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Abstract

Program execution speed on modern computers is sensiyive fdctor of
two or more, to the order in which instructions are presetaetie proces-
sor. To realize potential execution efficiency, an optimizcompiler must
employ a heuristic algorithm for instruction schedulingucB algorithms
are painstakingly hand-crafted, which is expensive and-tiansuming. We
show how to cast the instruction scheduling problem as ailegutask, ob-
taining the heuristic scheduling algorithm automatical@ur focus is the
narrower problem of scheduling straight-line code (aldeddasic blocks
of instructions). Our empirical results show that just a features are ad-
equate for quite good performance at this task for a real rmogi®cessor,
and that any of several supervised learning methods penfizamly opti-
mally with respect to the features used.

1 Introduction

Modern computer architectures provide semantics of ei@te@quivalent to sequential exe-
cution of instructions one at a time. However, to achievehbiigexecution efficiency, they

employ a high degree of internal parallelism. Because iddal instruction execution times

vary, depending on when an instruction’s inputs are aviglalbthen its computing resources
are available, and when it is presented, overall execuima tan vary widely. Based on just
the semantics of instructions, a sequence of instructisoslly has many permutations that
are easily shown to have equivalent meaning—but they mag bamsiderably different exe-

cution time. Compiler writers therefore include algorithio schedule instructions to achieve
low execution time. Currently, such algorithms are harafted for each compiler and target
processor. We apply learning so that the scheduling algoris constructed automatically.

Our focus islocal instruction scheduling, i.e., ordering instructions within basic block. A
basic block is a straight-line sequence of code, with a ¢l or unconditional branch
instruction at the end. The scheduler should find optimajomd, orderings of the instructions
prior to the branch. It is safe to assume that the compilephaduced a semantically correct
sequence of instructions for each basic block. We consiadlgrreorderings of each sequence



(not more general rewritings), and only those reorderifgs dannot affect the semantics.
The semantics of interest are captureddegendences of pairs of instructions. Specifically,
instructionl; depends on (must follow) instructidpif: it follows I; in the input block and has
one or more of the following dependenceslpr{a) | uses a register used hyand at least one
of them writes the register (condition codes, if any, arattrd as a register); (Ib) accesses a
memory location that may be the same as one accesskddnd at least one of them writes
the location. From the input total order of instructionse @an thus build dependence DAG,
usually a partial (not a total) order, that represents aldbmantics essential for scheduling
the instructions of a basic block. Figure 1 gives a samplelidsck and its DAG. The task of
scheduling is to find a least-cost total order of each blobDRE&.
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Figure 1: Example basic block code, DAG, and partial scheedul

2 Learning to Schedule

The learning task is to produce a scheduling procedure tarusige performance task of
scheduling instructions of basic blocks. One needs to fivamsthe partial order of instruc-
tions into a total order that will execute as efficiently asgible, assuming that all memory
references “hit” in the caches. We consider the class ofdadbes that repeatedly select the
apparent best of those instructions that could be schedebdgproceeding from the beginning
of the block to the end; thigreedy approach should be practical for everyday use.

Because the scheduler selects the apparent best from tistsections that could be selected
next, the learning task consists of learning to make thiscteih well. Hence, the notion
of ‘apparent best instruction’ needs to be acquired. Thegs® of selecting the best of the
alternatives is like finding the maximum of a list of numbe@ne keeps in hand the current
best, and proceeds with pairwise comparisons, always kgepe better of the two. One
can view this as learning a relation over triplésl;,|;), whereP is the partial schedule (the
total order of what has been scheduled, and the partial oedeaining), and is the set of
instructions from which the selection is to be made. Thogdes that belong to the relation
define pairwise preferences in which the first instructiacoissidered preferable to the second.
Each triple that does not belong to the relation represepésran which the first instruction is
not better than the second.

One must choose a representation in which to state theam|atieate a process by which cor-
rect examples and counter-examples of the relation canfeeed, and modify the expression
of the relation as needed. Let us consider these steps itegokail.

2.1 Representation of Scheduling Preference

The representation used here takes the form of a logicalae)an which known examples
and counter-examples of the relation are provided as #iplés then a matter of constructing
or revising an expression that evaluates to TRUEPjf;, |j) is a member of the relation, and
FALSE if it is not. If (P,l;,1;) is considered to be a member of the relation, then it is safe to
infer that(P,1;,1;) is not a member.

For any representation of preference, one needs to repfestures of a candidate instruction
and of the partial schedule. There is some art in pickingui$eftures for a state. The method



used here was to consider the features used in a scheduled (B&C below) supplied by
the processor vendor, and to think carefully about thoseotimer features that should indicate
predictive instruction characteristics or important aspef the partial schedule.

2.2 Inferring Examples and Counter-Examples

One would like to produce a preference relation consistétit the examples and counter-
examples that have been inferred, and that generalizeganteiples that have not been seen.
A variety of methods exist for learning and generalizingrirexamples, several of which are
tested in the experiments below. Of interest here is howfer ithe examples and counter-
examples needed to drive the generalization process.

The focus here is on supervised learning (reinforcememilegis mentioned later), in which
one provides a process that produces correctly labeledmgarand counter-examples of the
preference relation. For the instruction-scheduling tésk possible to search for an optimal
schedule for blocks of ten or fewer instructions. From arinogt schedule, one can infer
the correct preferences that would have been needed toq@ddat optimal schedule when
selecting the best instruction from a set of candidateseasribed above. It may well be that
there is more than one optimal schedule, so it is importalyttorinfer a preference for a pair
of instructions when the first can produce some schedulerttbtin any the second can.

One should be concerned whether training on preference foan optimally scheduled small
blocks is effective, a question the experiments address. worth noting that for programs
studied below, 92% of the basic blocks are of this small sizel the average block size is
4.9 instructions. On the other hand, larger blocks are érdcmore often, and thus have
disproportionate impact on program execution time. Onddctaarn from larger blocks by
using a high quality scheduler that is not necessarily agtirdlowever, the objective is to be
able to learn to schedule basic blocks well for new architest, so a useful learning method
should not depend on any pre-existing solution. Of courseetmay be some utility in trying to
improve on an existing scheduler, but that is not the longean goal here. Instead, we would
like to be able to construct a scheduler with high confideheéit produces good schedules.

2.3 Updating the Preference Relation

A variety of learning algorithms can be brought to bear ontés& of updating the expression
of the preference relation. We consider four methods here.

The firstis the decision tree induction program ITI (Utg&&rkman & Clouse, in press). Each
triple that is an example of the relation is translated inteetor of feature values, as described
in more detail below. Some of the features pertain to theectipartial schedule, and others
pertain to the pair of candidate instructions. The vectdhén labeled as an example of the
relation. For the same pair of instructions, a second tigpleferred, with the two instructions
reversed. The feature vector for the triple is constructetiedore, and labeled as a counter-
example of the relation. The decision tree induction progtizen constructs a tree that can be
used to predict whether a candidate triple is a member ofefagion.

The second method is table lookup (TLU), using a table inddxethe feature values of a
triple. The table has one cell for every possible combimatibfeature values, with integer
valued features suitably discretized. Each cell recordsntimber of positive and negative
instances from a training set that map to that cell. The tlldkup function returns the most
frequently seen value associated with the correspondihgttis useful to know that the data
set used is large and generally covers all possible table wigh multiple instances. Thus,
table lookup is “unbiased” and one would expect it to givelibst predictions possible for the
chosen features, assuming the statistics of the trainiddest sets are consistent.

The third method is the ELF function approximator (Utgoff &Bup, 1997), which constructs



additional features (much like a hidden unit) as necessailevt updates its representation of
the function that it is learning. The function is represdrtig two layers of mapping. The first
layer maps the features of the triple, which must be booleaRIF, to a set of boolean feature
values. The second layer maps those features to a singker sedlie by combining them

linearly with a vector of real-valued coefficients calledigi#s. Though the second layer is
linear in the instruction features, the boolean featuresianlinear in the instruction features.

Finally, the fourth method considered is a feed-forwardieidl neural network (NN) (Rumel-
hart, Hinton & Williams, 1986). Our particular network usesled conjugate gradient descent
in its back-propagation, which gives results comparableattk-propagation with momentum,
but converges much faster. Our configuration uses 10 hiddiés u

3 Empirical Results

We aimed to answer the following questions: Can we schedulgedl as hand-crafted algo-
rithms in production compilers? Can we schedule as well@abést hand-crafted algorithms?
How close can we come to optimal schedules? The first two igusstve answer with com-

parisons of program execution times, as predicted fromlsitions of individual basic blocks

(multiplied by the number of executions of the blocks as messin sample program runs).
This measure seems fair for local instruction schedulimggesit omits other execution time

factors being ignored. Ultimately one would deal with th&setors, but they would cloud the
issues for the present enterprise. Answering the thirdtouress harder, since it is infeasible
to generate optimal schedules for long blocks. We offer dglaanswer by measuring the
number of optimal choices made within small blocks.

To proceed, we selected a computer architecture impletn@meand a standard suite of bench-
mark programs (SPEC95) compiled for that architecture. eeted basic blocks from the
compiled programs and used them for training, testing, aalliation as described below.

3.1 Architecture and Benchmarks

We chose the Digital Alpha (Sites, 1992) as our architecfarehe instruction scheduling
problem. When introduced it was the fastest scalar processdable, and from a dependence
analysis and scheduling standpoint its instruction sdatiple. The 21064mplementation of
the instruction set (DEC, 1992) is interestingly compleayihg two dissimilar pipelines and
the ability to issue two instructions per cycle (also catledl issue) if a complicated collection
of conditions hold. Instructions take from one to many tefsyoles to execute.

SPEC95 is a standard benchmark commonly used to evaluateeg@dution time and the
impact of compiler optimizations. It consists of 18 progsarh0 written in FORTRAN and
tending to use floating point calculations heavily, and 8temi in C and focusing more on
integers, character strings, and pointer manipulatiohes& were compiled with the vendor’s
compiler, set at the highest level of optimization offeradhich includes compile- or link-
time instruction scheduling. We call these t@eig schedules for the blocks. The resulting
collection has 447,127 basic blocks, composed of 2,205p8Gctions.

3.2 Simulator, Schedulers, and Features

Researchers at Digital made publicly available a simul&tombasic blocks for the 21064,
which will indicate how many cycles a given block requiresdgecution, assuming all mem-
ory references hit in the caches and translation look-asidfers, and no resources are busy
when the basic block starts execution. When presentingie biagk one can also request that
the simulator apply a heuristic greedy scheduling algoritiVe call this schedulddEC.

By examining the DEC scheduler, applying intuition, andsidaring the results of various



preliminary experiments, we settled on using the featuf@alole 1 for learning. The mapping
from triples to feature vectors isdd: a single boolean 0 or lycp, e, andd: the sign ¢, 0O,

or +) of the value forl; minus the value fol;; ic: both instruction’s values, expressed as 1 of
20 categories. For ELF and NN the categorical valuesdaas well as the signs, are mapped
to a 1-ofn vector of bits,n being the number of distinct values.

Table 1: Features for Instructions and Partial Schedule

Heuristic Name Heuristic Description Intuition for Use
Odd Partial (odd) Is the current number of instructions schefl- If TRUE, we're interested in scheduling in
uled odd or even? structions that can dual-issue with the previ-
ous instruction.
Instruction Class (ic) The Alpha’s instructions can be divided intp The instructions in each class can be exe-
equivalence classes with respect to timingcuted only in certain execution pipelines, etg.
properties.

Weighted Critical Path (wcp)| The height of the instruction in the DAG (the Instructions on longer critical paths should
length of the longest chain of instructions de¢- be scheduled first, since they affect the lower
pendent on this one), with edges weighted bybound of the schedule cost.
expected latency of the result produced by
the instruction
Actual Dual (d) Can the instruction dual-issue with the previ- If Odd Partial is TRUE, it is important tha
ous scheduled instruction? we find an instruction, if there is one, thgt
can issue in the same cycle with the previolis
scheduled instruction.
Max Delay (e) The earliest cycle when the instruction cgn We want to schedule instructions that will
begin to execute, relative to the current cycle; have their data and functional unit available
this takes into account any wait for inputs fgr earliest.
functional units to become available

This mapping of triples to feature values loses informatibinis does not affect learning much
(as shown by preliminary experiments omitted here), bigdtices the size of the input space,
and tends to improve both speed and quality of learning foreslzarning algorithms.

3.3 Experimental Procedures

From the 18 SPEC95 programs we extracted all basic blockkako determined, for sam-
ple runs of each program, the number of times each basic blaskexecuted. For blocks
having no more than ten instructions, we used exhaustivels@d all possible schedules to
(a) find instruction decision points with pairs of choicesendone choice is optimal and the
other is not, and (b) determine the best schedule cost atiairior either decision. Schedule
costs arealways as judged by the DEC simulator. This procedure produced t¥€00,000
distinct choice pairs, resulting in over 26,000,000 trplgiven that swapping andl; creates
a counter-example from an example and vice versa). We edldéb of the choice pairs at
random (always insuring we had matched example/countmple triples).

For each learning scheme we performed an 18-fold crosdatain, holding out one program'’s
blocks for independent testing. We evaluated both how dftertrained scheduler made opti-
mal decisions, and the simulated execution time of the tiegidchedules. The execution time
was computed as the sum of simulated basic block costs, te€idfty execution frequency as
observed in sample program runs, as described above.

To summarize the data, we use geometric means across thed®freach scheduler. The
geometric mearg(Xy,...,%n) Of X1,...,%, iS (X1 - ... - Xn)¥™. It has the nice property that
9(X1/Y1,---s%/Yn) = 9(X1,...,%)/9(Y1,---,¥n), Which makes it particularly meaningful for
comparing performance measures via ratios. It can also emwas the anti-logarithm of
the mean of the logarithms of the we use that to calculate confidence intervals using tradi-
tional measures over the logarithms of the values. In ang, ggesometric means are preferred
for aggregating benchmark results across differing prograith varying execution times.



3.4 Results and Discussion

Our results appear in Table 2. For evaluations based ongbeeldirogram execution time, we
compare with Orig. For evaluations based directly on thenieg task, i.e., optimal choices,
we compare with an optimal scheduler, but only over basickdmo more than 10 instructions
long. Other experiments indicate that the DEC schedulepstiralways produces optimal
schedules for such short blocks; we suspect it does wellrgeloblocks too.

Table 2: Experimental Results: Predicted Execution Time

Relevant Blocks Only All Blocks Small Blocks
Sche-| cycles ratio to Orig cycles ratio to Orig % Optimal
duler | (x10°) | (95% conf.int.) | (x10% | (95% conf. int.) Choices

DEC | 24.018| 0.979 (0.969,0.989) 28.385 | 0.983 (0.975,0.992
TLU | 24.338| 0.992 (0.983,1.002) 28.710| 0.995 (0.987,1.003) 98.1(97.9,98.3
ITI 24.395| 0.995 (0.984,1.006) 28.758 | 0.996 (0.987,1.006) 98.2(98.1,98.4
NN 24.410| 0.995 (0.983,1.007) 28.770 | 0.997 (0.986,1.008) 98.1(98.0,98.3
ELF | 24.465| 0.998 (0.985,1.010) 28.775 | 0.997 (0.988,1.006) 98.1(97.9,98.3
Orig | 24.525] 1.000 (1.000,1.000) 28.862 | 1.000 (1.000,1.000
Rand | 31.292| 1.276 (1.186,1.373) 36.207 | 1.254 (1.160,1.356

The results show that all supervised learning techniquedyme schedules predicted to be
better than the production compilers, but not as good as Efe Beuristic scheduler. This is a
striking success, given the small number of features. Ageep, table lookup performs the
best of the learning techniques. Curiously, relative penfmce in terms of making optimal
decisions does not correlate with relative performancerms of producing good schedules.
This appears to be because in each program a few blocks aretederery often, and thus
contribute much to execution time, and large blocks are w@recdisproportionately often.
Still, both measures of performance are quite good.

What about reinforcement learning? We ran experimentsteittporal difference (TD) learn-
ing, some of which are described in (Scheeffal., 1997) and the results are not as good. This
problem appears to be tricky to cast in a form suitable for B&zause TD looks at candi-
date instructions in isolation, rather than in a preferesetéing. It is also hard to provide an
adequate reward function and features predictive for tsleaahand.

4 Related Work, Conclusions, and Outlook

Instruction scheduling is well-known and others have psggomany techniques. Also, op-
timal instruction scheduling for today’s complex processis NP-complete. We found two

pieces of more closely related work. One is a patent (Tarsy éd¥rd, 1994). From the

patent’s claims it appears that the inventors trained alsipgrceptron by adjusting weights of
some heuristics. They evaluate each weight setting by stihgdan entire benchmark suite,
running the resulting programs, and using the resultingsito drive weight adjustments. This
approach appears to us to be potentially very time-conayntirhas two advantages over our
technique: in the learning process it uses measured egadirtes rather than predicted or
simulated times, and it does not require a simulator. Beipgtant, this work does not offer
experimental results. The other related item is the apticaf genetic algorithms to tuning

weights of heuristics used in a greedy scheduler (Beaty&cord, & Sweany, 1996). The

authors showed that different hardware targets resultgiffierent learned weights, but they
did not offer experimental evaluation of the quality of tiesulting schedulers.

While the results here do not demonstrate it, it was not eaast this problem in a form
suitable for machine learning. However, once that form wa®mplished, supervised learn-



ing produced quite good results on this practical probleretteln than two vendor production
compilers, as shown on a standard benchmark suite useddhra¢ging such optimizations.
Thus the outlook for using machine learning in this appitcatppears promising.

On the other hand, significant work remains. The current ixaits are for a particular
processor; can they be generalized to other processorsPaliftone of the goals is to improve
and speed processor design by enabling more rapid construtoptimizing compilers for
proposed architectures. While we obtained good performpralictions, we did not report
performance on a real processor. (More recently we obtdirest results (Mosst al., 1997);
ELF tied Orig for the best scheme.) This raises issues ngtafrfhithfulness of the simulator
to reality, but also ofjlobal instruction scheduling, i.e., across basic blocks, and of somewhat
more general rewritings that allow more reorderings ofringtons. From the perspective of
learning, the broader context may make supervised leaimpgssible, because the search
space will explode and preclude making judgments of optiealsuboptimal. Thus we will
have to find ways to make reinforcement learning work bettettfis problem. A related issue
is the difference between learning to make optimal decssi@m small blocks) and learning
to schedule (all) blocks well. Another relevant issue is ¢bst not of the schedules, but of
the schedulers: are these schedulers fast enough to usednction compilers? Again, this
demands further experimental work. We do conclude, thotkgtt,the approach is promising
enough to warrant these additional investigations.
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