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Abstract

We analyze the performance of several copying garbage collection algorithms in a large address space
offered by modern architectures. In particular, we describe the design and implementation of theRealOF
garbage collector, an algorithm explicitly designed to exploit the features of 64-bit environments. This
collector maintains a correspondence between object age and object placement in the address space of
the heap. It allocates and copies objects within designatedregions of memory calledzonesand per-
forms garbage collection incrementally by collecting one or more ranges of memory calledwindows.
The address-ordered heap allows us to use the same inexpensive write barrier that works for traditional
generational collectors. We show that for server applications this algorithm improves throughput and
reduces heap size requirements over the best-throughput generational copying algorithms such as the
Appel-style generational collector.

1 Introduction

Server-side 64-bit computing today is characterized by very large physical memory support, very large
application virtual address spaces, and 64-bit integer computation using 64-bit general-purpose registers. In
such systems, an application’s virtual address space is measured in terabytes and an increasing number of
programs can exploit this opportunity. Database servers use a large address space for scalability, maintaining
buffer pools, caches, and sort heaps in memory to reduce the volume of I/O they perform. Simulation
and other computationally intensive programs benefit from keeping much larger arrays of data entirely
in memory. Finally, another large group of programs, application servers, has been deployed on 64-bit
platforms for some time now.

Some of these applications heavily rely on Java technology,and this has forced leading companies
like IBM, Sun, and BEA to introduce 64-bit versions of their Java Virtual Machines.1 As a result, 64-bit

∗Work done while the first author was at the University of New Mexico.
1We survey commercial 64-bit JVM platforms elsewehere [12].
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computing introduces a new set of research opportunities inthe field of virtual machines related both to
evaluating previously existing 32-bit solutions in the 64-bit world and inventing brand-new approaches that
specifically exploit the benefits of 64-bit architectures.

Server-side applications tend to have a very high heap object allocation rate. When the heap is full,
garbage collection must free some space in the heap to allow the application to continue running. Con-
current collectors can be used for the old generation of generational collectors. However, employing a
concurrent collector as the only collector, in order to completely remove garbage collection pauses, may not
be acceptable under the prevailing circumstances today, viz., server systems with one or two processors, as
such collectors tend to reduce throughput significantly. Our experimental results are obtained on a system
of this kind. For such systems “stop-the-world” garbage collection remains a good option as long as the
collection pauses are reasonably short.

Previosly, we proposed an older-first garbage collector [17], which differs from generational collectors in
that it does not always collect the youngest data along with the older data. Similar to generational collectors,
it relies only on relative object age, deduced from object position in the heap, to make decisions about
which sets of objects to collect. As described and as implemented in the present paper, it does not take
advantage of static analysis [9] or profiling-based heuristics [7, 10], though it could. We demonstrated that
an emulation of this algorithm in a 32-bit address space can have good performance [16]. Here for the first
time we have an implementation of the algorithm as originally envisaged, in a large address space, except
that special treatment of permanent data is still lacking. As the results will show, excellent throughput results
are achieved with this algorithm, especially in tight heapswhere it matters the most.

2 Implementation

2.1 Infrastructure

Our implementation framework is the Jikes Research VirtualMachine (Jikes RVM), developed by IBM
Research [1,2], an open-source virtual machine capable of running a wide variety of Java programs. It offers
two compilers, baseline and optimizing, but has no interpreter. We ported Jikes RVM version 2.0.3 to the 64-
bit PowerPC/AIX platform [11, 13], and then we extended thisport to the PowerPC/Linux architecture and
specifically the Apple G5. When we began our work, this was theonly 64-bit open-source virtual machine
that provided a flexible testbed for implementing new memorymanagements algorithms, owing to its easily
pluggable Garbage Collection Toolkit GCTk (now MMTk [4]).2 We implemented the RealOF collector and
allocator within GCTk; other collectors we use in our study were already provided in GCTk.

2.2 Collector and Allocator

The conceptual design of the RealOF collector has been described fully elsewhere [17, 15]; here for com-
pleteness we sketch the main points. A traditional generational garbage collector always collects a youngest
subset of heap objects (i.e., some number of youngest generations). Anolder-first collector, on the other
hand, chooses a middle-aged subset of heap objects. Imaginea heaplogically laid out with objects in the or-
der of their age: this is the picture shown in Figure 1, with oldest objects on the right, and the most recently
allocated objects on the left. The older-first collector chooses to collect a subsetC, called the collection
window, which is immediately to the left of the survivors of the previous collection. The current collection’s
survivorsSare left in place (logically). After a collection, an amountof free space|C−S| is available for

2http://www.cs.umass.edu/˜gctk/
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new allocation. In this logical view of the heap, it remains laid out in age order, so the free space shows
up on the far left (green arrows indicating the space now available for new allocation). Thus, the window
sweeps the heap from older to younger, hence the name older-first. Initially, objects fill the entire heap and
the window is positioned at the old end of the heap. Eventually the window reaches the young end; after
collecting the young end of the heap, the window is reset to the old end. The rest of Figure 1 shows a series
of eight collections, and indicates how the window moves across the heap when the collector is performing
well. If the window is in a position that results in small survivor sets (Collections 4–8), the window moves
by only that small amount from one collection to the next. As the window continues to move slowly, it
remains for a long time in the same logical region, corresponding to the same age of objects. In a copying-
collector implementation, this means that a great deal of allocation takes place without much copying work,
in other words, that the performance is good. The reason why this behavior might be expected to arise in
some programs is that the position of the window in the heap corresponds to object age, and it has been
observed that object lifetimes tend to cluster around a few dominant values. Whilst a generational collector
takes advantage of the cluster around zero (“most objects die young”), the older-first collector may take
advantage of middle-aged lifetime clusters.
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Figure 1: Older-first window motion example.

Like generational collectors, the older-first collector collects less than the entire heap each time, and
thus it must maintain a write barrier and remember certain pointer updates. The general rule is that when a
store creates a referencep→ q, then we need to remember it only ifq might be collected beforep. Figure 2
illustrates this rule applied to the older-first collector.The crossed-out pointers need not be remembered. It
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might seem complicated to apply this rule in a write barrier.However, if a large address space is available,
objects can be laid out in age order, as we detail below. The allocation starts into highest addresses in an
allocation zone, and copying is into lower addresses in another zone. Once the allocation zone is exhausted,
the copying zone becomes the new allocation zone, and another chunk of address space is made into the
new copying zone. In a large address space we can do this for a very long time. Now the rule for the write
barrier filtering is little more than an address comparison,as shown in Figure 3, the same as in efficient
write barriers of generational collectors. Here for the first time we present a complete implementation of the
older-first collector in a large address space, which we now label RealOF. Previously we reported a 32-bit
implementation that had to resort to indirection through anage lookup table to resolve write barriers [16];
we label it OF in the results section of the present paper.

p q

oldest

region of next collection

youngest
allocation
direction

Figure 2: Directional filtering of pointer stores: crossed-out pointers need not be remembered.
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Figure 3: Directional filtering with an address-ordered heap.

The implementation of the RealOF algorithm supports the notions ofzonesandwindows, but they are of
necessity discretized and tied into the functioning of the allocator. Azoneis a contiguous region of memory
and the largest logical memory unit of the RealOF collector.All zones are of equal, power-of-2 size (in
our experiments, 8 GB), and are allocated from higher to lower addresses in order to maintain the address-
order heap. At any moment in time the algorithm has two zones:the allocation zoneand thecopy zone.
Newly created objects are placed in the allocation zone, from higher addresses to lower. During a garbage
collection, survivors are placed in the copy zone, from higher addresses to lower.

A zone consists of a number ofwindows. A windowis a contiguous, power-of-2 size, region of memory,
smaller than a zone, allocated within a particular zone fromhigher to lower addresses. In our implemen-
tation a window is the smallest unit of memory allocation anddeallocation. Thus every garbage collection
increment collects exactly one window. The size of a window is limited from below by the minimum size
of mappable virtual memory, which in our system is 4 MB.

The RealOF allocator is a relatively simple and fast bump-pointer allocator, attached to the current
allocation window.3

We illustrate the progress of the algorithm in Figure 4. At the onset of virtual machine execution, both

3The allocator actually implements allocation in either direction, but our experiments have shown, somewhat surprisingly, that
there is no performance difference between the two. If a particular architecture supports hardware data prefetching and relies on
the fact that allocation traditionally goes from lower to higher addresses, we might suffer a performance hit allocating objects from
higher to lower addresses. In reality, there is none. Note that with either directions of allocation the object layout remains the same,
with array objects laid out from lower to higher addresses and scalar objects laid out from higher to lower addresses [2] and the
address access pattern of the object initialization sequence thus remains unaffected. There is apparently no observable memory
system effect spanning multiple consecutively allocated objects.
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Figure 4: The RealOF algorithm shown operating with three windows in the heap and one copy reserve
window (CR). Allocation proceeds from higher addresses to lower (right to left); similarly copying into the
copy zone proceeds from higher addresses to lower. Snapshots, top to bottom: (1) before any GC occurred;
(2) after several GCs, with most windows residing in the allocation zone; (3) after several more GCs, with
most windows residing in the copy zone; (4) right after a zonereset; (5) after several GCs following a zone
reset, with most windows residing in the allocation zone.

the allocation and the copy zone are empty. We allocate the very first window inside the allocation zone and
start placing newly created objects inside this window using our simple bump pointer allocator. When the
first window fills up, we allocate another window inside the allocation zone and proceed without garbage
collection (1). The first garbage collection happens when the number of windows in the heap becomes equal
to the maximum allowed number of windows:

windows= heap size
window size−1,

whereheapsizeis rounded down to fit an integer number of windows and 1 accounts for the copy reserve
window. The maximum number of windows in the heap is always maintained as an invariant during virtual
machine execution. At every garbage collection increment,we collect the highest (rightmost) window in the
heap, copy its survivors to a window allocated in the copy zone, and deallocate the collected window (2).
If the ratio of surviving objects is relatively high, in order to satisfy the allocation request we may need to
perform several garbage collection increments and collectmore than one window in allocation zone, creating
additional windows in the copy zone.

At some point, the number of windows in the copy zone may become larger than the number of windows
in the allocation zone (3) and eventually all allowed windows may end up in the copy zone. This situation
is calledzone reset. When the zone reset occurs we rebind the current copy zone tofunction as the new
allocation zone and create a new copy zone right below the oldone (4). Note that here we have a situation
similar to the one before the first garbage collection, when all the windows reside in the allocation zone.
After the zone reset we can proceed as described before (5).

Another possible situation is the exhaustion of the allocation zone. When this situation is detected we
perform several garbage collection increments to deallocate all windows from the allocation zone, which in
turn triggers the zone reset mechanism.
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In the unlikely case that we reach the bottom of available address space we perform a full-heap garbage
collection and move all live data back to the highest end of the address space. Our implementation goes
beyond the original description of the OF algorithm in that it provides a mechanism for full-heap collections,
which makes RealOF acompleteGC algorithm in the sense that all garbage is guaranteed to befound
eventually. Full-heap collections are triggered if the address space is exhausted by a particularly poorly-
behaved application; however no programs we have tested cause this to happen, so we omit a detailed
description of the mechanism.

2.2.1 Write Barrier

By using the heap in address order we are able to use the same inexpensive write barrier as the one used in
traditional generational collectors [6], conceptually defined by this code:

public static final void writeBarrier

(ADDRESS source, ADDRESS target)

{if (source < ((target >>> WINDOW_SIZE_LOG)

<< WINDOW_SIZE_LOG))

GCTk_WriteBufferSlot.insert(source);

}

As we show later, it gives a consistent performance improvement over the indirect write barrier used in
the previous implementation of the Older-First algorithm [16], which performed table lookups to map object
addresses in a small address space to logical object ages.

2.2.2 Remembered Sets

In order to keep the overhead of remembered sets relatively low, it is beneficial to have as few remembered
sets as possible. This can be achieved by always keeping the window size as large as possible for a particular
heap size. On the other hand, having large windows hurts incrementality; hence a large window may not
always be a good solution. Another way to keep the overhead ofthe remembered sets relatively low may
be remembered-set triggered GC, wherein a GC increment is performed if the size of the remembered sets
reaches some upper threshold.

3 Results

3.1 Experimental Setting

We used the baseline compiler for both the boot image and the application code. In addition, we built Jikes
RVM in theFastconfiguration, which skips assertions checks and pre-compiles all the classes of the virtual
machine into the boot image. Our hardware platform was an Apple G5 with a single PowerPC 970 processor
at 1.8 GHz, with 1 GB of memory, running an early-beta versionof the 64-bit Yellow Dog Linux 3.0.1 for G5
with the 2.6.1 kernel. The machine was run in single-user mode detached from the network; this minimized
variance between runs. We ran each configuration three timesand we report the best run.

The collectors compared are a simple semispace collector [8]; an Appel-style two-generation collec-
tor [3]; the Beltway collector [5] in its default 25.25.100 configuration; the older-first collector (OF) with
the indirect write barrier and window size of 25% of the heap [16]; and RealOF. For clarity, in Figure 6 we
separately show the running times of RealOF as the window size is varied from 4 to 32 MB.
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Here we report the results for the Java server application performance benchmark, SPECjbb2000 [14].4

Table 1 indicates the general behavior of SPECjbb2000 in thetwo versions we measured: with one “ware-
house” (single-threaded), and with four “warehouses” (multi-threaded). The minimum heap size is the
experimentally determined smallest heap in which the program can run. The number of garbage collections
needed by the semispace collector provides a crude measure of the load placed by the application on the
collector. The maximum heap size used in our experiments is chosen so that the semispace collector needs
at least 10 collections. Because the benchmark runs for a constant time, the amount of useful work varies
depending on the efficiency of the collector, and thus the total amount allocated varies as well.

Benchmark Description Minimum Heap Maximum Heap Total Allocation,
Size, MB GCs Size, MB GCs MB

SPEC jbb2000 - 1 Emulates a 3-tier system 72 38 192 10 203–896
with 1 warehouse

SPEC jbb2000 - 4 Emulates a 3-tier system 176 22 248 12 301–757
with 4 warehouses

Table 1: Benchmark information including the number of garbage collections performed by the semispace
collector.

3.2 Measured Throughput

In the SPECjbb2000 benchmark, the running time is fixed and the benchmark itself reports the measured
throughput as the number of transactions per second.5 We show the reported transaction throughput, thus in
Figures 5 and 6 higher is better.

Consistent with our expectations, using a fast write barrier makes RealOF uniformly faster than OF. We
now examine how RealOF behaves for different configurations. In all cases after the heap size becomes
relatively large for a particular benchmark, the performance of RealOF begins to decrease gradually. We
have determined that this happens because after some point the cost of processing increasingly large numbers
of remembered pointers outweighs the benefits of a larger heap (and, with a fixed window size, the total
number of pointers remembered for all windows grows in roughproportion to the number of windows, i.e.,
heap size). This problem could be alleviated using garbage collection triggered by excessive remembered
set growth.

From the measurements of RealOF with different window sizes, Figure 6, we conclude that, for the most
part, larger window size leads to better performance, as soon as the larger window size is feasible. There are
two reasons for this. First, for smaller window sizes we haveto invoke garbage collection more frequently
and the total cost of invoking several smaller garbage collections is at least as high or higher than the cost of
invoking one larger collection.6 Second, collecting a bigger window we are able to free more space. Since
one bigger window encompasses two, four, etc. smaller windows, some inter-window pointers (a burden on
remembered sets) turn into intra-window pointers (no cost), resulting in diminished pointer processing time
and a reduction of garbage unnecessarily retained. Indeed,we find that having four or five windows in the

4We also obtained results for the SPECjvm98 benchmark suite,which is intended to be representative of client applications, but
those results are beyond the scope of this paper.

5The benchmark cycles through three phases: first it constructs the data structures for the “warehouses”, then it executes
transactions for a predefined warm-up period of 30 s, and thenit executes transactions for 120 s, reporting the throughout; it repeats
this cycle incrementing the number of warehouses from one toa designated maximum.

6Here we are not concerned with pause times but only with collector throughput performance.
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Figure 5: Transaction throughput for the SPECjbb2000 benchmark: comparison of different garbage collec-
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Figure 6: Transaction throughput for the SPECjbb2000 benchmark: comparison of different window sizes
for the RealOF collector.
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heap gives the best results, consistent with the 15–25% estimates for the optimal window to heap ratio from
our previous work. Thus, it appears that it would be beneficial to have a simple adaptive window resizing
mechanism.

Finally, the salient result seen in these graphs is that the RealOF algorithm has thehighest throughput
overall among all collectors tested. This is particularly relevantwith respect to the Appel-style collector,
which has long been recognized as having exceptionally goodthroughput.

4 Concluding remarks

Our results demonstrate that for Java server applications,a large address space with an equitable, fast write
barrier confers an advantage on the older-first algorithm over traditional generational collectors. Importantly,
the advantage is most pronounced for small heap sizes.

However, remembered set maintenance remains a weak point ofthe algorithm that can hurt its perfor-
mance on some programs. Therefore we intend to investigate remembered set triggers and hybrid models
in which the basic idea of the algorithm will be combined withrecent advances in object lifetime prediction
and allocation-time or collection-time pretenuring. In our current work, we are revisiting the results reported
here in the context of the optimizing compiler (to gauge the relative influence of garbage collection algo-
rithm differences more realistically) and the successor toGCTk, MMTk (to account for garbage collector
metadata memory usage), included in newer releases of JikesRVM.
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