
Comparison of Garbage Collectors Operating in a Large
Address Space

Sergiy Kyrylkov∗

SA Consulting
Khmelnytsky, Ukraine 29000

Email: mail@sergiy.kyrylkov.name

Darko Stefanović
Department of Computer Science

MSC01 1130
1 University of New Mexico

Albuquerque, NM 87131–0001
Email: darko@cs.unm.edu

April 1, 2005

Abstract

We analyze the performance of several copying garbage collection algorithms in a large
address space offered by modern architectures. In particular, we describe the design and im-
plementation of the RealOF garbage collector, an algorithm explicitly designed to exploit the
features of 64-bit environments. This collector maintains a correspondence between object
age and object placement in the address space of the heap. It allocates and copies objects
within designated regions of memory called zones and performs garbage collection incremen-
tally by collecting one or more ranges of memory called windows. The windows are managed
so as to collect middle-aged objects, rather than almost always collecting young objects, as
with a generational collector. The address-ordered heap allows us to use the same inexpensive
write barrier that works for generational collectors. We show that for server applications this
algorithm improves throughput and reduces heap size requirements over the best-throughput
generational copying algorithms such as the Appel-style generational collector.

1 Introduction

Server-side 64-bit computing today is characterized by very large physical memory support, very
large application virtual address spaces, and 64-bit integer computation using 64-bit general-
purpose registers. In such systems, an application’s virtual address space is measured in terabytes
and an increasing number of programs can exploit this opportunity. Database servers use a large
address space for scalability, maintaining buffer pools, caches, and sort heaps in memory to reduce

∗Work done while the first author was at the University of New Mexico.

1

the volume of I/O they perform. Simulation and other computationally intensive programs ben-
efit from keeping much larger arrays of data entirely in memory. Finally, another large group of
programs, application servers, has been deployed on 64-bit platforms for some time now.

Some of these applications heavily rely on Java technology, and this has forced leading com-
panies like IBM, Sun, and BEA to introduce 64-bit versions of their Java Virtual Machines.1 As
a result, 64-bit computing introduces a new set of research opportunities in the field of virtual
machines related both to evaluating previously existing 32-bit solutions in the 64-bit world and
inventing brand-new approaches that specifically exploit the benefits of 64-bit architectures.

Server-side applications tend to have a very high heap object allocation rate. When the heap
is full, garbage collection must free some space in it to allow the application to continue running.
Concurrent collectors can be used for the old generation of generational collectors. However,
employing a concurrent collector as the only collector, in order to completely remove garbage
collection pauses, may not be acceptable under the prevailing circumstances today, viz., server
systems with just one or two processors, as such collectors tend to reduce throughput significantly.
Our experimental results are obtained on a system of this kind, an Apple G5. For such systems
“stop-the-world” garbage collection remains a viable option as long as the collection pauses are
reasonably short.

Previously, we proposed an older-first garbage collector [SMM99], which differs from gen-
erational collectors in that it does not always collect the youngest data along with the older data.
Similar to generational collectors, it relies only on relative object age, deduced from object position
in the heap, to make decisions about which sets of objects to collect. As described, and as imple-
mented in the present paper, it does not take advantage of static analysis [HDH03] or profiling-
based heuristics [BSH+01, ISF03], though it could. In our earlier work, we demonstrated that an
emulation of this algorithm in a 32-bit address space can have good performance [SHB+02]. Here
for the first time we have an implementation of the algorithm as originally envisaged, in a large
address space (except that special treatment of permanent data (“pretenuring”) is still lacking). As
the results will show, excellent throughput results are achieved with this algorithm, especially in
tight heaps where it matters the most.

2 Background

The conceptual design of the RealOF collector has been described fully elsewhere [SMM99,
Ste99]; here for completeness we sketch the main points. A traditional generational garbage collec-
tor always collects a youngest subset of heap objects (i.e., some number of youngest generations).
An older-first collector, on the other hand, chooses a middle-aged subset of heap objects. Imagine
a heap logically laid out with objects in the order of their age: this is depicted in Figure 1, with
the oldest objects on the right, and the most recently allocated objects on the left. The older-first
collector chooses to collect a subset C, called the collection window, that is immediately to the left
of the survivors of the previous collection. The current collection’s survivors S are left in place
(logically). After a collection, an amount of free space |C− S| is available for new allocation. In

1We survey commercial 64-bit JVM platforms elsewhere [Kyr05].

2

this logical view, the heap remains laid out in age order, so the free space shows up on the far
left, where it is available for new allocation (green arrows). Thus, the window sweeps the heap
from older to younger, hence the name older-first. Initially, objects fill the entire heap and the
window is positioned at the old end of the heap. Eventually the window reaches the young end;
after collecting the young end of the heap, the window is reset to the old end.

Figure 1 shows a series of eight collections, and indicates how the window moves across the
heap when the collector is performing well. If the window is in a position that results in small
survivor set sizes |S| (Collections 4–8), the window moves by only that small amount from one
collection to the next. As the window moves slowly, it remains for a long time in the same logical
region. In a copying-collector implementation, this means that a great deal of allocation, |C− S|,
takes place with little copying work, |S|; in other words, that the performance is good. The reason
why this behavior might be expected to arise in some programs is that the position of the window
in the heap corresponds to object age, and it has been observed that object lifetimes tend to cluster
around a few dominant values. Whilst a generational collector takes advantage of the cluster
around zero (“most objects die young”), the older-first collector may take advantage of middle-
aged lifetime clusters.

Collection 5

Collection 7

Collection 8

Collection 1

Collection 2

Collection 3

Collection 4

Collection 6

C

C

C

C

C

C

C

C
S

S

S

S

S

S

S

oldestyoungest

S empty

Figure 1: Older-first window motion example.

Like generational collectors, the older-first collector collects less than the entire heap each
time, and thus it must maintain a write barrier and remember certain pointer updates. The general
rule is that when a store creates a reference p → q, we need to remember it only if q might be

3

collected before p. Figure 2 illustrates this rule applied to the older-first collector. The crossed-
out pointers need not be remembered. It might seem complicated to apply this rule in a write
barrier. However, if a large address space is available, objects can be laid out in age order, as we
detail in Section 3. The allocation starts into highest addresses in an allocation zone, and copying
is into lower addresses in another zone. Once the allocation zone is exhausted, the copying zone
becomes the new allocation zone, and another chunk of address space is made into the new copying
zone. In a large address space we can do this for a very long time. Now the rule for the write
barrier filtering is little more than an address comparison, as shown in Figure 3, the same as in
efficient write barriers of generational collectors. Here for the first time we present a complete
implementation of the older-first collector in a large address space, which we now label RealOF.
Previously we reported a 32-bit implementation that, in the absence of a large address space,
resorted to indirection through an age lookup table in order to resolve write barriers [SHB+02];
we label it OF in the present paper.

p q

oldest

region of next collection

youngest
allocation
direction

Figure 2: Directional filtering of pointer stores: crossed-out pointers need not be remembered.

low addresses

allocationcopying

youngestoldest

region of
next collection

high addresses

Figure 3: Directional filtering with an address-ordered heap.

3 Implementation

3.1 Infrastructure

Our implementation framework is the Jikes Research Virtual Machine (Jikes RVM), developed
by IBM Research [AAB+00, AAB+99], an open-source virtual machine capable of running a
wide variety of Java programs. It offers two compilers, baseline and optimizing, but uses no
interpreter. We built our infrastructure in stages, as follows. We ported Jikes RVM version 2.0.3,
with the baseline compiler alone, to the 64-bit PowerPC/AIX platform [Kyr03, KSM04], and then
we extended this port to the PowerPC/Linux architecture and specifically the Apple G5. This gave
us the only 64-bit open-source virtual machine (at the time) that provided a flexible test-bed for
implementing new memory managements algorithms, owing to the presence in Jikes RVM of the
easily pluggable Garbage Collection Toolkit GCTk (now MMTk [BCM04]).2 The GCTk already

2http://www.cs.umass.edu/˜gctk/

4

contained fast implementations of generational copying collection algorithms, as well as of the
OF and Beltway collectors; to this we added our implementation of the RealOF collector (and
allocator). Using this system, we obtained encouraging preliminary performance results [KS05].
We then ported the Jikes RVM optimizing compiler to the 64-bit PowerPC/Linux architecture.
It is in this system that the results we report below were obtained. (In the meantime, we have
contributed our work to the effort, led by Kris Venstermans of the University of Ghent and David
Grove of IBM, to port the newest version of Jikes RVM to 64-bit PowerPC/Linux.)

3.2 Collector and allocator

The implementation of the RealOF algorithm supports the notions of zones and windows as de-
scribed above, but they are of necessity discretized in size and tied into the functioning of the
allocator. A zone is a contiguous region of memory and the largest logical memory unit of the
RealOF collector. All zones are of equal, power-of-2 size (in our experiments, 8 GB), and are allo-
cated from higher to lower addresses in order to maintain the address-order heap. At any moment
in time the algorithm has two zones: the allocation zone and the copy zone. Newly created objects
are placed in the allocation zone, from higher addresses to lower. During a garbage collection,
survivors are placed in the copy zone, from higher addresses to lower.

A zone consists of a number of windows. A window is a contiguous, power-of-2 size, region
of memory, smaller than a zone, allocated within a particular zone from higher to lower addresses.
In our implementation a window is the smallest unit of memory allocation and deallocation. Thus
every garbage collection increment collects exactly one window. The size of a window is limited
from below by the minimum size of mappable virtual memory, which in our operating system is
4 MB.

The RealOF allocator is a relatively simple and fast bump-pointer allocator, attached to the
current allocation window. The allocator actually implements allocation in either direction, but
our experiments have shown, somewhat surprisingly, that there is no performance difference be-
tween the two. If a particular architecture supports hardware data prefetching such as within cache
lines, consistent with a lower-to-higher access order, we might expect to suffer a performance hit
allocating objects from higher to lower addresses. In reality, there is none (on our PowerPC sys-
tem). Note that with either direction of allocation the object layout remains the same, with array
objects laid out from lower to higher addresses and scalar objects laid out from higher to lower
addresses [AAB+99] and the address access pattern of the object initialization sequence thus re-
mains unaffected. There is apparently no observable memory system effect spanning multiple
consecutively allocated objects.

We illustrate the progress of the algorithm in Figure 4. At the onset of virtual machine execu-
tion, both the allocation and the copy zone are empty. We allocate the very first window inside the
allocation zone and start placing newly created objects inside this window using our simple bump
pointer allocator. When the first window fills up, we allocate another window inside the allocation
zone and proceed without garbage collection (1). The first garbage collection happens when the
number of windows in the heap becomes equal to the maximum allowed number of windows:

windows =
heap size

window size
−1,

5

0 2 -1
64

allocation zonecopy zone

allocation zonecopy zone

allocation zonecopy zone

allocation zonecopy zone

allocation zonecopy zone

c
r

c
r

c
r

c
r

c
r

(1)

(2)

(3)

(4)

(5)

Figure 4: The RealOF algorithm shown operating with three windows in the heap (completely
or partially gray rectangles) and one copy reserve window (cr). Allocation proceeds from higher
addresses to lower (right to left); similarly, copying into the copy zone proceeds from higher ad-
dresses to lower. Snapshots, top to bottom: (1) before any GC occurred; (2) after several GCs,
with most windows residing in the allocation zone; (3) after several more GCs, with most windows
residing in the copy zone; (4) right after a zone reset; (5) after several GCs following a zone reset,
with most windows residing in the allocation zone.

where heap size is rounded down to fit an integer number of windows and 1 accounts for the copy
reserve window. The maximum number of windows in the heap is maintained as an invariant of
the algorithm. At every garbage collection increment, we collect the highest (rightmost) window
in the heap, copy its survivors to a window allocated in the copy zone, and deallocate the collected
window (2). If the ratio of surviving objects is relatively high, in order to satisfy the allocation
request we may need to perform several garbage collection increments and collect more than one
window in the allocation zone, creating additional windows in the copy zone.

At some point, the number of windows in the copy zone may become larger than the number
of windows in the allocation zone (3) and eventually all allowed windows may end up in the copy
zone. This situation is called zone reset. When the zone reset occurs we rebind the current copy
zone to function as the new allocation zone and create a new copy zone right below the old one (4).
Note that here we have a situation similar to the one before the first garbage collection, when all the
windows reside in the allocation zone. After the zone reset we can proceed as described before (5).

Another possible situation is the exhaustion of the allocation zone. When this situation is
detected we perform several garbage collection increments to deallocate all windows from the
allocation zone, which in turn triggers the zone reset mechanism.

In the unlikely event that we reach the bottom of available address space we perform a full-heap
garbage collection and move all live data back to the highest end of the address space. We describe
full-heap collection below.

6

3.2.1 Write Barrier

By using the heap in address order we are able to use the same inexpensive write barrier as the one
used in traditional generational collectors [BM02], conceptually defined by this code:

public static final void

writeBarrier

(ADDRESS source, ADDRESS target) {

if (source < ((target >>> WINDOW_SIZE_LOG)

<< WINDOW_SIZE_LOG)) {

GCTk_WriteBufferSlot.insert(source);

}

}

The optimizing compiler translates this Java phrase into an efficient three-instruction sequence
on the PowerPC, a mask, a compare, and a conditional branch [SHB+02]. As we show later, the
address-order write barrier gives a consistent performance improvement over the indirect write bar-
rier used in the previous implementation of the older-first algorithm [SHB+02], which performed
table lookups to map object addresses in a small address space to logical object ages.

3.2.2 Remembered Sets

We map windows to their corresponding remembered sets by extracting the remembered set num-
ber directly from the target address:

public static final void

conditionalRemsetInsert

(ADDRESS source, ADDRESS target) {

if (source < ((target >>> WINDOW_SIZE_LOG)

<< WINDOW_SIZE_LOG)) {

GCTk_RememberedSet.insert((int)((target

<< (BITS_IN_ADDRESS - ZONE_SIZE_LOG - 1))

>>> (BITS_IN_ADDRESS - ZONE_SIZE_LOG - 1 +

WINDOW_SIZE_LOG)), source);

}

}

In order for this approach to work, the number of remembered sets must be equal to:

remsets = 2×
zone size

window size

In order to keep the overhead of remembered sets relatively low, it is beneficial to have as few
remembered sets as possible. This can be achieved by always keeping the window size as large as

7

possible for a particular heap size. On the other hand, having large windows hurts incrementality;
hence a large window may not always be a good solution. Another way to keep the overhead of the
remembered sets relatively low may be remembered-set triggered GC, wherein a GC increment is
performed if the size of the remembered sets reaches some upper threshold.

3.3 Full Heap Collection

We implemented a full-heap collection mechanism in order to make the RealOF algorithm com-
plete. The mechanism is in principle necessary when the algorithm runs out of address space and
needs to move all data from the lowest-addressed zone back to the top of the address space; this,
however, will happen only in extremely long-running programs. The mechanism can also be in-
voked to honor System.gc() hints from the application. Lastly, it may be invoked adaptively, if
high survival rates suggest the presence of garbage cycles spanning multiple windows. However,
we do not have adaptive heuristics worked out yet, none of the tested programs comes close to
exhausting the address space, and, for fair comparison, we ignore System.gc() hints, as they are
ignored by the remaining collectors implemented in GCTk. (If we do honor them, the minimum
heap size requirement for the RealOF algorithm executing the 213 javac benchmark decreases
from 88 MB to 56 MB, compared with 64 MB for both Appel-style generational and Beltway col-
lectors.)

In a system with the full-heap collection mechanism we use a third type of zone called the
reserved zone, Figure 5. The reserved zone serves as a place-holder for a temporary copy zone in
the event of full-heap collection, and following full-heap garbage collection it becomes the new
allocation zone. At other times it is neither used nor mapped into the address space of the process.

0 2 -1
64

allocation zonecopy zone

c
r

c
r

c
r

reserved zone

allocation zonecopy zonereserved zone

allocation zonecopy zonereserved zone

allocation zonecopy zonereserved zone
c
r

c
r

allocation zonecopy zonereserved zone

(1)

(2)

(3)

(4)

(5)

Figure 5: Full heap collection in the RealOF algorithm with three windows in the heap (completely
or partially gray rectangles) and one copy reserve window (cr). Snapshots, top to bottom: (1)
before any GC occurred; (2) after several GCs, with most windows residing in the allocation zone;
(3) after several more GCs, with most windows residing in the copy zone; (4) right after a full heap
collection; (5) after several GCs following a full heap collection, with most windows residing in
the allocation zone.

8

4 Results

4.1 Experimental Setting

We use the Jikes RVM optimizing compiler both to build the boot image (the virtual machine
itself) and to compile the application code at run-time. (Note that run-time compilation activity is
included in the reported results.) We use the so-called Fast configuration, which skips assertions
checks and pre-compiles all the classes of the virtual machine into the boot image. Our hardware
platform is an Apple G5, with a PowerPC 970 processor at 2 GHz and 2 GB of memory, running
an early-beta version of the 64-bit Yellow Dog Linux 3.0.1 for G5 with the 2.6.1 kernel.

Our benchmark programs are the GC-relevant programs from SPECjvm98 [Sta99, DH98], and
SPECjbb2000 [Sta01]. Some characteristics of the benchmarks are summarized in Table 1. We
assume that SPECjvm98 programs are representative of short-running client applications, whereas
SPECjbb2000 is representative of server applications.

Benchmark Description Minimum Heap Maximum Heap Total Allocation,
Size, MB GCs Size, MB GCs MB

SPECjvm98 jess Java Expert System Shell 24 443 144 17 956
SPECjvm98 db A database simulation program 40 150 96 16 386
SPECjvm98 javac Java compiler from JDK 1.0.2 64 227 256 15 1365
SPECjvm98 jack A Java parser generator 32 347 160 16 930
SPECjbb2000 - 1 Emulates a 3-tier system 96 862 640 28 4928–6292

with 1 warehouse
SPECjbb2000 - 2 Emulates a 3-tier system 128 926 640 42 4011–6039

with 2 warehouses
SPECjbb2000 - 4 Emulates a 3-tier system 196 783 640 49 3732–5707

with 4 warehouses
SPECjbb2000 - 8 Emulates a 3-tier system 352 543 640 83 3785–5324

with 8 warehouses

Table 1: Benchmark information including the number of garbage collections performed by the
Appel-style collector.

For the SPECjvm98 benchmarks, our performance metric is the running time of the program.
For SPECjbb2000, however, the SPEC benchmarking procedure fixes the running time, and the
benchmark itself reports the measured throughput as the number of transactions per second, so
this is our performance metric. (Because the amount of useful work varies with the efficiency
of collection and in turn on heap size, the Total Allocation column of Table 1 contains ranges of
values in the SPECjbb2000 rows.)

The garbage collectors compared are an Appel-style two-generation collector [App89] (la-
belled 2G in plots); the Beltway collector [BJMM02] in its default 25.25.100 configuration; the
older-first collector, with the indirect write barrier and window size of 25% of the heap [SHB+02]
(labelled OF in plots); and the RealOF collector, described in Section 3.

9

We ran each benchmark and each collector with a wide range of heap sizes, careful to include
the smallest heaps in which the programs are able to complete. Each such configuration was run
three times, and for final results we report the best run. (We intend to repeat the experiments and
get a proper characterization of variance; it appears to be small.)

4.2 Running Time and Throughput

In Figure 6 we show the total execution time of the several garbage collection algorithms as the
heap size is varied. The Appel-style collector is known to provide excellent throughput (i.e., to
have low GC overhead measured as fraction of total execution time), and therefore we also provide
Figure 7 in which the total execution times of each collector are divided by the total execution time
of the Appel-style collector.

Consistent with our expectations, using a fast write barrier makes RealOF uniformly faster
than OF across all benchmarks. We now examine how RealOF behaves for different benchmarks.
Somewhat surprisingly, in some cases (notably SPECjvm98 jess) after the heap size becomes rel-
atively large for a particular benchmark, the performance of RealOF begins to slightly decrease.
We have determined that this happens because after some point the cost of processing increasingly
large numbers of remembered pointers outweighs the benefits of a larger heap (and, with a fixed
window size, the total number of pointers remembered for all windows grows in rough proportion
to the number of windows, i.e., heap size).

From the measurements of RealOF with different window sizes in SPECjvm98 , we conclude
that, in general, larger window size leads to better performance, as soon as the larger window size is
feasible. There are two reasons for this. First, for smaller window sizes we have to invoke garbage
collection more frequently and the total cost of invoking several smaller garbage collections is
at least as high or higher than the cost of invoking one larger collection.3 Second, collecting
a bigger window we are able to free more space. Since one bigger window encompasses two,
four, etc. smaller windows, some inter-window pointers (a burden on remembered sets) turn into
intra-window pointers (no cost), resulting in diminished pointer processing time and a reduction of
garbage unnecessarily retained. Indeed, we find that having four or five windows in the heap gives
the best results, consistent with the 15–25% estimates for the optimal window to heap ratio from
our previous work.

Thus, it appears that in some cases it would be beneficial to have a simple adaptive window
resizing mechanism. It would be responsible for setting an initial window size for a given heap size,
and for switching to the largest possible window size during execution when the heap is resized
dynamically. This incurs the one-time cost of reorganizing the remembered sets, which could be
piggybacked onto a garbage collection, and the cost of adaptively changing the write barrier code.4

Overall, other than for SPECjvm98 jess, there are configurations of RealOF that are either
better or about as good as the Appel-style generational collector. We have separately carried out

3Here we are not concerned with pause times but only with collector throughput performance.
4In the Jikes RVM baseline compiler, this is simply a matter of recompiling one method; in the optimizing compiler,

which normally inlines the write barrier, we must either recompile all methods (unwieldy and expensive) or code the
write barrier using variable-amount shift instructions instead of fixed-amount shift instructions (both available on the
PowerPC) and dedicate a register to hold the shift amount, i.e., the logarithm of window size.

10

 0

 5

 10

 15

 20

 25

 30

 35

 40

 120 100 90 80 70 60 50 40
E

xe
cu

tio
n

tim
e

(s
)

Heap size (MB)

SPECjvm98 db

Beltway
RealOF, w=4MB
RealOF, w=8MB

RealOF, w=16MB
RealOF, w=32MB

OF
2G

 0

 5

 10

 15

 20

 25

 120 100 90 80 70 60 50 40 30

E
xe

cu
tio

n
tim

e
(s

)

Heap size (MB)

SPECjvm98 jack

Beltway
RealOF, w=4MB
RealOF, w=8MB

RealOF, w=16MB
RealOF, w=32MB

OF
2G

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 120 100 90 80 70 60

E
xe

cu
tio

n
tim

e
(s

)

Heap size (MB)

SPECjvm98 javac

Beltway
RealOF, w=4MB
RealOF, w=8MB

RealOF, w=16MB
RealOF, w=32MB

OF
2G

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 120 100 90 80 70 60 50 40 30

E
xe

cu
tio

n
tim

e
(s

)

Heap size (MB)

SPECjvm98 jess

Beltway
RealOF, w=4MB
RealOF, w=8MB

RealOF, w=16MB
RealOF, w=32MB

OF
2G

Figure 6: Absolute execution time for SPECjvm98 benchmarks for different garbage collectors.
Lower is better. 11

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 120 100 90 80 70 60 50 40
E

xe
cu

tio
n

tim
e

re
la

tiv
e

to
 2

G

Heap size (MB)

SPECjvm98 db

Beltway
RealOF, w=4MB
RealOF, w=8MB

RealOF, w=16MB
RealOF, w=32MB

OF

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 120 100 90 80 70 60 50 40 30

E
xe

cu
tio

n
tim

e
re

la
tiv

e
to

 2
G

Heap size (MB)

SPECjvm98 jack

Beltway
RealOF, w=4MB
RealOF, w=8MB

RealOF, w=16MB
RealOF, w=32MB

OF

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 120 100 90 80 70 60

E
xe

cu
tio

n
tim

e
re

la
tiv

e
to

 2
G

Heap size (MB)

SPECjvm98 javac

Beltway
RealOF, w=4MB
RealOF, w=8MB

RealOF, w=16MB
RealOF, w=32MB

OF

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 120 100 90 80 70 60 50 40 30

E
xe

cu
tio

n
tim

e
re

la
tiv

e
to

 2
G

Heap size (MB)

SPECjvm98 jess

Beltway
RealOF, w=4MB
RealOF, w=8MB

RealOF, w=16MB
RealOF, w=32MB

OF

Figure 7: Relative execution time for SPECjvm98 benchmarks for different garbage collectors
(shown relative to the Appel-style collector, 2G). Lower is better.12

heap profiling studies of SPECjvm98 jess using exact tracing [HBM+02], and we know that the
large amounts of permanent data allocated in that program hurt the performance of RealOF.

Turning to the SPECjbb2000 runs, Figure 8 and Figure 9, we see that in tight heaps the Re-
alOF algorithm tends to have the highest throughput overall among all collectors tested. Not only
RealOF significantly decreases the minimum heap requirements (Figure 8), especially in the 8
“warehouses” case (224 MB with RealOF vs 352 MB with Appel-style and Beltway), but also pro-
vides very good improvement in throughput (Figure 9), up to 2.4 times in the 4 “warehouses”
configuration.

The overall performance benefit of the RealOF collector over other collectors tends to slightly
increase with the number of “warehouses”, so that in the SPEC-standard configuration with 8
warehouses RealOF collector performs better than Appel-style in the whole range of heaps.

In summary, RealOF shows performance competitive with generational collection on observed
client-side programs, and significantly better on server-side programs.

5 Concluding remarks

Our results demonstrate that for Java server applications, a large address space with an equitable,
fast write barrier confers a clear performance advantage on the older-first algorithm over traditional
generational collectors. Importantly, the advantage is most pronounced for small heap sizes.

In previous work we showed that the distribution of pause times incurred by the OF collector is
favorable [SHB+02]. The differences introduced in the RealOF implementation should not affect
the pause time distribution, but this remains to be confirmed experimentally.

However, remembered set maintenance and permanent data remain a potential weak spot of
the algorithm that can hurt its performance on some programs. Therefore in our current and fu-
ture work (using the successor to GCTk, MMTk, included in newer releases of JikesRVM) we
are investigating remembered set triggers and hybrid models in which the basic idea of the algo-
rithm will be combined with recent advances in object lifetime prediction and allocation-time or
collection-time pretenuring.

6 Acknowledgments

We are grateful to IBM Research for developing Jikes RVM and making it available as an open-
source product. We are also very grateful to Eliot Moss for his advice and help during the imple-
mentation of the 64-bit PowerPC/AIX port of Jikes RVM 2.0.3.

This material is based upon work supported by the National Science Foundation (grants CCR-
0219587, CCR-0085792, EIA-0218262, EIA-0238027, and EIA-0324845), the Defense Advanced
Research Projects Agency (grant F30602-02-1-0146), Microsoft Research, and Hewlett-Packard
(gift 88425.1). Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the sponsors.

13

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 600 500 450 400 350 300 250 200 150 100
T

hr
ou

gh
pu

t (
tp

s)

Heap size (MB)

SPECjbb2000, 1 warehouses

Beltway
RealOF, w=8MB

RealOF, w=16MB
RealOF, w=32MB
RealOF, w=64MB

2G

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 600 500 450 400 350 300 250 200 150 100

T
hr

ou
gh

pu
t (

tp
s)

Heap size (MB)

SPECjbb2000, 2 warehouses

Beltway
RealOF, w=8MB

RealOF, w=16MB
RealOF, w=32MB
RealOF, w=64MB

2G

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 600 500 450 400 350 300 250 200 150

T
hr

ou
gh

pu
t (

tp
s)

Heap size (MB)

SPECjbb2000, 4 warehouses

Beltway
RealOF, w=8MB

RealOF, w=16MB
RealOF, w=32MB
RealOF, w=64MB

2G

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 600 500 450 400 350 300 250 200

T
hr

ou
gh

pu
t (

tp
s)

Heap size (MB)

SPECjbb2000, 8 warehouses

Beltway
RealOF, w=8MB

RealOF, w=16MB
RealOF, w=32MB
RealOF, w=64MB

2G

Figure 8: Absolute throughput for the SPECjbb2000 benchmark for different garbage collectors.
Higher is better. The four plots correspond to benchmark scale: 1, 2, 4, and 8 “warehouses”.14

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 600 500 450 400 350 300 250 200 150 100
T

hr
ou

gh
pu

t r
el

at
iv

e
to

 2
G

Heap size (MB)

SPECjbb2000, 1 warehouses

Beltway
RealOF, w=8MB

RealOF, w=16MB
RealOF, w=32MB
RealOF, w=64MB

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 600 500 450 400 350 300 250 200 150 100

T
hr

ou
gh

pu
t r

el
at

iv
e

to
 2

G

Heap size (MB)

SPECjbb2000, 2 warehouses

Beltway
RealOF, w=8MB

RealOF, w=16MB
RealOF, w=32MB
RealOF, w=64MB

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 600 500 450 400 350 300 250 200 150

T
hr

ou
gh

pu
t r

el
at

iv
e

to
 2

G

Heap size (MB)

SPECjbb2000, 4 warehouses

Beltway
RealOF, w=8MB

RealOF, w=16MB
RealOF, w=32MB
RealOF, w=64MB

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 600 500 450 400 350 300 250 200

T
hr

ou
gh

pu
t r

el
at

iv
e

to
 2

G

Heap size (MB)

SPECjbb2000, 8 warehouses

Beltway
RealOF, w=8MB

RealOF, w=16MB
RealOF, w=32MB
RealOF, w=64MB

Figure 9: Relative throughput for the SPECjbb2000 benchmark for different garbage collectors
(shown relative to the Appel-style collector). Higher is better. The four plots correspond to bench-
mark scale: 1, 2, 4, and 8 “warehouses”.

15

References

[AAB+99] Bowen Alpern, Dick Attanasio, John J. Barton, Anthony Cocchi, Susan Flynn Hum-
mel, Derek Lieber, Mark Mergen, Ton Ngo, Janice Shepherd, and Stephen Smith.
Implementing Jalapeño in Java. In Proceedings of the 1999 ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’99), 1999.

[AAB+00] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Coc-
chi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeño virtual machine. IBM Systems Journal,
39(1):211–238, February 2000.

[App89] Andrew W. Appel. Simple generational garbage collection and fast allocation. Soft-
ware Practice and Experience, 19(2):171–183, 1989.

[BCM04] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Oil and water? high
performance garbage collection in Java with JMTk. In Proceedings of the 26th Inter-
national Conference on Software Engineering, 2004.

[BJMM02] Stephen M. Blackburn, Richard Jones, Kathryn S. McKinley, and J. Eliot B. Moss.
Beltway: getting around garbage collection gridlock. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI
2002), 2002.

[BM02] Stephen M. Blackburn and Kathryn S. McKinley. In or out? Putting write barriers in
their place. In Proceedings of the Third International Symposium on Memory Man-
agement, ISMM ’02, volume 37 of ACM SIGPLAN Notices, Berlin, Germany, June
2002. ACM Press.

[BSH+01] Stephen M. Blackburn, Sharad Singhai, Matthew Hertz, Kathryn S. McKinley, and
J. Eliot B. Moss. Pretenuring for Java. In Proceedings of the ACM International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2001), 2001.

[DH98] Sylvia Dieckman and Urs Hölzle. A study of the allocation behaviour of the
SPECjvm98 Java benchmarks. In Erik Jul, editor, Proceedings of the 12th European
Conference on Object-Oriented Programming, ECOOP’98, volume 1445 of Lecture
Notes in Computer Science, pages 92–115, Brussels, Belgium, 1998. Springer-Verlag.

[HBM+02] Matthew Hertz, Stephen M. Blackburn, Kathryn S. McKinley, J. Eliot B. Moss, and
Darko Stefanović. Error-free garbage collection traces: How to cheat and not get
caught. In SIGMETRICS, 2002.

16

[HDH03] Martin Hirzel, Amer Diwan, and Matthew Hertz. Connectivity-based garbage collec-
tion. In Proceedings of the 2003 ACM International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2003), 2003.

[ISF03] Hajime Inoue, Darko Stefanović, and Stephanie Forrest. Object lifetime prediction in
Java. Technical Report TR-CS-2003-28, Department of Computer Science, University
of New Mexico, May 2003.

[KS05] Sergiy Kyrylkov and Darko Stefanović. A study of garbage collection with a large
address space for server applications. Technical Report TR-CS-2005-1, Department
of Computer Science, University of New Mexico, February 2005.

[KSM04] Sergiy Kyrylkov, Darko Stefanović, and Eliot Moss. Design and implementation of
a 64-bit PowerPC port of Jikes RVM 2.0.3. In 2nd Workshop on Managed Runtime
Environments (MRE’04), 2004.

[Kyr03] Sergiy Kyrylkov. Jikes Research Virtual Machine - design and implementation of a
64-bit PowerPC port. Master’s thesis, University of New Mexico, 2003.

[Kyr05] Sergiy Kyrylkov. 64-bit computing & JVM performance. Dr. Dobb’s Journal,
30(370):24–27, March 2005.

[SHB+02] Darko Stefanović, Matthew Hertz, Stephen M. Blackburn, Kathryn S. McKinley, and
J. Eliot B. Moss. Older-first garbage collection in practice: Evaluation in a Java
virtual machine. In Proceedings of the ACM SIGPLAN Workshop on Memory System
Performance (MSP 2002), 2002.

[SMM99] Darko Stefanović, Kathryn S. McKinley, and J. Eliot B. Moss. Age-based garbage
collection. In Proceedings of the 1999 ACM International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA’99), 1999.

[Sta99] Standard Performance Evaluation Corporation. SPECjvm98 Documentation, release
1.03 edition, March 1999.

[Sta01] Standard Performance Evaluation Corporation. SPECjbb2000 (Java Business Bench-
mark) Documentation, release 1.01 edition, 2001.

[Ste99] Darko Stefanović. Properties of Age-Based Automatic Memory Reclamation Algo-
rithms. PhD thesis, University of Massachusetts Amherst, 1999.

17

	Introduction
	Background
	Implementation
	Infrastructure
	Collector and allocator
	Write Barrier
	Remembered Sets

	Full Heap Collection

	Results
	Experimental Setting
	Running Time and Throughput

	Concluding remarks
	Acknowledgments

