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Contained herein is an account of my work in garbage collection performance for
StandardML.31 Theworkwas done (for the most part) in 1992–1993,while I was on leave at
Carnegie-Mellon University, working on the Fox Project.12 The construction of an interface
between Standard ML/New Jersey and the UMass Garbage Collector Toolkit,24 and of an
experimentation framework, described below, together with this document, comprise my
Master’s Project, submitted in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science.
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1 Introduction

We describe a study of the object behaviour in the Standard ML of New Jersey system
and its reflection on the efficiency of copying garbage collection. We developed an ex-
perimentation methodology using exact, fine-grained, volumetric object lifetime tracking.
Using this methodology, we obtained detailed analyses for nine recognised benchmark
programs, confirmed the validity of the weak generational hypothesis� for SML/NJ in
general, and in particular for function closure objects. The immediate practical utility of
these results is that they enable correct configuration of a generational (copying) garbage
collector: optimal choice of the allocation region size, number and size of generations,
and promotion policies. In particular, we found the allocation region could be configured
independently of application program. Another benefit is improved understanding of the
run-time properties of a system that uses the singular compilation model of heap-only al-
location. Our advantage was the familiarity with the flexible garbage collector toolkit and
access to high processing power workstations to run extravagant collector configurations
on. This combination made our line of investigation possible, where previous studies have
often used coarse approximations.

1.1 Functional languages implementation

The advantages of using a type-safe language with a well-designed module system and
above all a well-defined formal semantics are well known. The one disadvantage usually
perceived as an insuperable obstacle is the inefficiency of programs written in higher-order
functional languages. More precisely, the implementation techniques currently available
for these languages lag behind those for traditional imperative languages, such as C.
Sometimes, programs performing the same task, employing the same algorithm, and even
similarly coded (when this is possible) nevertheless exhibit significantly better performance
when written in a traditional language.

Effective compile-time program analysis and optimisation is one area that can offer
significant improvement. In the realm of call-by-value languages with side effects (such
as ML and Scheme), there has been a lot of work in optimisation techniques.38, 28, 27, 26, 18, 35, 4, 29

Apart from these optimisations, which work at the level of intermediate representations
(such as the continuation-passing style), worthwhile improvement can be obtained by
post-pass optimisation of generated machine code. In our work on the SML/NJ back-end,
we have witnessed that traditional optimisations,1 driven by local and global analyses, can
improve code quality to a small degree in general, and to a surprisingly high degree for
certain classes of programs.y

Apart from suboptimal code generation, another important factor limiting the overall
speed of SML programs is the memory subsystem performance. The SML/NJ system
using its standard garbage collector (a generational garbage collector with twodynamically
sized generations) is well-known for its bad paging behaviour when running on platforms
with insufficient memory. Moreover, sufficient memory may be large by conventional
language standards. Evenwhen there is enough physical memory to avoid paging entirely,

�See Section 4 for the definition.
yIn other words, certain classes of programs elicit very poor code patterns from the current SML/NJ

compiler.
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the pauses caused by “major collections” are known to be intolerably long. Incremental
collection techniques alleviate the problem of pauses32 at the cost of increased total time.

There has been a lot of speculation on the cache locality of SML programs, and the
penalty due to cache misses. Rumour had it that 40% of execution time was spent waiting
for main memory access, a 66% overhead. Recent work14 has shown that this is not alto-
gether true, at least for some current architectures and memory subsystem organisations.
In particular, the cache performance on the DECStation 5000/200 is reasonably good across
all benchmarks reported, at a 17% overhead.

Intensive allocation characterises most implementations of functional programming
languages. The allocation is comprised of objects visible to the programmer and of function
closure objects, which correspond to activation record in the parlance of block-structured
languages. The latter may in fact dominate due to the small size of individual functions
and high frequency of calls. Allocation of function closure objects on the stack is often
perceived as giving deallocation for free, the only cost being the adjustment of a stack
frame pointer.� Furthermore, the semantics of the language may preclude imposing a
stack discipline for closures (the upward funarg problem). Allocation on the heap carries a
higher price of deallocation, usually garbage collection. The New Jersey implementation
of SML avoids using the stack entirely, and allocates all closure records on the heap. As a
result, the allocation rate is greatly increased, and so is the burden on the garbage collector.
For example, running the standard collector accounts for 5 – 24% (10% on the average)
of total execution cost in the SML/NJ system.42 Consequently, the importance of having a
good garbage collector becomes even greater.

1.2 Heap behaviour

Understanding the heap behaviour of a language and its applications, and having the tools
to measure it quantitatively is necessary for the design of a well-tuned garbage collector.
Such tools can also be applied to assess how changes in the compiler affect the performance
of the run-time system.

In the study of heap behaviour, one can choose to track the path of individual objects.
This approach requires generating program traces and then extracting various statistics.
An alternative is to collect less precise, aggregate data, thus tracking groups of objects. In
the absence of object type information, the only interesting parameters which guide object
grouping are object age and size. We note below that size can be abstracted away if we
consider allocationbyvolume, not bynumberof objects. Withage as the remaining relevant
parameter, it turns out that a generational garbage collector, properly instrumented, can
serve as the analysis tool we need.39

We chose to use the flexible Garbage Collector Toolkit and integrate it with SML/NJ.y

In the process, we added functionality to the toolkit and gained experience with building
language–collector interfaces.

For completeness, in the following sections we describe the toolkit in some detail and
the interface we built to the SML/NJ system. We then proceed to the study of object

�There is a hidden cost of processing the stack when the heap is collected, but this need not be great.
yInitially, we used SML/NJ version 0.75 in our work; when version 0.91 became available, we adapted to

the changes in run-time data format. We have since moved to the latest public release (0.93). Since changes in
the compiler and in data format could affect heap behaviour, we re-ran all experiments using version 0.93.
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dynamics, where we outline a simple volumetric model of heap behaviour. We then list
the benchmark programs used in the study and describe the experimental setup. This is
followed by a discussion of the results, wherein the generational hypothesis is confirmed,
and several additional enquiries into the cost of garbage collection, simulation methods,
cache performance and differentiating object temporal behaviour based on object static
characteristics.

2 Overview of the garbage collection toolkit

We now describe the garbage collector used for the studies reported here. Its basis is the
UMass Language-Independent Garbage Collector Toolkit, to which we added language
specific code to interface itwith the SML/NJ system.� Wefirst offer a condenseddescription
of the toolkit and continuewithappropriate details of the interface.y For a broader overview
of garbage collection algorithms and generational techniques, consult Wilson’s survey
paper.47

2.1 The toolkit concept

The toolkit divides the responsibility for and support of garbage collection into two parts:
a language-independent part, supplied by the toolkit, and a language-specific part, nom-
inally supplied by the language implementor. The language-independent part consists
mostly of the data structures and code for managing multiple generations and the alloca-
tion of heap objects. The language implementor must supply the following capabilities:
locating at scavenge (collection43) time all root pointers (those pointers outside the scavenged
generations that refer to objects in the scavenged generations), and locating all pointers
within a heap object given a pointer to the start of the object. The toolkit includes a library
of routines that an implementor can use to keep track of roots in the heap; it remains the
implementor’s responsibility to locate roots lying in the stack(s), registers, and any other
areas outside the heap.

2.2 The structure of the heap

The toolkit defines the structure of the heap and supplies the necessary allocation routines.
The heap consists of a number of generations, ordered by age. We number them 0, 1, 2, …,
in order of increasing age. In any given collection some generation and all younger
generations will be scavenged. The number of generations may vary over time.

Each generation consists of a number of steps. Steps categorise and segregate objects
within a generation according to age or some other useful criterion, such as object type
(pointer-containing or non-pointer-containing). During scavenging, all surviving (reach-
able) objects in a given step are copied to some other step. This promotion stepmay belong
to the same or a different (older) generation. By adjusting the promotion steps before
scavenging one can introduce new steps, combine existing steps, and so on, allowing the

�At the time of writing, the toolkit has been applied in UMass Smalltalk, GNUModula-3, and a Pascal-like
subset of Modula,40 in addition to ML. It is used experimentally in the CMU Common Lisp project.

yFor a more detailed discussion of the toolkit consult the original design report24 and a later article on the
Smalltalk system,22 from which this section is adapted.
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number of steps in a generation to vary over time. The primary function of steps is to
eliminate the need for storing or maintaining any age or other category information in
individual objects. This reduces storage and time costs, but also gives the collector age
information without imposing any requirements on object formats (which are entirely the
responsibility of the language implementor). While the meaning of steps is somewhat
arbitrary, we impose a convention that objects in the lower-numbered steps are younger
than those in the higher-numbered steps, numbering the steps 0, 1, 2, …, so that every step
in the system has a unique number.

For example, generation 0 might have steps 0 and 1, generation 1 might have steps 2
through 4, and so on. A simple promotion policy is to promote survivors of step k to step
k+1. In that case, the number of steps in a generation determines the number of scavenges
(of that generation) necessary to promote objects to the next generation.

Each step consists of a number of blocks. A block is 2n bytes, aligned on a 2n-byte
boundary for some value of n chosen when the system is built. A typical block size might
be 64K bytes.� Larger block sizes mean less overhead; we chose 256K bytes for SML. The
number of blocks in a stepmay vary over time. Whereas the blocks of a step are usually not
contiguous, a nurserymay be set up to consist of a number of contiguous blocks, so that one
may use a page trap to detect nursery overflow and trigger a scavenge. This mechanism
avoids the need for an explicit limit check at every allocation.

Blocks have four primary advantages. First, they allow sizes of steps and generations
to vary easily since the storage of a step need not be contiguous. Second, they allow speedy
determination of the generation, step, and promotion step of an object: one merely shifts
the address of the object right by n bits and indexes a block table containing the needed
information. Third, blocks match naturally with page trapping or card marking schemes.
Fourth, they reduce the storage needed under some circumstances, comparedwith copying
collectors that use semi-spaces. If b bytes are present in a generation before a scavenge and
the survivors consume a bytes, then a semi-space scheme uses 2b byteswhereas our scheme
uses b+a bytes (modulo rounding resulting from the block size). The degree of advantage
depends on the survival rate a/b, but is likely to be significant in many applications, as
shown below.

Blocks do introduce a problem: they cannot handle objects larger than the block size.
To handle such objects we provide a large object space (LOS), as suggested by Ungar and
Jackson.44 Indeed, it is probably a good idea to put in LOS any object that consumes a
significant fraction of a block. In SML, however, large objects are so few that we used
the size of the block as the threshold. Furthermore, any object that has few pointers in it
and that exceeds some threshold in size should be stored in LOS to avoid the overhead of
copying.44 Without going into all the details, LOS uses free list allocation based on splay
trees36, 37, 25 and once allocated an LOS object is never moved. However, LOS objects still
belong to a step, which is indicated by threading the objects onto a doubly linked list rooted
in the step data structure. When an LOS object is promoted, we simply un-chain it from
one list and chain it into another. When scavenging is complete, any LOS objects remaining
on a scavenged step’s LOS list are freed.

Whereas the generation, step, and block of a non-LOS object can be discovered via the
simple shift and index technique, LOSmaymix objects fromdifferent steps and generations

�We use K to abbreviate 1024,M to abbreviate 1048576. We use kilobyte,megabyte and gigabyte for 103 bytes,
106 bytes, and 109 bytes, respectively.
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in the same block. Therefore, we store a back reference from each LOS object’s header to its
containing step, allowing relatively easy determination of the step given a pointer to the
object’s base. Determining the step given a pointer into the middle of the object requires
locating the object header, which is supported but involves additional work.

2.3 Phases of a scavenge

A scavenge consists of two phases. First, the root set for the scavenge is determined based
on the interesting pointer table scheme employed, aswell as the stack and register decoding
approach. All objects directly reachable from the roots are copied into new space, and the
roots updated. In the second phase all objects reachable from the new space objects are
copied over using a non-recursive Cheney scan.10 As each object is copied, a forwarding
pointer is left in the old copy, so that other references to the object can be updated as
they are encountered. Since the toolkit makes no object format assumptions, the details of
forwarding pointer format are up to the language implementor. The toolkit does support
automatic determination of where to allocate the new copy of the object, given the object’s
size (which must be determined by language-specific code).

2.4 Write barrier implementations

A collection scheme that processes only one portion of the heap at a time must somehow
know or discover all pointers outside the collected area that refer to objects within the
collected area. Since the areas not collected are generally assumed to be large, most
generational collectors employ some kind of pointer tracking scheme, to avoid scanning
the uncollected areas. Empirical studies show that in many programs the older-to-younger
pointers of interest to generational collection are rare, so avoiding scanning presumably
improves performance.

To avoid scanning, the system must maintain some kind of table enabling the collector
to find all the interesting pointers; we call this abstraction the interesting pointers table (IPT).
Interesting pointers are created when a pointer is stored in a heap object and the modified
object resides in an older generation than the object that is the target of the pointer. Thus,
certain of the program’s stores must somehow create IPT entries. The action required is
called a store check or a write barrier. The general approach is to add an entry to the IPT
whenever an interesting pointer is created, or might be created. The collector uses and
rebuilds the IPT, discarding any entries that do not describe interesting pointers. Such
entries can come about either because the system, as it runs, is imprecise about what is
interesting, or because later changes overwrite interesting pointers with uninteresting data.
If the system is imprecise, it must be conservative – err on the side of putting too many
entries in the IPT rather than too few, since the IPT must allow the collector to find all
interesting pointers.

The write barrier consists of actions performed in conjunction with a store that might
create an interesting pointer. The purpose of the write barrier is to support efficient location
of all root pointers in the heap (i.e., to avoid scanning the generations not being collected).
We have implemented several versions of the threemost commonwrite barrier approaches.
They vary mostly in the granularity of the information they record.

The toolkit provides several schemes; the one we use for SML in conjunction with its
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existing store-list mechanism (see below) is called remembered sets. This scheme associates a
remembered setwith each generation,43 recording the objects or locations in older generations
that may contain pointers into that generation. Any pointer store that creates a reference
from an older generation to a younger generation is recorded in the remembered set for
the younger generation. At scavenge time the remembered sets for the generations being
scavenged include the heap root set for the scavenge.

Our remembered sets are implemented as circular hash tables using linear hashing. A
remembered set is allocated as an array of 2i + k entries. To enter an item in the set, we
hash the item to obtain i bits and index the table. If the indexed location is empty then the
item is stored in that slot and we are done. If the location already contains the item then
we are done also. Otherwise, the immediately succeeding k slots are examined to try to
place the item (this is not done circularly; hence the 2i + k rather than simply 2i ). If an
empty location still cannot be found then a circular search of the table is made to find an
empty slot. The hash tables are kept relatively sparse by growing a table whenever an item
cannot be placed in its natural hash slot or the k following slots, and 60% or more of the
table’s slots are full. Specifically, we use k = 2 and our table growth policy is to increment
i by 1 (i.e., basically double the table size when a table is grown).

The apparent advantages of remembered sets are their conciseness and accuracy,
achieved at the cost of filtering for interesting pointer stores before recording them in
the appropriate remembered set, and of hashing to keep the sets small by eliminating du-
plicates. At scavenge time, the remembered set is an accurate characterisation of the heap
root set, unless there has been repeated mutation of an object or location.

3 Interfacing the toolkit with SML/NJ

In the previous section, we described the basic toolkit concepts, which apply to any lan-
guage implementation. Here we concentrate on the issues which arose when we replaced
the original SML/NJ collector with the toolkit, and look at some of the functionality that
we had to provide in the language-collector interface. We first examine the different areas
where SML/NJ objects may reside, then we look at object allocation, heap structure and
collection policies.

3.1 Memory areas

Data presented to the garbage collector in SML/NJ come in three varieties: 1) objects
allocated on the heap by the ML code, 2) static data allocated by the run-time system, and
3) precompiled ML code (text segment of the executable image).

The static data include non-conformant objects. For example, the data format used for
arrays in the SML/NJ system cannot accommodate a zero-element array, yet it is required
by the language standard. Therefore, the run-time system builds a dummy object to stand
for it. Another static object is the MLState structure, an image of ML registers used for
interacting with the C-language thread.

In the interactive system, the compiler places newly compiled code into string objects
on the heap.� However, in the process of bootstrapping an SML/NJ system, a large number

�This requires generating position-independent code, since code objectsmay move on a garbage collection.
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of objects are created and written into the text (code) segment of the executable image.
The presence of static data complicates the collector, since pointers may legally point

outside the block space. When the collector examines a pointer, and needs to determine
the generation of the object pointed to, it must first check whether the object is in block
space. If so, the standard table lookup applies; if not, the object is assumed to be of a virtual
generation older than the oldest true generation.

3.2 Allocation

SML/NJ allocates in a contiguous allocation region. The lower bound of the region, the
allocation pointer is kept in a dedicated register. The upper bound of the region, the limit
pointer is kept in an adjusted form� in another dedicated register.

The rate of allocation is very high: on a DECStation 5000/200, a typical value is 16
megabytes/second. A large part of allocation is due to function closure records and callee-
saved register records; less than a quarter is due to data records, and a vast majority of
these are three words long, that is, cons-cells.15

There is no check for allocation overflow on individual allocations; instead, checks
are performed at function entry points only. A function (an extended basic block) in the
SML/NJ intermediate representation has one entry point, several exit points and no loops.
The compiler can statically determine the maximum possible allocation in a function, and
prefix each with an overflow check.y If the remaining space is not sufficient, the garbage
collector is invoked.z

The check code consists of a test at the end of a function just before jumping to another
and a conditional call to the collector at function entry. The relevant inputs for the collector
are the C data structure MLState, a register mask (a bit-pattern indicating which of the
general-purpose registers are live in the compiler sense of liveness and possibly containing
pointers), and the amount of space that needs to be made available before resuming the
ML thread. Upon return from the collector, the check is repeated.

We implementedML’s allocation region as anursery in step 0 (generation 0). All objects,
regardless of size, are allocated in this region. As a positive consequence, we didn’t have
to modify the SML/NJ compiler at all. There are two potentially negative consequences,
however. First, large objects surviving one scavenge must be copied from the nursery into
the LOS. Because large objects are very few, according to our experience and according to
the evidence gathered ex post facto (Section 8.5), the cost of copying is not detrimental to
performance. Second, a run-time check is theoretically needed following each scavenge to
see if the nursery is large enough, and if not, it must be reallocated: otherwise, an infinite

Thus two sources of inefficiency are introduced: position-independent code needs extra instructions over
absolute code, and the code objects must be collected. Observing that code objects are created rarely, and are
disposed of even more rarely, an alternative arrangement is worth considering for code – a separate heapwith
a non-copying collector.

�A small number (4096) is subtracted from it. Thus, functions requiring less than 4096 bytes (that is, most
of them) can compare the allocation pointer and the limit pointer directly, saving one instruction.

yIt can also perform across-function analyses to eliminate redundant checks.
zAppel’s description of the SML run-time system3 has the details, but note that the mechanism of passing

control to the collector has changed in more recent versions of SML/NJ. Rather than an explicit comparison
of pointers, and jump to the collector, there was an arithmetic operation which would cause a trap, and the
handler would arrange for control to pass to the collector.
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loop would ensue evenwhen there is enough space to expand the nursery. However, since
typical function requirements are well below typical nursery sizes, this check could be
avoided with minor modifications to the system.

3.3 Write barrier and root processing

For each non-initialising store, that is, whenever it writes a word into an already existing
object, SML/NJ allocates a special 4-word record on the heap, containing the address of the
object and the offset of the word. All such records are linked together into the store list. A
dedicated register points to the head of the list. This mechanism makes assignments very
expensive,42 and discourages imperative-style programming, in keeping with the philoso-
phy of functional programming. With programmers avoiding the imperative features, the
frequency of updates in ML is extremely low relative to the rate of allocation, and the store
list becomes a reasonable way to implement the write barrier (Section 2.4).

We decided to keep thismechanism intact, but had to augment it with intergenerational
remembered sets for our multi-generational setup. Before each collection, we compute a
process set containing the roots for the collection. We first filter the store list into the process
set, eliminating non-pointers and duplicates. If some of the collected generations have
remembered set entries, we merge those into the process set as well. We do the same with
pointers contained in a handful of global variables. Finally we use the live register mask
given to the collector to take care of any pointers in the registers. When the collection
completes, the emptied remembered sets will have been regenerated to reflect possible
object promotions to higher generations.

3.4 Object processing

We left the object format unchanged (thus no changes were required in the SML/NJ system
outside the run-time), and were able to take advantage of parts of the original SML/NJ
garbage collector code that analyse object contents; promotion is somewhat complicated
by the need to differentiate between small and large objects and copy large ones over into
LOS.

3.5 Full collections

Language implementations with low allocation rates can rely on the interactive system
user to initiate full collections (collections of the entire heap). In SML this approach doesn’t
work, since the amounts allocated in between successive user interaction points may be
large enough to warrant full collections. The mechanism of the standard SML/NJ collector
is to decide, following each “minor” collection, whether a full “major” collection is needed.
Wekept this approach intact, anddevised a simpledecisionpolicy to gowith it: ifwe cannot
guarantee that upon the next minor collection there will be enough free blocks, we do a
full collection. Note that the relatively frequent major collections of the SML/NJ collector
correspond to our generation 1 collections; our full collections are a rare eventwith a proper
generational setup.

The guarantee depends on the amount of live data at the time of next collection, and
as such cannot be computed exactly. We could predict either conservatively, or ‘optimisti-
cally’, relying on more or less precise estimates on the amount of data in the heap and its
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liveness. Being too conservative, one pays a performance penalty, but is rewarded by not
running out of space unnecessarily. The computational cost of the calculations themselves
must be kept in check. In our implementation, we used precise space calculations and a
strictly conservative policy. Note, however, that the particular choice of policy does not
affect any of the results reported below.

In the future, weplan touse the train algorithm formature object space23 tomanageoldest
objects. In the object-oriented language Beta, the algorithm was successful in avoiding the
long pauses caused by major collections,17. If the algorithm is able to isolate code objects
and other semi-permanent data, it may reduce total collection time as well.

3.6 Instrumentation

We equipped the language–collector interface with statistics gathering code which we
execute just before launching an actual collection, and just after it is complete. We go over
all the generations and all the steps in each. To compute the amount of data in a step, we
follow its list of blocks, and add up the used space in each block. We follow the list of large
objects associated with the step and add them as well. The resulting step size statistics are
printed out to be analysed off-line.

4 Object dynamics

In the preceding sections, we described a flexible garbage collector and howwe integrated
it with SML. We shall now consider how to characterise object behaviour in general, and
how this behaviour affects the performance of collection algorithms. This development
will lead to the formulation of our experimental setup in Section 6.

The effectiveness of generational garbage collectors hinges on the assumption, termed
the generational hypothesis, that young objects die more quickly than old objects.30, 43 Hayes
refined this into aweak and a strong generational hypothesis.19 Qualitatively expressed, the
weak hypothesis is that newly-created objects have a much lower survival rate than objects
that are older; the strong hypothesis is that even if the objects are not newly-created, the
relatively younger objects have a lower survival rate than the relatively older objects. The
weak hypothesis has been confirmed repeatedly in different heap-allocating systems, and
our results belowdo it again in the context of SML. It justifies theuse of a simple generational
collector with a new space and an old space: the collection effort is concentrated in the new
space where there is high gain; it is reduced (collections less frequent) in the old space.
However, having more generations is justified only under the strong hypothesis. We now
turn to an analytical model of the temporal behaviour of heap-allocated objects, following
the lead of Baker.7

The intensity of heap allocation – the rate at which new objects are created – varies from
one language implementation to another, from one application program to another, and
from one program execution phase to another. For a class of performance considerations,
the latter variation is important. For example, opportunistic garbage collection48 takes
advantage of idle periods in an interactive application to run the collector. In such a
setting, heap behaviour must be characterised in terms of real, wall-clock time. In other
cases, it suffices to define the load on the collector as the amount of data created. Thus, the
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time variable in ourmodel is quantified as the amount allocated since the start of execution.
The age of an object is the amount allocated since object creation.

The most direct study of object dynamics tracks each object from creation through
promotions to the point when it becomes unreachable� to the point when it is collected.49

This technique demands an enormous computational expense, especially in a language
such as SML/NJ, with a very high allocation rate; we have not attempted it. Instead we
study the dynamics of objects by volume, as a useful approximation. We do this by tracking
groups of objects of similar age as a unit.y

The nominal nursery size is the size assigned for use by the nursery (Section 2.2); this is
the maximum amount of allocation in between successive garbage collections.z A small
portion of this space remains unused, though. Since objects are of unequal size, they don’t
always fill the available nursery space exactly. Thus there is some slack at the end, and the
expected waste is 1/2 the object size. Moreover, in SML/NJ there is a waste of 4096 bytes
due to the limit check implementation.

For any given collection, the nursery survival ratio (sometimes termed promotion ratio) is
the ratio of the amount of data promoted out of the nursery to the amount of data originally
in the nursery. In a copying collector, this ratio is closely tied to the cost of collection, since
the overwhelming component of this cost is due to copying promoted objects. The survival
rate is certainly not uniform during a program run, but for the purpose of analysis we
introduce an aggregate measure defined for a program run, the nursery survival rate, equal
to the ratio of the total amount promoted out of the nursery over all collections to the total
amount allocated in the run. As defined, the nursery survival rate depends on the choice
of collection points in the particular program run. We assume further that under uniform
nursery size (i.e., uniform spacing of collection points) this rate is determined by nursery
size, and little influenced by the positioning of points. Therefore we consider the nursery
survival rate as a function of nursery size. Furthermore, we abstract from the integral
(whole number of bytes) values of nursery size, amount allocated and amount promoted,
and assume continuous, sufficiently many times differentiable, functions.

For a given age, the object survival rate is the fraction of objects (by volume) which
survive to be that age or older. Thus, object survival rate is a function of age. As above, we
abstract to a continuous model.

There is a simple relationship between the nursery survival rate s(x) and the object survival
rate so(x). Just before a collection, a nursery of size M contains objects whose age ranges
between 0 andM . The amount promoted out of the nursery is

Z M

0
so(x)dx:

The nursery survival rate is

s(M) =

1

M

Z M

0
so(x)dx:

�To be precise, one could consider the object useless immediately after the last reference to it is made, even
if it remains reachable. This approach is related to the problem of compile-time garbage collection which is
beyond the scope of this study.

yIt has been suggested that a hybrid scheme could be used: tracking newer objects by group, and older
objects (which are fewer) individually.

zExcepting a system configured to allocate directly into LOS.
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Hence

Ms(M) =

Z M

0
so(x)dx:

Differentiating with respect toMwe obtain the solution

so(x) = s(x) + xs0(x):

Note that both survival rates are nonincreasing functions by definition, so that s0(x) � 0
and therefore the object survival rate is everywhere lower than the nursery survival rate.

We define object mortality, a function of object age, to be the probability of objects of that
age dying within the next infinitesimal time increment. Formally,

mo(x) = �

so
0

(x)

so(x)
= �

d

dx
ln so:

For example, if mo(100000) = 4 � 10-6byte-1, and there are 10000 bytes of age 100000, then
one expects 4 of those bytes to die before another 100 bytes are allocated, roughly speaking.

By analogy, we define nursery mortality to be

m(x) = �

s0(x)

s(x)
= �

d

dx
ln s:

We interpret nursery mortality, from the implementor’s standpoint, as the marginal
yield in the volume of dead data as the nursery size is increased.

5 Benchmarks

We sketched above the experimental environment we used in our study and a simple
underlying theory. Before we proceed to the experiments themselves, we describe here
the benchmarks we used. Choosing an appropriate set of benchmark programs is not a
simple task. Ideally, there are two approaches one could take: select ‘realistic’ benchmarks
which reflect the behaviour of those programs that are most important in practice; or, select
‘synthetic’ benchmarks which stress particular aspects of the system at hand.

In the context of the Fox project, it appeared reasonable to adopt the first approach,
and look for examples of systems software code in ML. However, such code had yet to be
written; what was available to us at the most were pieces that could be incorporated in
such software.

The second approach is somewhat unwieldy for an assessment of the runtime system
of SML/NJ: the high semantic level of the language, far removed from the implementation
level, makes it difficult to control the allocation pattern with any precision.�

Therefore, we depart from the outlined ideal and use the conventional approach – a
set of benchmarks established in the research community for the language at hand. The
benchmark suite presented here draws upon Appel’s collection,4 and adds some scientific
programs. Table 1 summarises the individual benchmarks.

�On the other hand, a straightforward, careless, programming style in functional programming languages
yields programs with surprisingly bad space behaviour, muchmore readily than in a low-level language. This
characteristic is particularly true of implementations using combinator graph reduction.34, 33Observe that these
effects combinewith the inherent differences in programming style to render comparisons of ‘same’ programs
expressed in different languages very questionable.
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Program Description

CW The Concurrency Workbench11 is a tool for analysing networks of finite state processes
expressed in Milner’s Calculus of Communicating Systems, processing a sample session
input.11, Section 7.5

Leroy An implementation of the Knuth-Bendix completion algorithm, implemented by Gérard
Huet, processing some axioms of geometry.

Lexgen A lexical-analyser generator, implemented by James S. Mattson and David R. Tarditi,5 pro-
cessing the lexical description of StandardML.

ML The SML/NJ compiler compiling the Leroy benchmark.

Modula Acompiler translating aModula-like language40 into GNUC. The input is a 1400-line source
program.

PIA The Perspective Inversion Algorithm46 decides the location of an object in a perspective
video image.

Simple A spherical fluid-dynamics program, developed as a “realistic” FORTRAN benchmark,13

translated into ID,16 and then translated into Standard ML by Lal George. Its imperative
stylemay be expected of time-critical pieces of systems software, or of pieces translated from
existing code.

VLIW A Very-Long-Instruction-Word instruction scheduler written by John Danskin.

Yacc A LALR(1) parser generator, implemented byDavid R. Tarditi,41 processing the grammar of
StandardML.

Table 1: Benchmark Programs

6 Experiments

We have seen in the preceding sections how SML/NJ works with the collection toolkit.
Here we show how the flexibility of the toolkit is exploited to devise special configurations,
which, although not recommended for efficient program execution, are useful for object
statistics measurements.

Here we describe two main experiments which we performed on all our benchmark
programs; we shall later mention other experiments. The first is designed to measure
the object behaviour of newly allocated objects, whereas the second measures long-term
behaviour. Measuring promotion rates for newly alocated objects serves to determine
how large to make the allocation region: if it is too small, objects have not had a chance
to die, so too many are copied; if it is too large, too much memory is used. We shall
see that there is a range of sizes giving good performance across all studied benchmarks.
Measuring long-term behaviour serves to find good arrangements of older generations in a
multigenerational copying collector: the paramount desire is to balance excessive copying
against excessive garbage retention.

6.1 Short-term behaviour

The analysis in Section 4 shows that many object characteristics can be obtained from the
nursery survival rate. We designed the SML–toolkit interface to allow setting the size
of the nursery to an arbitrary number of bytes. Unfortunately, the construction of ML
precludes running these experiments for very small nurseries. Specifically, the nursery
must be large enough so that all allocation requests may be met without having to change
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the sizedynamically. Indeed, the absolute lower limit is 32Kbytes, since this size is required
whenever ML calls C functions.

To span the range of nursery sizes up to 15 megabytes, we used 190 points with a
variable step size. For each point we ran the benchmark recording exact amounts allocated
and promoted. As explained below, the main computation cost for this experiment was
incurred for the small nursery size points. Since the organisation of the older generations
is irrelevant to the measurements here, we used an efficient one.

Thenursery survival ratewasestimated as the ratio of total promotionout of thenursery
to total program allocation. The approach has its drawbacks. Assuming deterministic
execution, a given benchmark allocates a definite discrete sequence of objects, regardless
of the garbage collector setup. A choice of nursery size imposes a partition of these objects
into groups. As a result of unevenness of these groups, we have some discretisation noise in
the observed nursery survival data – occasional increases, which are not possible in theory,
as discussed in Section 4 above. We use standard interpolation and smoothing techniques20

before we compute the other measures by numerical differentiation. Nevertheless, in
the age region around 2 megabytes and above, the noise becomes too great, because the
numberof collectionsperformed for the entire benchmark runbecomes too small. Thenoise
is reflected in rising segments in the object survival curve, and is particularly noticeable as
humps in the object mortality curve, which involves a second derivative. For this reason,
we shall only display the curves for the region below 2 megabytes, and still be cautious in
interpreting them.

6.2 Long-term behaviour

To examine dynamics of longer-lived objects, we need to know not only the time of object
allocation, but also the time of object demise; we can do that if we do a full collection
frequently enough. Following a full collection only live objects are left on the heap. If an
object was live following the previous full collection and is not live following this one, then
the time of death is somewhere in between the two collections. Thus, even if we do not
know the exact time of death, we have a lower and upper bound on it, and they can be
made as tight as necessary by collecting frequently enough. We devised a setup in which
a nursery of some size M is followed by a large number N of steps, each allowed to grow
up to a maximum size ofM. Thus each of these steps can safely contain the contents of the
nursery. The configuration is depicted in Figure 1.

We set up promotion policies so that objects are promoted from the nursery to the first
of these steps, and from the i-th step into the i+1-st step on each collection. All these steps
belong togeneration0 andare always scavenged. Thus, the ageof objects in step i is roughly
proportional to i. In choosing the parameters M and N, we had to ensure that MN � T,
whereT is the total amount allocated by the programat hand. Therefore, objects neverneed
to be promoted beyond stepN. We chose nursery sizeM based on the temporal granularity
desired and the computational cost we could afford (since each collection collects the entire
heap, this cost is inversely proportional to M). For the benchmarks reported here, we had
a nursery of M=100 kilobytes and N=10000 steps in generation 1, which allowed up to
1 gigabyte of allocation.

For each collection, we record the size of each step before and after. A run with N

collections and thus N steps requires O(N2
) numbers to be recorded; we use a differential
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Nursery Generation 1

Collection 1

Collection 2

Collection 3

Collection 4

Step 0 Step 1 Step 2 Step 3 Step 4

Figure 1: Collector configuration for long-term behaviour experiments.

encoding and compression scheme to make this feasible for values of N in the thousands.
We note that the size of step i at collection j can be recorded as a delta from the size of step
i� 1 at collection j� 1. Furthermore, since most of the mortality is for the youngest steps,
many of the deltas will not only be small, but zero. So we truncate the all-zeroes tail of the
series of deltas. This already reduces the space required to quasi-linear in the number of
collections. We use standard compression techniques to reduce the remaining redundancy.

A study of object dynamics necessarily gathers large quantities of object statistics data.
It is therefore necessary to find proper ways of presenting the data; here we outline our
visualisation techniques for long-term behaviour.

Away to display the entire data set, for modest values ofN, is a three-dimensional plot,
as illustrated in Figure 2 for a short initial segment of the execution of the Leroy benchmark
(up to 3 megabytes of allocation). Here the execution time flows along one horizontal axis,
and object age along the other; total object volume is the vertical axis. This kind of plot is
useful for noting macroscopic behaviour. In the plot, a section perpendicular to the time
axis (such as the foreground section) shows the instantaneous distribution of objects by
age. A section perpendicular to the age axis shows live objects of a certain age (such as
the rear-most section, which shows the live objects which just survived the nursery). The
diagonal view (downward) corresponds to the evolution of groups of objects allocated at
the same time. This plot is a good way to distinguish long-lived data structures.

A number of statistics can be extracted from the data set and displayed individually.
Since the age of an object is implicit in its step, whenever a step shrinks we know the age
of the objects that died. Inverting this relation, we obtain the object lifetime distribution,
as illustrated in Figures 6-14g. Likewise, age distribution is obtained by averaging live
data age over the entire run, as in Figures 6-14f. An important characteristic of long-term
behaviour is the profile of total live data against time; it is here that programs will show
striking differences. See Figures 6-14e.
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Figure 2: Joint time–age distribution for a segment of Leroy.

Finally, an application writer will benefit from seeing an animated picture of heap
dynamics. We built an X Windows interface representing the nursery and the steps; the
SML image equipped with statistics instrumentation fires up the display and maintains a
scrolling self-scaling bar graph representing the sizes of the nursery and all the steps. An
auxiliary program can be used to display the same bar graph off-line from the statistics
files.

7 Results

We shall look at the results obtained from our main two experiments, first the promotion
analysis for young objects and then the lifetime analysis for older objects. We shall dis-
cover, as expected, that object decay is faster than exponential for new objects. In other
words, the weak generational hypothesis is confirmed. The investigation in Section ?? will
further qualify this result, showing that it is the function closure objects which exhibit the
generational behaviour most strongly. Our analysis of older objects is not conclusive. On
the one hand, the benchmarks have wildly different behaviour patterns, with no imme-
diately perceptible common characteristics. On the other, these benchmarks are still too
short-running to reveal true long-term behaviour. Further workwill be needed to elucidate
these points.
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7.1 Behaviour of young objects

Let us examine the behaviour of young objects as revealed in the survival and mortality
curves. For example, let us look at the CW benchmark, Figure 6. We see the fast drop
in survival in the region of new objects (Figure 6a). From a value of 100% at 0, the
nursery survival is down to 3% for the smallest size we measured, 35 kilobytes. The curve
slowly levels and is close to flat by 2 megabytes. The nursery mortality curve (Figure 6c)
correspondingly falls from its initial high values, and by the time the nursery is sized at
500 kilobytes to 1 megabyte, it is quite low.

The object survival curve (Figure 6b) has a knee even earlier than nursery survival, at
the age of around 100 kilobytes. Due to noise, it cannot be trusted beyond 1megabyte. The
object mortality (Figure 6d) clearly displays a sharp drop and reaches zero by 1 megabyte,
but it is too noisy by that point as well.

Looking at other benchmarks, we note qualitatively the same behaviour. What is
different is the age at which the survival curve starts levelling off, and what level is
reached. For instance, ML (Figure 9) has a much higher nursery survival rate and the knee
in the object survival rate curve, although present at around 150 kilobytes, is not as sharp.
Likewise, the corresponding mortality curves lie much lower than for CW.

The conclusion is that the newly allocated objects behave substantially the same way
across all benchmarks. We explain this as a result of the overwhelming number of function-
closure objects as opposed to user-level objects. These objects are for the most part short-
lived, as they represent what in other implementations would be the active area on top of
the stack. Hence their statistics mask those of the user-level data, which are application-
specific. The lesson for collector setup is that the marginal utility of increasing the nursery
size diminishes very fast. The designer will weigh this fact against available memory, and
will not spend more than 1 or 2 megabytes on the nursery even if the most demanding
applications (such as the compiler) are expected. A much smaller area, 500–700 kilobytes
will suffice in many cases. Another extrapolation is to stack allocation: in object survival
curves, the knee (however sharp) is always below 250 kilobytes. This size would then be
a generous estimate for the size of the active stack area in an implementation allocating
closures on the stack rather than the heap. We return to this point with a more detailed
analysis below.

7.2 Behaviour of older objects

Each program leaves a characteristic signature in its live data profile. Inspection of these
curves reveals phases of program execution, building-up of temporary data structures and
their disposal, etc. For example, the curve for ML (Figure 9e) shows the parsing and type
checking phases first, followed by repeated optimisation passes over the CPS form, and
code generation and instruction scheduling passes. On the other hand, Lexgen (Figure 8e)
and Leroy (Figure 7e) show a steady accumulation of data. It would be worthwhile to
explore the reference pattern to the data: are objects kept because they are truly used in
computations, or just because they are pointed toby some object that lives long (a dictionary
or symbol table)?
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8 Further analysis

There are many dimensions to explore in heap behaviour; we have undertaken additional
experiments in some promising directions, including simulations, cache performance, op-
portunism analysis, and refined promotion analysis. Some of these are done by further
examination of the data already described, whereas some require new data to be gathered
beyond what is straightforwardly available from the toolkit.

8.1 A simulation technique

Wehave developeda technique for computing the copying costs in a toolkit-based garbage-
collected system by means of simulation. Since copying dominates the cost of collection,
this is a good estimate of total cost as well.

First, we develop a collection cost model, which relates the execution time of collection
to the amount of copying done. This dependence turns out to be very nearly linear. The
slope of the line is determined by implementation efficiency. Second, we compute the
complete benchmark profile, as in Section 6.2.

We then parametrise a generic toolkit simulator with a particular generational setup
(plan file). We feed the benchmark profile to the simulator. As result we obtain a time
profile for each step and generation, and total promotion for each step. Using the collection
cost model, we compute the total collection cost for the benchmark. The advantage over
direct measurements is that the simulator can be much faster than the original program,
especially if made to explore multiple configurations simultaneously.

8.2 A cost model

The costmodelwe use is based on cache simulations, and allows high precision in assessing
the number of machine cycles for individual collections. We used the program tracing tool
QPT8 with adaptations for SML/NJ.42 For the cache simulation, we modified the Dinero III
tool.21 The cache configuration approximates the one found on the DECStation 5000/200.
We marked the beginning and end of each collection as events, and were thus able to
find the exact number of instructions executed and various cache misses for the collection.
From these we computed the number of cycles taken by the collection. In parallel, we
recorded the promotion statistics as before. We did this for a range of nominal nursery
sizes performing 24702 collections. The resulting data points are plotted in Figure 3. The
linear regression analysis gives c = 5183+ 20.30b, where c is the collection cost (in cycles)
and b is the amount promoted (in bytes).

8.3 An example: nursery resizing

As an example of our approach, we compute the available gains that can be achieved
by the technique of dynamic nursery resizing. We consider a system which has a large
area set aside for the nursery, but does not always use all of it – in effect dynamically
changing nursery size and choosing collection points. A good choice is to avoid collecting
when the nursery contains a lot of live data. This may sometimes be accomplished by
collecting at opportunemoments even before the maximum nursery size is filled. Thus, we
must find out how much can ideally (that is, with a prescient run-time system) be gained
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Figure 3: Dependence of collection cost on the amount promoted.

from this strategy as compared with uniformly using the maximum size. We developed
an algorithm which takes the cost model, a maximum size, and a benchmark profile as
input, and computes an optimal placement of collection points. The plots for a range of
maximum sizes given in Figures 6-14h show that increasing the maximum nursery size
opens more opportunities for savings over the uniform (always maximum size) strategy,
but the absolute improvement never exceeds 30% for ML, or 8% for Leroy. Of course,
any realistic scheme exploiting opportunism can only approach the ideal, and will require
compiler support and/or user-level language features to be realised. In languages other
thanML, theremay bemore opportunism available at the nursery level; withML’s extreme
allocation, opportunism is apparently pushed to higher generations. How much there is
remains a question for future work.

8.4 Cache performance results

The cache simulations using Dinero were analysed under the assumption of a DECStation-
like cache configuration;� we varied cache size and nursery size as parameters and com-
puted the cycles-per-instruction measure. The results presented here are limited to one
benchmark, Leroy, but are nevertheless instructive.y

Keeping the nursery size fixed at 2megabytes and varying the cache size from 8K bytes
to 1280K bytes (Figure 4a) we note a significant decrease in the cache penalty; caches under
400K bytes suffer significant penalties (especially instruction cache). This is not surprising
in the light of detailed cache studies for the standard SML/NJ collector.15On the other hand,
one would expect the cache penalties to go down, with fixed cache size, if the nursery is
made smaller so that it maymore readily fit in the cache. In reality, the effect on total cache
penalty is the opposite: with a 64K byte cache the frequent garbage collections destroy
instruction locality so the high instruction fetch miss penalties offset any improvement
in data cache performance (Figure 4b). Overall, the cycles-per-instruction measure varies

�In particular, the data and instruction caches are split and of same size, which is the size we consider.
yIn future work we shall explore these topics more thoroughly.
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Figure 4: Cache overhead.

very little (note the narrow range of the y-axis) and is greater for the smallest nurseries.
However, the dominant adverse effect of small nursery size will come not from cache

considerations but because of excessive copying, as discussed above. The actual execution
times for several benchmarks varying nursery size are shown in Figure 5. The timings are
for a DEC Station 5000/200 running Mach.
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Figure 5: Effect of nursery size on execution time.

8.5 A refinement: object statistics by class

The experimental setup described so far dealt with properties of objects en masse; we
should like to havemore refined information. Wemodified the language-collector interface
slightly so that we could gather allocation and promotion statistics distinguishing objects
according to any run-time criterion (i.e., directly encoded or derivable from object contents
at run-time). We shall concentrate on two such criteria which require no modification to
the SML/NJ compiler: object size and object tag. Every object created by SML/NJ has a
header word which includes the tag; there are several kinds of objects distinguished, such
as records, pairs and arrays. The size of the object can be computed from the header word
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as well.
The distribution of allocated objects by size is shown by means of histograms and

cumulative plots ( Figures 6-14k-n ). Small objects completely dominate allocation in these
programs. This situation is favourable to a simple collector which minimises per-object
overhead.2 The distribution of all allocated objects by tag is shown in Figures 6-14i-j . Most
allocation consists of immutable records, or their special version, pairs. Some benchmarks
do allocate strings and arrays. Note (as in Figure 9i-j) that arrays are short (since their
fraction by volume is considerably less than by object count): the explanation is that
mutable objects (ref types) are represented as arrays of length one. Note also that when
programs do floating point arithmetic (PIA, Simple) and use reald objects, then these
objects take a good part of total allocation.

Previously, there have been measurements of the distribution of allocated objects by
kind for SML.42 Now we are in a position to assess the difference in temporal object
behaviour by kind. The same analysis as in Section 4 applies here, but for individual
object classes. We shall therefore present the basic nursery survival rate data with the
understanding that other measures are readily derivable. Nursery survival data classified
by object size are shown in Figures 6-14o for the five sizes contributing the most allocation
in the particular program (and these include 12, 16, 20 and 24 bytes in all cases). In
CW, Leroy, Lexgen, Simple and Yacc, the 12-byte objects (which are mostly pairs) have
markedly higher survival rates than other sizes. In other benchmarks, this is not the case,
but there are still clear differences in survival from one size to another.

The nursery survival data classified by object tag are shown in Figures 6-14p for those
tags contributing more than 1% of the allocation in the particular program. In general,
pairs survive longer than larger records. Floating point objects survive as long as pairs in
PIA, but considerably longer in Simple.

We now turn to the derivation of survival statistics separated by object kind using the
classification of Tarditi and Diwan:42, 15 in particular, closure records are distinguished from
user data records. In addition to the summary statistics they reported, we obtained from
them their raw results, with a finer breakdown of allocated objects. Therefore wemake use
of these results here, rather than repeat the measurements. The differences between their
environment and ours, namely version 0.91 vs. 0.93, batch compiler vs. interactive system,
are quantified below.

When a benchmark allocates objects of few distinct sizes, and when objects of a par-
ticular size are all of the same class, then we can match the two measurements with high
precision, and draw the consequent conclusions. Such is the case for the Yacc benchmark
on which we shall concentrate below. When the separation is less pronounced, the match
is more difficult to make, requiring a more complicated mathematical apparatus.

Table 2 summarises allocation needs of several benchmarks obtained by Tarditi and
Diwan. The first column lists total allocation (in bytes) and the remaining columns list the
percentage of allocated volume taken by objects of a given kind. On the other hand, Table 3
gives the allocation as determined by scanning the heap and counting all objects actually
allocated. (The entry " means that there are some objects in the given category, but the
number is too small to report.)

The total allocation reported is similar for the two measurements. There are two
notable exceptions: PIA and Simple. These are both numerically intensive and allocate
a large number of floating point objects (tag reald). These objects went unreported
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in Tarditi and Diwan’s measurements. In fact, if we subtract reald objects from our
measurements, we get allocation of 52 988073 for PIA and 282537 636 for Simple, much
closer to their numbers.� Apart from this omission, the remaining discrepancy is within
reasonable bounds. However, although we believe that we can safely make the points we
do below, we concede that a thorough validation will require rerunning the instrumented
code in exactly the same environment as the one used for collector-based measurements.

Program Allocation
(bytes)

Escaping
(%)

Known
(%)

Callee Saved
(%)

User Records
(%)

Other
(%)

CW 225 869760 4.0 3.3 67.2 19.5 6.0

Leroy 270 935720 37.6 0.1 49.5 12.7 0.1
Lexgen 132 185396 3.4 5.4 72.7 15.1 3.7
PIA 52 188164 0.6 40.4 36.5 18.4 4.1
Simple 269 046656 4.8 1.3 81.8 9.9 2.2

VLIW 237 987676 9.9 6.0 61.8 20.3 2.1
Yacc 68 061000 2.3 15.3 54.8 23.7 4.0

Table 2: Allocation characteristics of benchmark programs: breakdown by kind

Program Allocation
(bytes)

record
(%)

array
(%)

string
(%)

bytearray
(%)

realdarray
(%)

pair
(%)

reald
(%)

CW 260574 816 77.78 0.05 0.03 " 0 22.13 0

Leroy 267380 336 80.34 0.01 " 0 0 19.65 0
Lexgen 136846 336 82.17 0.14 0.90 " 0 16.79 0
PIA 75139 072 60.11 0.05 " " 0 10.35 29.48

Simple 332945 600 68.31 0.01 " " 0 16.54 15.14
VLIW 239726 640 75.18 1.18 0.36 " 0 23.28 "

Yacc 69334 632 76.35 0.10 0.51 " 0 23.03 0

Table 3: Allocation characteristics of benchmark programs: breakdown by object tag

We now consider the Yacc benchmark. The detailed breakdown of allocation obtained
by code instrumentation is given in Table 4. Table 5 gives the breakdown of allocation by
size (from our garbage collection based measurements). There are no user records over 40
bytes. The bulk of the user records are cons-cells, which take 12 bytes in SML/NJ. Also,
most closures have sizes other than this one. More strongly, the separation is good since the
vast majority of 12-byte objects are user records, and for all other sizes, the vast majority
are closures, except for 64 bytes, where spill records dominate. Therefore, with a high
degree of accuracy, we can identify 12-byte objects with user records, and the remaining
high volume sizes, 16, 20, 36, 40 and 44 bytes, with closures (for callee-save continuations).
With this identification, the survival statistics gathered for separate sizes (Figure 14g) can
be interpreted in a new light.

We can now see clearly that user records survive much longer than closures; over 8%
are still alive after 2 megabytes of allocation. This part of the allocation more closely

�In the meantime, they have redone the measurements to account for floating point objects, and confirmed
our observation.
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Closures for escaping functions:

Size 8 12 16 20 24 28 32 36 40 44 > 44

Volume (%) " 0.3 0.2 0.4 " 1.0 " " " " 2.2

Closures for known functions:

Size 44 > 44
Volume (%) " 15.2

Closures for callee-save continuations:

Size 12 16 20 24 28 32 36 40 44 > 44

Volume (%) 0.5 8.7 5.5 1.6 2.5 1.8 3.7 8.4 15.7 5.6

User records:

Size 8 12 16 20 24 28 36 40
Volume (%) 0.1 22.2 0.4 0.7 " " " "

Spills:

Size 64

Volume (%) 3.1

Arrays: "

Strings: 0.6%

Byte arrays: "

Real arrays: 0

Vectors: 0

Ref cells: "

Store list: 0.5%

Table 4: Allocation characteristics of benchmark Yacc: detailed breakdown by kind

Size 8 12 16 20 24 28 32 36 40 44 48 52
Volume (%) 0.26 23.06 10.17 6.90 2.08 3.95 3.21 4.13 8.79 15.19 6.38 0.55

Size 56 60 64 68 72 76 80 84 88 92 96 100
Volume (%) 0.09 0.37 3.39 0.35 0.16 0.07 0.86 3.75 3.89 0.84 0.89 0.04

Size 104 112 116 120 132 276 848 1028 1032 1808 1812 3040
Volume (%) 0.11 0.01 0.04 0.04 0.01 0.01 0.01 0.04 0.02 0.01 0.01 0.01

Table 5: Allocation characteristics of benchmark Yacc: breakdown by object size
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resembles that found in conventional language implementations. On the other hand,
closures have extremely short lifetimes. We speculate that the differences amongst them
(namely, 16- and 20-bytes large closures live considerably longer than 40- and 44-bytes
large ones) are due to iterative (tail-recursive) execution where particular size closures
are associated with particular functions. Thus, closures for “inner” functions are shorter-
lived than those for “outer”. The plots of nursery survival and mortality as well as object
survival and mortality for combined sizes corresponding to callee-save continuations are
given in Figure 15. The nursery survival rate is already below 1% at 80000 bytes of total
allocation, which corresponds to 43600 bytes of allocated callee-save continuation records.
If an alternative implementation allocated callee-save continuation records on the stack,
then the active top of the stack area could be estimated to be well within 45000 bytes. Note
that this size is sufficiently small to fit in present-day data caches.

9 Related work

Many authors have examined issues of garbage collection performance at the macroscopic
level, while some have tried to characterise it theoretically in terms of statistical properties
of object allocation. We believe that both approaches, in addition to finer granularity
measurements described here, are needed to inspire theoretical models, and should be
used to validate them. Ungar45 reported on the performance of garbage collection in
a Smalltalk system and investigated the tradeoffs in nursery size selection. Theoretical
models of behaviour have been proposed by Baker6. Statistical studies have been reported
by Zorn in the context of Lisp49; his methodology is based on object-level simulation, and
lifetimes are estimated from object reference points. We improve on his Discrete Interval
Simulator by taking advantage of complete liveness information.

10 Concluding remarks

The studies reported here had a rather broad focus and pointed to several promising
directions for further in-depth investigation. We showed the applicability of the garbage
collection toolkit in the context of a functional language with intensive heap allocation. We
developed a methodology for object statistics gathering taking advantage of the flexibility
inherent to the toolkit. We demonstrated a simple analytical model for object behaviour.
This methodology and the model, together with the testbed design will carry over to other
languages. We identified the patterns of heap behaviour characteristic of SML/NJ, and
investigated ways to improve it by different heap management policies. More exploration
is needed, however, in the area of older generation management. We touched briefly on
cache behaviour issues, and we plan to investigate the interaction of heap organisation and
cache configurationmore fully in forthcoming research. Ashortcomingof themethodology,
namely excessive noise in survival and mortality curves, remains to be alleviated in the
future. Finally, with more efficient simulation techniques, it should be possible to use
longer-running and more realistic benchmark programs.
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Figure 7: Leroy (continued).
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Figure 8: Lexgen.
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Figure 8: Lexgen (continued).
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Figure 9: ML.
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Figure 9: ML (continued).
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Figure 10: Modula.
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Figure 10: Modula (continued).

37



0

2

4

6

8

10

0 500000 1e+06 1.5e+06 2e+06

S
ur

vi
va

l r
at

e 
(%

)

Nursery size (bytes)

0

2

4

6

8

10

0 500000 1e+06 1.5e+06 2e+06

S
ur

vi
va

l r
at

e 
(%

)

Age (bytes)

(a) Nursery survival rate (b) Object survival rate

0

2

4

6

8

10

0 500000 1e+06 1.5e+06 2e+06

M
or

ta
lit

y 
(p

pm
/b

yt
e)

Nursery size (bytes)

0

2

4

6

8

10

0 500000 1e+06 1.5e+06 2e+06

M
or

ta
lit

y 
(p

pm
/b

yt
e)

Age (bytes)

(c) Nursery mortality (d) Object mortality

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07

Li
ve

 d
at

a 
(b

yt
es

)

Time (bytes of allocation)

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

0 100000 200000 300000 400000 500000 600000 700000 800000

Li
ve

 d
at

a 
(b

yt
es

)

Age (bytes)

(e) Live data profile (f) Age distribution

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

100000 1e+06 1e+07 1e+08

O
bj

ec
t v

ol
um

e 
(b

yt
es

)

Lifetime (bytes)

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

C
yc

le
s

Nursery size (bytes)

uniform
optimal

(g) Lifetime distribution (h) Nursery-level opportunism

Figure 11: PIA.
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Figure 11: PIA (continued).
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Figure 12: Simple.
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Figure 12: Simple (continued).
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Figure 13: VLIW.
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Figure 13: VLIW (continued).
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Figure 14: Yacc.
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Figure 14: Yacc (continued).
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Figure 15: Yacc: callee-save continuations only.
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