
Learning to Schedule Straight-Line Code

Eliot Moss, Paul Utgoff, John Cavazos
Doina Precup, Darko Stefanovíc

Dept. of Comp. Sci., Univ. of Mass.
Amherst, MA 01003

Carla Brodley, David Scheeff
Sch. of Elec. and Comp. Eng.

Purdue University
W. Lafayette, IN 47907

Abstract

Program execution speed on modern computers is sensitive, by a factor of
two or more, to the order in which instructions are presentedto the proces-
sor. To realize potential execution efficiency, an optimizing compiler must
employ a heuristic algorithm for instruction scheduling. Such algorithms
are painstakingly hand-crafted, which is expensive and time-consuming. We
show how to cast the instruction scheduling problem as a learning task, ob-
taining the heuristic scheduling algorithm automatically. Our focus is the
narrower problem of scheduling straight-line code (also called basic blocks
of instructions). Our empirical results show that just a fewfeatures are ad-
equate for quite good performance at this task for a real modern processor,
and that any of several supervised learning methods performnearly opti-
mally with respect to the features used.

1 Introduction

Modern computer architectures provide semantics of execution equivalent to sequential exe-
cution of instructions one at a time. However, to achieve higher execution efficiency, they
employ a high degree of internal parallelism. Because individual instruction execution times
vary, depending on when an instruction’s inputs are available, when its computing resources
are available, and when it is presented, overall execution time can vary widely. Based on just
the semantics of instructions, a sequence of instructions usually has many permutations that
are easily shown to have equivalent meaning—but they may have considerably different exe-
cution time. Compiler writers therefore include algorithms to schedule instructions to achieve
low execution time. Currently, such algorithms are hand-crafted for each compiler and target
processor. We apply learning so that the scheduling algorithm is constructed automatically.

Our focus islocal instruction scheduling, i.e., ordering instructions within abasic block. A
basic block is a straight-line sequence of code, with a conditional or unconditional branch
instruction at the end. The scheduler should find optimal, orgood, orderings of the instructions
prior to the branch. It is safe to assume that the compiler hasproduced a semantically correct
sequence of instructions for each basic block. We consider only reorderings of each sequence

(not more general rewritings), and only those reorderings that cannot affect the semantics.
The semantics of interest are captured bydependences of pairs of instructions. Specifically,
instructionI j depends on (must follow) instructionIi if: it follows Ii in the input block and has
one or more of the following dependences onIi: (a) I j uses a register used byIi and at least one
of them writes the register (condition codes, if any, are treated as a register); (b)I j accesses a
memory location that may be the same as one accessed byIi, and at least one of them writes
the location. From the input total order of instructions, one can thus build adependence DAG,
usually a partial (not a total) order, that represents all the semantics essential for scheduling
the instructions of a basic block. Figure 1 gives a sample basic block and its DAG. The task of
scheduling is to find a least-cost total order of each block’sDAG.

 P = P + 1;

 Y = *P;

 X = V; 2

Available Scheduled

Not Available Available

(d) Partial Schedule(a) C Code

11: STQ R1, X 2

43

(c) Dependence Dag of Instructions

3

1 2

4

(b) Instruction Sequence to be Scheduled

4: ADDQ R10, R10, 8

3: STQ R2, Y

2: LDQ R2, 0(R10)

Figure 1: Example basic block code, DAG, and partial schedule

2 Learning to Schedule

The learning task is to produce a scheduling procedure to usein the performance task of
scheduling instructions of basic blocks. One needs to transform the partial order of instruc-
tions into a total order that will execute as efficiently as possible, assuming that all memory
references “hit” in the caches. We consider the class of schedulers that repeatedly select the
apparent best of those instructions that could be schedulednext, proceeding from the beginning
of the block to the end; thisgreedy approach should be practical for everyday use.

Because the scheduler selects the apparent best from those instructions that could be selected
next, the learning task consists of learning to make this selection well. Hence, the notion
of ‘apparent best instruction’ needs to be acquired. The process of selecting the best of the
alternatives is like finding the maximum of a list of numbers.One keeps in hand the current
best, and proceeds with pairwise comparisons, always keeping the better of the two. One
can view this as learning a relation over triples(P; Ii; I j), whereP is the partial schedule (the
total order of what has been scheduled, and the partial orderremaining), andI is the set of
instructions from which the selection is to be made. Those triples that belong to the relation
define pairwise preferences in which the first instruction isconsidered preferable to the second.
Each triple that does not belong to the relation represents apair in which the first instruction is
not better than the second.

One must choose a representation in which to state the relation, create a process by which cor-
rect examples and counter-examples of the relation can be inferred, and modify the expression
of the relation as needed. Let us consider these steps in greater detail.

2.1 Representation of Scheduling Preference

The representation used here takes the form of a logical relation, in which known examples
and counter-examples of the relation are provided as triples. It is then a matter of constructing
or revising an expression that evaluates to TRUE if(P; Ii; I j) is a member of the relation, and
FALSE if it is not. If (P; Ii; I j) is considered to be a member of the relation, then it is safe to
infer that(P; I j; Ii) is not a member.

For any representation of preference, one needs to represent features of a candidate instruction
and of the partial schedule. There is some art in picking useful features for a state. The method

used here was to consider the features used in a scheduler (called DEC below) supplied by
the processor vendor, and to think carefully about those andother features that should indicate
predictive instruction characteristics or important aspects of the partial schedule.

2.2 Inferring Examples and Counter-Examples

One would like to produce a preference relation consistent with the examples and counter-
examples that have been inferred, and that generalizes wellto triples that have not been seen.
A variety of methods exist for learning and generalizing from examples, several of which are
tested in the experiments below. Of interest here is how to infer the examples and counter-
examples needed to drive the generalization process.

The focus here is on supervised learning (reinforcement learning is mentioned later), in which
one provides a process that produces correctly labeled examples and counter-examples of the
preference relation. For the instruction-scheduling task, it is possible to search for an optimal
schedule for blocks of ten or fewer instructions. From an optimal schedule, one can infer
the correct preferences that would have been needed to produce that optimal schedule when
selecting the best instruction from a set of candidates, as described above. It may well be that
there is more than one optimal schedule, so it is important only to infer a preference for a pair
of instructions when the first can produce some schedule better than any the second can.

One should be concerned whether training on preference pairs from optimally scheduled small
blocks is effective, a question the experiments address. Itis worth noting that for programs
studied below, 92% of the basic blocks are of this small size,and the average block size is
4.9 instructions. On the other hand, larger blocks are executed more often, and thus have
disproportionate impact on program execution time. One could learn from larger blocks by
using a high quality scheduler that is not necessarily optimal. However, the objective is to be
able to learn to schedule basic blocks well for new architectures, so a useful learning method
should not depend on any pre-existing solution. Of course there may be some utility in trying to
improve on an existing scheduler, but that is not the longer-term goal here. Instead, we would
like to be able to construct a scheduler with high confidence that it produces good schedules.

2.3 Updating the Preference Relation

A variety of learning algorithms can be brought to bear on thetask of updating the expression
of the preference relation. We consider four methods here.

The first is the decision tree induction program ITI (Utgoff,Berkman & Clouse, in press). Each
triple that is an example of the relation is translated into avector of feature values, as described
in more detail below. Some of the features pertain to the current partial schedule, and others
pertain to the pair of candidate instructions. The vector isthen labeled as an example of the
relation. For the same pair of instructions, a second tripleis inferred, with the two instructions
reversed. The feature vector for the triple is constructed as before, and labeled as a counter-
example of the relation. The decision tree induction program then constructs a tree that can be
used to predict whether a candidate triple is a member of the relation.

The second method is table lookup (TLU), using a table indexed by the feature values of a
triple. The table has one cell for every possible combination of feature values, with integer
valued features suitably discretized. Each cell records the number of positive and negative
instances from a training set that map to that cell. The tablelookup function returns the most
frequently seen value associated with the corresponding cell. It is useful to know that the data
set used is large and generally covers all possible table cells with multiple instances. Thus,
table lookup is “unbiased” and one would expect it to give thebest predictions possible for the
chosen features, assuming the statistics of the training and test sets are consistent.

The third method is the ELF function approximator (Utgoff & Precup, 1997), which constructs

additional features (much like a hidden unit) as necessary while it updates its representation of
the function that it is learning. The function is represented by two layers of mapping. The first
layer maps the features of the triple, which must be boolean for ELF, to a set of boolean feature
values. The second layer maps those features to a single scalar value by combining them
linearly with a vector of real-valued coefficients called weights. Though the second layer is
linear in the instruction features, the boolean features are nonlinear in the instruction features.

Finally, the fourth method considered is a feed-forward artificial neural network (NN) (Rumel-
hart, Hinton & Williams, 1986). Our particular network usesscaled conjugate gradient descent
in its back-propagation, which gives results comparable toback-propagation with momentum,
but converges much faster. Our configuration uses 10 hidden units.

3 Empirical Results

We aimed to answer the following questions: Can we schedule as well as hand-crafted algo-
rithms in production compilers? Can we schedule as well as the best hand-crafted algorithms?
How close can we come to optimal schedules? The first two questions we answer with com-
parisons of program execution times, as predicted from simulations of individual basic blocks
(multiplied by the number of executions of the blocks as measured in sample program runs).
This measure seems fair for local instruction scheduling, since it omits other execution time
factors being ignored. Ultimately one would deal with thesefactors, but they would cloud the
issues for the present enterprise. Answering the third question is harder, since it is infeasible
to generate optimal schedules for long blocks. We offer a partial answer by measuring the
number of optimal choices made within small blocks.

To proceed, we selected a computer architecture implementation and a standard suite of bench-
mark programs (SPEC95) compiled for that architecture. We extracted basic blocks from the
compiled programs and used them for training, testing, and evaluation as described below.

3.1 Architecture and Benchmarks

We chose the Digital Alpha (Sites, 1992) as our architecturefor the instruction scheduling
problem. When introduced it was the fastest scalar processor available, and from a dependence
analysis and scheduling standpoint its instruction set is simple. The 21064implementation of
the instruction set (DEC, 1992) is interestingly complex, having two dissimilar pipelines and
the ability to issue two instructions per cycle (also calleddual issue) if a complicated collection
of conditions hold. Instructions take from one to many tens of cycles to execute.

SPEC95 is a standard benchmark commonly used to evaluate CPUexecution time and the
impact of compiler optimizations. It consists of 18 programs, 10 written in FORTRAN and
tending to use floating point calculations heavily, and 8 written in C and focusing more on
integers, character strings, and pointer manipulations. These were compiled with the vendor’s
compiler, set at the highest level of optimization offered,which includes compile- or link-
time instruction scheduling. We call these theOrig schedules for the blocks. The resulting
collection has 447,127 basic blocks, composed of 2,205,466instructions.

3.2 Simulator, Schedulers, and Features

Researchers at Digital made publicly available a simulatorfor basic blocks for the 21064,
which will indicate how many cycles a given block requires for execution, assuming all mem-
ory references hit in the caches and translation look-asidebuffers, and no resources are busy
when the basic block starts execution. When presenting a basic block one can also request that
the simulator apply a heuristic greedy scheduling algorithm. We call this schedulerDEC.

By examining the DEC scheduler, applying intuition, and considering the results of various

preliminary experiments, we settled on using the features of Table 1 for learning. The mapping
from triples to feature vectors is:odd: a single boolean 0 or 1;wcp, e, andd: the sign (�, 0,
or+) of the value forI j minus the value forIi; ic: both instruction’s values, expressed as 1 of
20 categories. For ELF and NN the categorical values foric, as well as the signs, are mapped
to a 1-of-n vector of bits,n being the number of distinct values.

Table 1: Features for Instructions and Partial Schedule
Heuristic Name Heuristic Description Intuition for Use
Odd Partial (odd) Is the current number of instructions sched-

uled odd or even?
If TRUE, we’re interested in scheduling in-
structions that can dual-issue with the previ-
ous instruction.

Instruction Class (ic) The Alpha’s instructions can be divided into
equivalence classes with respect to timing
properties.

The instructions in each class can be exe-
cuted only in certain execution pipelines, etc.

Weighted Critical Path (wcp) The height of the instruction in the DAG (the
length of the longest chain of instructions de-
pendent on this one), with edges weighted by
expected latency of the result produced by
the instruction

Instructions on longer critical paths should
be scheduled first, since they affect the lower
bound of the schedule cost.

Actual Dual (d) Can the instruction dual-issue with the previ-
ous scheduled instruction?

If Odd Partial is TRUE, it is important that
we find an instruction, if there is one, that
can issue in the same cycle with the previous
scheduled instruction.

Max Delay (e) The earliest cycle when the instruction can
begin to execute, relative to the current cycle;
this takes into account any wait for inputs for
functional units to become available

We want to schedule instructions that will
have their data and functional unit available
earliest.

This mapping of triples to feature values loses information. This does not affect learning much
(as shown by preliminary experiments omitted here), but it reduces the size of the input space,
and tends to improve both speed and quality of learning for some learning algorithms.

3.3 Experimental Procedures

From the 18 SPEC95 programs we extracted all basic blocks, and also determined, for sam-
ple runs of each program, the number of times each basic blockwas executed. For blocks
having no more than ten instructions, we used exhaustive search of all possible schedules to
(a) find instruction decision points with pairs of choices where one choice is optimal and the
other is not, and (b) determine the best schedule cost attainable for either decision. Schedule
costs arealways as judged by the DEC simulator. This procedure produced over13,000,000
distinct choice pairs, resulting in over 26,000,000 triples (given that swappingIi andI j creates
a counter-example from an example and vice versa). We selected 1% of the choice pairs at
random (always insuring we had matched example/counter-example triples).

For each learning scheme we performed an 18-fold cross-validation, holding out one program’s
blocks for independent testing. We evaluated both how oftenthe trained scheduler made opti-
mal decisions, and the simulated execution time of the resulting schedules. The execution time
was computed as the sum of simulated basic block costs, weighted by execution frequency as
observed in sample program runs, as described above.

To summarize the data, we use geometric means across the 18 runs of each scheduler. The
geometric meang(x1; :::;xn) of x1; :::;xn is (x1 � ::: � xn)

1=n. It has the nice property that
g(x1=y1; :::;xn=yn) = g(x1; :::;xn)=g(y1; :::;yn), which makes it particularly meaningful for
comparing performance measures via ratios. It can also be written as the anti-logarithm of
the mean of the logarithms of thexi; we use that to calculate confidence intervals using tradi-
tional measures over the logarithms of the values. In any case, geometric means are preferred
for aggregating benchmark results across differing programs with varying execution times.

3.4 Results and Discussion

Our results appear in Table 2. For evaluations based on predicted program execution time, we
compare with Orig. For evaluations based directly on the learning task, i.e., optimal choices,
we compare with an optimal scheduler, but only over basic blocks no more than 10 instructions
long. Other experiments indicate that the DEC scheduler almost always produces optimal
schedules for such short blocks; we suspect it does well on longer blocks too.

Table 2: Experimental Results: Predicted Execution Time

Relevant Blocks Only All Blocks Small Blocks
Sche- cycles ratio to Orig cycles ratio to Orig % Optimal
duler (�109) (95% conf. int.) (�109) (95% conf. int.) Choices
DEC 24.018 0.979 (0.969,0.989) 28.385 0.983 (0.975,0.992)
TLU 24.338 0.992 (0.983,1.002) 28.710 0.995 (0.987,1.003) 98.1(97.9,98.3)
ITI 24.395 0.995 (0.984,1.006) 28.758 0.996 (0.987,1.006) 98.2(98.1,98.4)
NN 24.410 0.995 (0.983,1.007) 28.770 0.997 (0.986,1.008) 98.1(98.0,98.3)
ELF 24.465 0.998 (0.985,1.010) 28.775 0.997 (0.988,1.006) 98.1(97.9,98.3)
Orig 24.525 1.000 (1.000,1.000) 28.862 1.000 (1.000,1.000)
Rand 31.292 1.276 (1.186,1.373) 36.207 1.254 (1.160,1.356)

The results show that all supervised learning techniques produce schedules predicted to be
better than the production compilers, but not as good as the DEC heuristic scheduler. This is a
striking success, given the small number of features. As expected, table lookup performs the
best of the learning techniques. Curiously, relative performance in terms of making optimal
decisions does not correlate with relative performance in terms of producing good schedules.
This appears to be because in each program a few blocks are executed very often, and thus
contribute much to execution time, and large blocks are executed disproportionately often.
Still, both measures of performance are quite good.

What about reinforcement learning? We ran experiments withtemporal difference (TD) learn-
ing, some of which are described in (Scheeff,et al., 1997) and the results are not as good. This
problem appears to be tricky to cast in a form suitable for TD,because TD looks at candi-
date instructions in isolation, rather than in a preferencesetting. It is also hard to provide an
adequate reward function and features predictive for the task at hand.

4 Related Work, Conclusions, and Outlook

Instruction scheduling is well-known and others have proposed many techniques. Also, op-
timal instruction scheduling for today’s complex processors is NP-complete. We found two
pieces of more closely related work. One is a patent (Tarsy & Woodard, 1994). From the
patent’s claims it appears that the inventors trained a simple perceptron by adjusting weights of
some heuristics. They evaluate each weight setting by scheduling an entire benchmark suite,
running the resulting programs, and using the resulting times to drive weight adjustments. This
approach appears to us to be potentially very time-consuming. It has two advantages over our
technique: in the learning process it uses measured execution times rather than predicted or
simulated times, and it does not require a simulator. Being apatent, this work does not offer
experimental results. The other related item is the application of genetic algorithms to tuning
weights of heuristics used in a greedy scheduler (Beaty, S.,Colcord, & Sweany, 1996). The
authors showed that different hardware targets resulted indifferent learned weights, but they
did not offer experimental evaluation of the quality of the resulting schedulers.

While the results here do not demonstrate it, it was not easy to cast this problem in a form
suitable for machine learning. However, once that form was accomplished, supervised learn-

ing produced quite good results on this practical problem—better than two vendor production
compilers, as shown on a standard benchmark suite used for evaluating such optimizations.
Thus the outlook for using machine learning in this application appears promising.

On the other hand, significant work remains. The current experiments are for a particular
processor; can they be generalized to other processors? After all, one of the goals is to improve
and speed processor design by enabling more rapid construction of optimizing compilers for
proposed architectures. While we obtained good performance predictions, we did not report
performance on a real processor. (More recently we obtainedthose results (Moss,et al., 1997);
ELF tied Orig for the best scheme.) This raises issues not only of faithfulness of the simulator
to reality, but also ofglobal instruction scheduling, i.e., across basic blocks, and of somewhat
more general rewritings that allow more reorderings of instructions. From the perspective of
learning, the broader context may make supervised learningimpossible, because the search
space will explode and preclude making judgments of optimalvs. suboptimal. Thus we will
have to find ways to make reinforcement learning work better for this problem. A related issue
is the difference between learning to make optimal decisions (on small blocks) and learning
to schedule (all) blocks well. Another relevant issue is thecost not of the schedules, but of
the schedulers: are these schedulers fast enough to use in production compilers? Again, this
demands further experimental work. We do conclude, though,that the approach is promising
enough to warrant these additional investigations.

Acknowledgments:We thank various people of Digital Equipment Corporation, for the DEC
scheduler and the ATOM program instrumentation tool (Srivastava & Eustace, 1994), essential
to this work. We also thank Sun Microsystems and Hewlett-Packard for their support.

References

Beaty, S., Colcord, S., & Sweany, P. (1996). Using genetic algorithms to fine-tune instruction-
scheduling heuristics. InProc. of the Int’l Conf. on Massively Parallel Computer Systems.

Digital Equipment Corporation, (1992).DECchip 21064-AA Microprocessor Hardware Refer-
ence Manual, Maynard, MA, first edition, October 1992.

Haykin, S. (1994).Neural networks: A comprehensive foundation. New York, NY: Macmillan.

Moss, E., Cavazos, J., Stefanović, D., Utgoff, P., Precup,D., Scheeff, D., & Brodley, C. (1997).
Learning Policies for Local Instruction Scheduling. Submitted for publication.

Rumelhart, D. E., Hinton, G. E., & Williams, R.J. (1986). Learning internal representations by
error propagation. In Rumelhart & McClelland (Eds.),Parallel distributed processing: Explo-
rations in the microstructure of cognition. Cambridge, MA: MIT Press.

Scheeff, D., Brodley, C., Moss, E., Cavazos, J., Stefanovi´c, D. (1997). Applying Reinforcement
Learning to Instruction Scheduling within Basic Blocks. Technical report.

Sites, R. (1992).Alpha Architecture Reference Manual. Digital Equip. Corp., Maynard, MA.

Srivastava, A. & Eustace, A. (1994). ATOM: A system for building customized program anal-
ysis tools. InProc. ACM SIGPLAN ’94 Conf. on Prog. Lang. Design and Impl., 196–205.

Sutton, R. S. (1988). Learning to predict by the method of temporal differences.Machine
Learning, 3, 9-44.

Tarsy, G. & Woodard, M. (1994). Method and apparatus for optimizing cost-based heuristic
instruction schedulers. US Patent #5,367,687. Filed 7/7/93, granted 11/22/94.

Utgoff, P. E., Berkman, N. C., & Clouse, J. A. (in press). Decision tree induction based on
efficient tree restructuring.Machine Learning.

Utgoff, P. E., & Precup, D. (1997).Constructive function approximation, (Technical Report
97-04), Amherst, MA: University of Massachusetts, Department of Computer Science.

