficial to have as few remembered
sets as possible. This can be achieved by always keepingndewvsize as large as possible for a particular
heap size. On the other hand, having large windows hurtenmentality; hence a large window may not
always be a good solution. Another way to keep the overhedlkdeofemembered sets relatively low may
be remembered-set triggered GC, wherein a GC incrementfierpeed if the size of the remembered sets
reaches some upper threshold.

3 Results

3.1 Experimental Setting

We used the baseline compiler for both the boot image anddpkcation code. In addition, we built Jikes
RVM in the Fastconfiguration, which skips assertions checks and pre-dempll the classes of the virtual
machine into the boot image. Our hardware platform was aned@gp with a single PowerPC 970 processor
at 1.8 GHz, with 1 GB of memory, running an early-beta versibiie 64-bit Yellow Dog Linux 3.0.1 for G5
with the 2.6.1 kernel. The machine was run in single-userar®tached from the network; this minimized
variance between runs. We ran each configuration three amsve report the best run.

The collectors compared are a simple semispace collecdfoafBAppel-style two-generation collec-
tor [3]; the Beltway collector[]5] in its default 25.25.100rdiguration; the older-first collector (OF) with
the indirect write barrier and window size of 25% of the hé®#)]] and RealOF. For clarity, in Figuké 6 we
separately show the running times of RealOF as the windosvisizaried from 4 to 32 MB.



Here we report the results for the Java server applicaticioqmeance benchmark, SPECjbb2000 [E4].
Table[1 indicates the general behavior of SPECjbb2000 itvibeversions we measured: with one “ware-
house” (single-threaded), and with four “warehouses” {#hteaded). The minimum heap size is the
experimentally determined smallest heap in which the gnmgecan run. The number of garbage collections
needed by the semispace collector provides a crude meafstire lomad placed by the application on the
collector. The maximum heap size used in our experimentisdsen so that the semispace collector needs
at least 10 collections. Because the benchmark runs for stamantime, the amount of useful work varies
depending on the efficiency of the collector, and thus tha Byhount allocated varies as well.

Benchmark Description Minimum Heap | Maximum Heap | Total Allocation,
Size, MB | GCs | Size, MB | GCs MB
SPEC jbb2000 - 1 Emulates a 3-tier system 72 38 192 10 203-896
with 1 warehouse
SPEC jbb2000 - 4 Emulates a 3-tier system 176 22 248 12 301-757
with 4 warehouses

Table 1. Benchmark information including the number of ga collections performed by the semispace
collector.

3.2 Measured Throughput

In the SPECjbb2000 benchmark, the running time is fixed aacbmchmark itself reports the measured
throughput as the number of transactions per seflang.show the reported transaction throughput, thus in
Figuredb anf6 higher is better.

Consistent with our expectations, using a fast write bamakes RealOF uniformly faster than OF. We
now examine how RealOF behaves for different configuratidnsall cases after the heap size becomes
relatively large for a particular benchmark, the perforomonf RealOF begins to decrease gradually. We
have determined that this happens because after somelpougt of processing increasingly large numbers
of remembered pointers outweighs the benefits of a largegy {ead, with a fixed window size, the total
number of pointers remembered for all windows grows in ropgiportion to the number of windows, i.e.,
heap size). This problem could be alleviated using garbatiection triggered by excessive remembered
set growth.

From the measurements of RealOF with different window sigegire®, we conclude that, for the most
part, larger window size leads to better performance, as aethe larger window size is feasible. There are
two reasons for this. First, for smaller window sizes we havievoke garbage collection more frequently
and the total cost of invoking several smaller garbage ciidles is at least as high or higher than the cost of
invoking one larger collectiol.Second, collecting a bigger window we are able to free moagespSince
one bigger window encompasses two, four, etc. smaller wisdeome inter-window pointers (a burden on
remembered sets) turn into intra-window pointers (no ¢osgulting in diminished pointer processing time
and a reduction of garbage unnecessarily retained. Inadezéind that having four or five windows in the

4We also obtained results for the SPECjvm98 benchmark suitieh is intended to be representative of client applicetjdut
those results are beyond the scope of this paper.

5The benchmark cycles through three phases: first it coristthe data structures for the “warehouses”, then it exscute
transactions for a predefined warm-up period of 30 s, anditlexecutes transactions for 120 s, reporting the througliepeats
this cycle incrementing the number of warehouses from ored@signated maximum.

6Here we are not concerned with pause times but only with ciolfehroughput performance.
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Figure 5: Transaction throughput for the SPECjbb2000 bexack: comparison of different garbage collec-
tors.



SPECjbb2000, 1 warehouse

1800 : :
RealOF-4 —+—
RealOF-8 —--— ]
1600 RealOF-16 -
1400 RealOF-32 &
" -
s 1200
o
2 1000
S
Q
g 800 /
G
E 600
400
200
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
40 60 80 100 120 140 160 180 200
Heap Size, MB
SPECjbb2000, 4 warehouses
1800 : : :
RealOF-4 —+—
RealOF-8 - |
1600 RealOF-16 ~x--
1400 RealOF-32 =
3 1200 = e
2 1000
2 / ;
=1 / ook
g 800 .
[%2) X :
=S 600 / ——
400 ek
200 7
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

80 100 120 140 160 180 200 220 240 260
Heap Size, MB

Figure 6: Transaction throughput for the SPECjbb2000 basack: comparison of different window sizes
for the RealOF collector.



heap gives the best results, consistent with the 15-25%asts for the optimal window to heap ratio from
our previous work. Thus, it appears that it would be bendftoilave a simple adaptive window resizing
mechanism.

Finally, the salient result seen in these graphs is that #@@®¥F algorithm has thleighest throughput
overall among all collectors tested. This is particularly relevaith respect to the Appel-style collector,
which has long been recognized as having exceptionally tfnodghput.

4 Concluding remarks

Our results demonstrate that for Java server applicatol@ge address space with an equitable, fast write
barrier confers an advantage on the older-first algorither traditional generational collectors. Importantly,
the advantage is most pronounced for small heap sizes.

However, remembered set maintenance remains a weak pdime algorithm that can hurt its perfor-
mance on some programs. Therefore we intend to investigatembered set triggers and hybrid models
in which the basic idea of the algorithm will be combined witkeent advances in object lifetime prediction
and allocation-time or collection-time pretenuring. I ourrent work, we are revisiting the results reported
here in the context of the optimizing compiler (to gauge tlative influence of garbage collection algo-
rithm differences more realistically) and the successde@rk, MMTk (to account for garbage collector
metadata memory usage), included in newer releases oRWkés
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