
Representing Uniqueness Constraints in
Object-Relational Mapping
The Natural Entity Framework

Mark J. Olah, David Mohr, and Darko Stefanovic

Department of Computer Science, University of New Mexico
1 University of New Mexico, Albuquerque, NM, USA 87131

{mjo,dmohr,darko}@cs.unm.edu

Abstract. Object-oriented languages model data as transient objects, while rela-
tional databases store data persistently using a relational data model. The process
of making objects persistent by storing their state as relational tuples is called
object-relational mapping (ORM). This process is nuanced and complex as there
are many fundamental differences between the relational model and the object
model. In this work we address the difficulties in representing entity identity and
uniqueness consistently, efficiently, and succinctly in ORM. We introduce the
natural entity framework, which: (1) provides a strong concept of value-based
persistent object identity; (2) allows the programmer to simultaneously specify
natural and surrogate key constraints consistently in the object and relational rep-
resentations; (3) provides object constructors and initializers that disambiguate
the semantics of persistent object creation and retrieval; and (4) automates the
mapping of inheritance hierarchies that respect natural key constraints and allows
for efficient polymorphic queries and associations.

1 Introduction

In an object-oriented (OO) language, data are represented as objects, but objects are
transient—they do not persist beyond a particular process or between subsequent ex-
ecutions of a program. To make the data persistent and accessible for concurrent pro-
cesses in a structured form, an object-relational mapping (ORM) can be used to store
objects as tuples in a relational database.1 An ORM is a method for translating between
a data model expressed as a class hierarchy and a data model expressed as a relational
schema. ORM software packages allow a program to create, read, update, delete, and
query objects stored persistently in a relational database using object and class methods
of an OO programming language.

Designing an ORM presents many challenges because the object data model and
the relational data model differ profoundly in how they represent, store, and access
data. We focus in this work on just one facet of the mapping between the models: the
concept of identity and uniqueness. Both data models are used to abstractly represent

1 There are other possibilities, beyond the scope of this paper, such as using a persistent object
store and a programming language that supports persistence natively. Without going into the
merits of different approaches, we concentrate on ORM because of its widespread use.



sets of physical or conceptual entities. An entity has multiple properties; the values of
these properties may affect entity identity and entity uniqueness. However, the con-
cepts of identity and uniqueness have different semantics in the object model and in the
relational model [8].

In relational models uniqueness is a value-based notion defined by relational keys.
A key is a minimal set of attributes (columns) of a relation that uniquely identifies a
particular tuple (row). It can be a surrogate key, an artificial value introduced solely to
distinguish tuples; or it can be a natural key, consisting of attributes that correspond to
meaningful, real-world, properties of the entities. The attributes in a natural key repre-
sent those properties of an entity that define its identity and uniqueness in the context of
the application and are well known to the users of the entity. A natural key is a concise
description that can be used to query for the existence of a specific individual entity.
Every relation must specify a primary key, which is used as the default identifier for a
tuple. For practical reasons this is often a surrogate key. However, when a natural key
exists, it often makes sense to declare its existence as well by enforcing a uniqueness
constraint on the natural key attributes. This prevents the database from maintaining
two copies of data that represent the same entity. Additionally, declaring a natural key
results in the database maintaining an index on the natural key attributes, which allows
queries involving the natural key to be optimized [6].

In contrast, in object models value and identity are independent. While an OO ex-
ecution environment enforces the uniqueness of object identities, this imposes no con-
straints on the values of objects. Hence, when real-world entities are represented by
objects, there can be many distinct objects having the same values for a set of natural
attributes and thus representing the same entity. There are no mechanisms to prevent this
error-prone duplication of entity representations, and typically no universal mechanism
to query for the existence of an object based on its value.

This fundamental difference in how uniqueness and identity are defined in relational
databases and in OO programming languages leads to problems when data representing
real-world entities are made persistent with a relational database, but are operated on as
in-memory objects. If there are multiple in-memory objects all denoting the same entity,
which object represents the true current state of that entity, and which one corresponds
to the database’s current state, i.e., the tuple representing the entity? This question be-
comes even more confusing when there are multiple execution contexts operating on
entities concurrently.

Our real-world motivation for developing the natural entity framework comes from
the experience of writing scientific computing simulations, which are distributed, con-
current applications with persistent state. Some of our examples will be drawn from
this field; similar modeling and representation problems are encountered in the busi-
ness world and in web-based applications.

To properly model the concept of entity uniqueness and identity at both the object
and the relational level, we propose a new framework of constraints and semantics
for object construction and interactions that can be enforced in modern ORM systems
and strongly object-oriented languages. Our natural entity framework provides a base
class NaturalEntity with the functionality described in this paper. Natural entities
are persistent objects in an OO execution environment that directly enforce value-based



uniqueness constraints on natural attribute values. Other ORMs allow natural keys and
uniqueness constraints to be declared on the relational model, but they do not enforce
these constraints on the object model, or in the inheritance hierarchy. Making these
constraints explicit allows persistent objects to more directly represent the semantics of
relational tuples used to store their state. This simplifies the programmer’s conceptual
model and reduces potential problems with concurrency, entity identity, and uniqueness.

In contrast to creating regular objects, there is overhead when checking for value-
based uniqueness, but this overhead is not higher than manual enforcement of unique-
ness. The proposed natural entities are otherwise normal objects that exist alongside,
and interact with, other objects, and they can be queried and used polymorphically.
Hence, the natural entity framework does not reduce the expressiveness of the OO lan-
guage, and a programmer is free to represent entities using persistent objects that do
not enforce uniqueness constraints, or using regular non-persistent objects. However,
only through the use of the natural entity framework can the programmer maintain the
value-based uniqueness constraints for in-memory objects.

The primary contribution of the natural entity framework is that it allows the ORM
to manage and enforce value-based object identity and uniqueness on in-memory ob-
jects. These value-based constraints match the constraints imposed by natural keys on
the relations that store the persistent state of the natural entities. Thus the object model
for natural entities is modified to more closely match the relational model.

This provides several advantages: (1) natural entities have a strong concept of value-
based identity and uniqueness, accessible through object attributes and methods that
prevent multiple in-memory objects from representing the same conceptual entity (Sec. 3);
(2) the ORM can use an identity map to provide fast value-based queries for in-memory
objects and a uniqueness constraint to provide fast queries for archived objects (Sec. 4);
(3) natural entities have constructor methods that automatically manage the uniqueness
constraints for in-memory objects and disambiguate object construction from object
retrieval (Sec. 5); and, (4) natural entities inheritance hierarchies can be mapped auto-
matically to a relational schema that uses the appropriate constraints and relations to
maintain natural key uniqueness constraints and to allow polymorphic queries (Sec. 6).

Given these features, the natural entity framework provides functionality that is
lacking in modern ORM systems and presents an abstraction that is easy to understand
and implement, allowing the programmer to spend more time on solving the actual
problems at hand. We found this to be the case in our work on scientific simulations,
and we offer this description in the belief that the framework will be broadly applicable.

2 Background

To be specific about how the concept of uniqueness constraints is implemented, here we
summarize the terminology used for relational models and OO programming languages.

2.1 Relational Model

A relation is a tuple of attributes denoted R = R(A1, . . . ,An). The attributes come from
some domain A, and each attribute Ai has a type τi, (written Ai : τi), where τi ∈ T for



some set T of basic types. For brevity we omit type signatures where they are not
essential to the discussion. A relation instance is a set of tuples from the domain (A1×
. . .×An) that represents the current factual state of the relation. When it is not otherwise
confusing, the term relation is used to describe both the relation’s schema (attributes,
types, and constraints) and its time-varying instances (the tuples and their values). In
the concrete context of a relational database, a relation specifies the names and types of
the columns of a table, and an instance specifies a set of table rows and their values.

A non-empty set k⊂ {A1, . . .An} is a key of relation R(A1, . . .An) if for any instance
of the relation, the value of the attributes in k uniquely determines a tuple and no proper
subset of k is also a key. Thus, a key is a minimal set of attributes that can be used
to define the identity of a tuple. A relation may have many keys. A key is simple if it
consists of a single attribute, otherwise it is compound. Each table must have a primary
key, which is used as the canonical set of attributes for identifying a row for the purpose
of database operations and references between tuples of relations. Primary key attributes
are underlined in the notation for a relation to highlight their role (e.g., R(A1,A2,A3) has
a primary key {A1,A2}.) Associations between relations are expressed with a foreign
key constraint that restricts a set of attributes to values that come from the relational
instance state of a separate set of attributes that form a key [3].

A relational schema is a set R= {R1, . . . ,Rm} of relations along with constraints. A
relational database provides a set of types and mechanisms to define relational schemas
over those types. It maintains instances for each relation that obey all the restrictions
and allows queries to create, read, update, and delete tuples.

2.2 Object Model

An object lives in memory and has identity, type, state, and behavior. An object’s state is
given by the values of a collection of named attributes that come from a set of types T′.2
In strongly object-oriented languages, objects have a concept of identity independent of
their attribute values or addressability [9]. This allows references to objects to be tested
if they refer to the same object, and hence forms a definition for object uniqueness.

An object’s type is some class C. A class creates objects: it defines names and types
for each attribute, and the set of methods that operate on the state of an object. These
methods define the behavior of the object. An object that belongs to a class is said to be
an instance of that class.

Inheritance. A set of classes C= {C1, . . . ,Ck} is called a class schema. Classes have a
concept of inheritance. If Ci inherits from C j, we write Ci <: C j, and the class Ci inherits
all of the attributes and methods of C j. The inheritance relation is reflexive, transitive,
and antisymmetric, and so defines a partial ordering on the class schema, called the
inheritance hierarchy. This relation represents specialization as objects of class Ci now
can represent all the state and behavior of C j, but can also add or modify attributes and
methods. Thus, if Ci <: C j and o is an instance of Ci, then o is also an instance of C j.

2 The set of OO types T′ may, but does not necessarily, intersect with the set of types T used in
the relational schema. They will almost certainly not be identical.



This property is called polymorphism and allows objects to act as an instance of any
class more general than their own.

The maximal elements in the hierarchy are called the base classes. In many lan-
guages multiple inheritance is possible, so a class can inherit directly from more than
one class. Multiple inheritance is not a focus of this paper, though the implications are
briefly considered. In a single inheritance class schema, the inheritance hierarchy is not
a general lattice, but a forest of inheritance trees, each rooted at a single base class. For
single inheritance hierarchies we can uniquely define the super relation Super(Ci) =C j
if Ci <: C j and Ci <: Ck <: C j implies Ck = Ci or Ck = C j. In other words, the super
relation determines the smallest class larger than a given class, called the immediate
superclass. Conversely, Ci is said to be a subclass of C j.

A class can be abstract or concrete. There cannot be objects belonging to an abstract
class, only to concrete classes. Abstract classes are only used to be inherited from by
other classes.

2.3 Object-Relational Mapping

The object and relational models are general enough to apply to most modern OO lan-
guages and relational databases, hence they form a good basis for describing how ob-
jects can be mapped to relations. An ORM is a mapping from a class schema C to a
relational schema R that provides a correspondence between objects in C and tuples (or
sets of tuples) from relations in R.

In this mapping attributes of an object with type t1 ∈ T′ are mapped to one or more
tuple element with type(s) τi ∈ T. Since the types available in a programming language
(subtly) differ from those available in databases, this mapping of types is a necessity,
and may not be 1-to-1. However, for most uses the type differences have no practical
effect, and we leave exploring the implications for value-based identity as future work.

3 Object Identity and Uniqueness

The central issue addressed by the natural entity framework is consistently representing
real-world entities that possess a concept of uniqueness described succinctly by the
values of one or more well known (natural) attributes, i.e., a natural key.

Identity in OO languages. Like objects in the natural world, objects in a programming
language have concepts of identity and uniqueness. Many OO programming languages
(Python, Smalltalk, Java, Ruby, etc.) have a strong concept of object uniqueness in that
each object has an associated immutable internal id(entifier), distinct from the refer-
ences used to access it [9]. Such an id is called a surrogate object id since it has no
relation to the value or meaning of the object. It merely serves to define the identity
of the object and allows comparing the identity to those of other objects, as there is a
bijection from object ids to objects [14].



Identity in Relational Databases. Identity in relational databases is a value-based
property determined by a designated primary key. The primary keys should be unique,
immutable, and non-null. The database maintains a uniqueness constraint on the pri-
mary key, preventing duplicate tuples, and uses an index to quickly select tuples by
their primary key or detect violations of the uniqueness constraint. The primary key is
also used to define foreign key relationships.

Because of all these important requirements placed on the primary key, it often
makes sense to use a surrogate key as the primary key, even when there is a well-known
natural key. There are many good reasons to prefer surrogate keys as primary keys, most
of which arise from the fact that using surrogate keys allows the relational schema to
decouple identity and value [4]. This allows more flexibility when the relational model
needs to be updated or refactored [1]. Other benefits arise due to the fact that surro-
gate keys are simple (consist of a singleton attribute) and are typically small integral
types. Natural keys in contrast are often compound and may include strings and other
types that require more space as foreign keys. Since the primary key is always used to
represent entity relationships through foreign key constraints, having a small, simple
primary key reduces space usage and simplifies join operations. Simple integral keys
are also often faster for use in selects against the primary key. For these reasons, ORMs
often use surrogate primary keys by default [5].

However, natural keys are still useful and have some desirable characteristics. Declar-
ing a natural key communicates to the database that the relational model has a logical
uniqueness constraint on the natural key attributes and prevents a single conceptual en-
tity from being represented by more than one tuple. Additionally, the database can then
maintain a uniqueness constraint and index on the natural key. The presence of an index
allows clients to quickly retrieve objects by their natural key-values, or determine that
no such object exists. This can lead to distinct performance advantages for natural keys
in some situations [11].

3.1 Identity in the Natural Entity Framework

The natural entity framework, like other ORM tools, must reconcile the semantics of
object identity in OO languages and tuple identity in relational databases. Our goal is to
enforce the uniqueness of entity representation across both data models as determined
by natural key attributes, but we simultaneously want to support polymorphic queries,
efficient entity relationships, and flexibility for refactoring databases.

To achieve these objectives, the natural entity framework enforces the simultaneous
use of surrogate primary keys and auxiliary natural keys. This dual-key representation
achieves advantages of both surrogate and natural keys. In particular, our surrogate keys
are unique within each inheritance hierarchy rooted at the NaturalEntity class. This
uniformity of primary keys allows us to use a single top level relation to define a pri-
mary key for every object belonging to the class hierarchy. This makes polymorphic
queries and associations much more efficient and uniform than they could be with nat-
ural keys. Indeed, without a uniform key for the entire inheritance tree, representing
polymorphic associations would become problematic as there would be no single for-
eign key constraint that could be used to represent an association. Hence, surrogate
primary keys are necessary for polymorphism and flexibility, but they do not fulfill the



need for maintaining value-based uniqueness. This is achieved by the auxiliary natural
keys. These keys require a separate index, which comes at the cost of storage space and
maintenance time. However, this index is exactly what ensures the logical value-based
uniqueness of natural entities, and it is heavily used by constructors (Sec. 5) and other
common queries against the natural key, thus it is both necessary and useful.

4 Management of Persistent States and Concurrency

Building on the concepts of object and relational identity, an ORM must have a way
to track and manage the identity of in-memory objects. Unlike transient objects, which
have a limited scope and lifetime, persistent objects must maintain their identity perma-
nently and consistently across concurrent processes. To simplify the tracking of persis-
tent objects and their modifications, modern ORM packages provide the concept of a
session manager. The natural entity framework relies on a session manager to manage
the persistent state of in-memory persistent objects and enforce the uniqueness con-
straints for natural entities.

Our principal contribution is to provide additional constructor methods which make
explicit the assumptions about the state of a persistent object when it is created and
prevent the user from violating the value-based uniqueness constraints.

4.1 Transactions

The session manager has transactional semantics and manages a set of persistent objects
by implementing the unit of work concept [5]. It tracks object creation, modification,
and deletion. The session manager delegates large parts of this work to the database
by using transactions. This ensures a consistent database state, even when objects are
modified concurrently by other processes. It follows that the concurrency guarantees are
largely provided by the transaction. The session manager supplies methods to control
the global transactional state for an execution context. The begin() method starts a
transaction and is implicitly called as needed if no transaction is currently in progress.
The flush() method sends pending modifications to the database, but does not end
the transaction. The commit() method commits a transaction, and this implies a flush
operation if there are still pending changes. Finally, the rollback() method undoes
all database changes made during the transaction.

4.2 Object States

From the perspective of an OO execution environment, reasoning about persistent ob-
jects is much more complicated than standard transient objects because the data repre-
senting the object can be stored in memory, in one or more relations in the RDBMs,
and/or in the memory of other concurrent processes. The session manager acts as the
single point of persistence management for an OO execution environment. It determines
how a persistent object relates to its external relational state in the database. Any object
of a class that derives from a persistent base class, such as NaturalEntity, will be
understood by the session manager to be in one of the following six states:



• Transient – The object is not managed as persistent by the session, while a cor-
responding tuple with the same natural key in the database may or may not exist;
there is no operational connection with any persistent object.

• Pending – The object does not yet have a permanent record but has been success-
fully added to the session and will be added to the database when the session state
is flushed to the database. Until the object is successfully flushed it has not yet been
assigned a primary key.

• Persistent Clean – The object has a primary key and a corresponding representation
in the database. No persistently managed attributes have changed values, so no
updates need to be sent to the database.

• Persistent Dirty – The same as a persistent clean object, except the value of one
or more of the persistently maintained attributes has been changed, so that an SQL
update operation is needed to save the state of the object. Copies of this object
in other sessions do not know about the changes and may have made conflicting
changes of their own.

• Expired – The object’s state is no longer valid because it was created in a session
that has been committed or rolled back, so its state needs to be reloaded from the
database. This reloading is done transparently by the session manager when neces-
sary.

• Archived – The object is not part of the store but is persistently stored in the
database. Strictly speaking, this is not a state of an object, since no correspond-
ing object exists in the session, but conceptually the tuple in database represents an
object that is not currently loaded.

It is important to remember that the identity of a persistent object is provided by
the natural key, and maintained through transactions and the constraint imposed by the
database key. In case of conflicting concurrent transactions, e.g., simultaneous inserts or
deletes, one of the concurrent processes will be prevented from committing its changes
by an exception. In Fig. 1 we show the effect of various operations on the persistent
state of an object, but omit the expired state and other effects that occur at transaction
boundaries. The effect of commits is to expire all pending and persistent objects and the
session manager updates any identity maps of persistent objects accordingly (Sec. 5.1).

5 Object Creation

Maintaining a value-based uniqueness constraint for persistent objects causes difficul-
ties with object creation. Normally, the programming environment’s concept of object
identity is all that determines object uniqueness. When an object constructor is called, a
new object with a unique object id is always created, and an initializer method is called.
However, natural entity classes with value-based uniqueness constraints necessitate dif-
ferent semantics. First, the constructor must be given the values for each of the natural
key attributes since they must not be null. Given the natural key value, the constructor
is presented with several possibilities: (1) an object with those values already exists in
memory so we are not allowed to create a new object with a new object id and the same
natural key values; (2) an object with those values exists in an archived state, so it must
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Fig. 1. Persistent object states and effect of constructors and session commands within a single
transaction context. The effects of transaction boundaries and the expired state are omitted for
clarity.

be loaded from the database; or, (3) there is no persistent or in-memory object with the
given natural key, so a new object should be created and added to the database.

Such a constructor requires a natural-keyed dictionary of in-memory persistent ob-
jects, i.e., an identity map (Sec. 5.1), and a mechanism to query for the existence of
archived objects. Both of these can be provided efficiently by the session manger, but
they nevertheless impose a significant cost, especially when the round trip time for re-
mote database queries is involved. Unfortunately, such queries are necessary if we wish
to maintain the consistency constraints; allowing the constructor to make new objects
without regard to the natural key values would result in duplicate objects in memory.
Furthermore, the cost of frequent queries can be reduced by allowing the caching of
natural keys or prefetching of objects (particularly when the database transaction iso-
lation prevents non-repeatable reads). When queries are necessary they can be handled
efficiently because of the unique index maintained on the natural key attributes.

Together all of these considerations impose a significant change to the semantics of
object creation, and can lead to conceptual problems for programmers. The natural en-
tity framework addresses this conceptual ambiguity by providing additional constructor
methods with different semantics. These constructors allow programmers to explicitly
state their intentions or assumptions when creating an object.

• get() - A constructor that takes the natural key and returns the object uniquely
identified by that key, either by returning a reference to an in-memory object repre-
senting that entity, or by loading an archived object from the database and returning
it in the persistent clean state. If no such object exists, an exception is raised.



• create() - A constructor that takes the natural key and returns a newly created
object in the pending state, but only if no persistent object with the same natural
key exists in memory or in the archived state. An exception is raised if the object
already exists.

• get or create() - A constructor with the combined semantics of the get() and
create(). It takes the natural key and either returns an existing persistent object,
or returns a newly created object in the pending state. This is the default constructor.

• create transient() - A constructor with normal transient object semantics that
always returns a new object in the transient state. It can take arbitrary arguments
and ignores the uniqueness constraints.

The get or create() constructor does whatever it takes to get a reference to the
unique object that has the provided natural key. It will find that object if it is in memory
and return a reference, or it will look in the database for an archived version and return
it, and if no such persistent object exists, it will construct a new object and make it
persistent by moving it to the pending state. In our application domain we found that
the get or create() has the appropriate semantics in the vast majority of situations,
and therefore we have made it the default constructor, which results in particularly
succinct code (e.g., in Python var=ClassName(...)).

The create() and get() constructors are used in cases where the existence or
non-existence of a particular NaturalEntityobject represent a logical error, and the
programmer would like an exception to be raised so that the error is not silently ignored.

Finally the create transient() constructor has several uses when the normal
semantics of the natural entity construction are too rigid. Unlike the other constructors,
create transient() does not need to be given the natural key, and does not use any
database connections or in-memory identity maps. This is useful for testing object be-
havior without using a database. Transient objects are also useful when the user does
not wish to immediately pay the cost of the database query to check for archived ob-
jects. Furthermore, they support situations where not all of the natural key attributes
are immediately available, but it makes sense to partially construct a NaturalEntity

object, and then finish filling in the natural key attributes later. This is often the case
in GUI or web-based applications where objects are built up sequentially by user ac-
tions. A transient object can be made persistent by using the add() method, which will
check that all natural key attributes are specified and will raise an exception if the object
already exists.

5.1 Identity Map

When the (non-transient) constructors are called, they are provided with the complete
natural key for the desired object. If an object with that natural key already exists in
memory in the pending, expired, persistent clean, or persistent dirty states, it would be
incorrect to construct and return a new object. Instead we must return a reference to
the in-memory object. The ORM’s session manager is able to track the persistent state
of objects, but it also needs a way to look up objects by their natural key. This is a
common requirement for ORMs, which Fowler calls the identity map pattern [5]. The
purpose of an identity map is simply to map database keys to in-memory objects. When



working with persistent objects, sometimes different parts of the code need access to
the same data object without understanding whether that object is already in memory.
The solution is to keep a global registry (or identity map) of in-memory objects keyed
by their primary key. Normally, this identity map is stored in the session manager ob-
ject, and it is used for internal ORM lookups of foreign key mappings. However, when
primary keys are surrogates, it is awkward for a user to make use of this identity map,
because the surrogates by definition are meaningless and often obscured from the user.
It is much more common for a user to query using natural key attributes, and the con-
structors must be able to do this efficiently for in-memory objects. Hence, the natural
entity system implements an auxiliary identity map, keyed on the natural key attributes.
The identity map only stores in-memory persistent objects, i.e., transient objects are
excluded. If an object is removed from the persistent store with the delete() method,
it becomes transient. Thus, a constructor will not return a reference to a deleted object,
even if that object is still in memory.

5.2 Initialization

Since the NaturalEntity constructors have multiple possible mechanisms for retriev-
ing or creating objects, the concept of initialization also needs to be refined. For natural
entities there are three distinct ways a new in-memory object could be created and re-
quire initialization: (1) it could be created as a transient object; (2) it could be retrieved
from an archived state in the database; or, (3) it could be created as a new persistent
object in the pending state. (In the case where the constructor already found the object
in memory through the identity map, no initialization is needed.) The NaturalEntity
class provides three different initializers that will be called by the constructor in each
of the three cases.

• initialize() – This method is called when a new persistent object is created.
The object will be in the pending state and the object’s (immutable) natural key
attributes will have been set to the values provided to the constructor.

• reinitialize() – This method is called when an archived object is brought into
memory by a constructor. The object will be in the persistent clean state and all
persisted attributes (including the natural key attributes) will have been set by the
ORM system.

• initialize transient() – This method is called if and only if the object is con-
structed with the create transient() method. The object will be in the transient
state, and any supplied natural key attributes will have been set, but those omitted
by the user (which is permitted for transient objects) will have no default value.

5.3 Object Creation Semantics in Other ORMs

The multiple constructors of the natural entity framework represent a departure from
the normal mechanism of persistent object creation presented by modern ORMs. In
many modern ORM systems, all objects are initially created as transients, and only af-
ter a call to an add() method are they moved to a pending (or equivalent) state [13,
10]. The difficulty with this mechanism is that it does not allow the ORM to directly



manage value-based object uniqueness. If an object with identical natural key already
exists in the database, then the next time the session state is flushed, an exception will
be raised when the database prevents the SQL INSERT command from violating the
uniqueness constraint on the natural key. This failure mode can be eliminated by al-
ways first querying for a particular natural key before attempting to create and add an
object with that key. This common ORM idiom is often required in code manipulating
objects with natural keys. The constructors available for NaturalEntity classes make
the assumptions of the programmer explicit, succinct, and less error-prone. Instead of
remembering to first check if an object already exists before creating it, a programmer
can just create a NaturalEntity object by passing the natural key to the constructor,
and the system will automatically do the right thing; i.e., return the unique object with
given natural key. Thus the overhead of the natural entity constructors is comparable
to what would be required by any other implementation that wishes to protect against
failures due to duplicate objects.

6 Mapping Natural Entity Inheritance Hierarchies

All natural entity classes must inherit from the NaturalEntity class, thus we must
map all the classes in each inheritance subtree rooted at NaturalEntity into a rela-
tional schema. The natural entity system supports flexible mapping of hierarchies to
relations, which allows polymorphic queries and associations, as well as different nat-
ural keys for separate subtrees of the inheritance hierarchy. The user only needs to
supply minimal information about the desired inheritance mapping strategy and the
ORM can automatically construct the appropriate tables and constraints. As an exam-
ple we consider a distributed computer simulation system with two inheritance hier-
archies, an abstract Experiment class with two concrete subclasses and an abstract
Measurement class also with two concrete classes (Fig. 2). An Experiment has a
one-to-many relationship with measurements, so each Measurement has a foreign key
to the Experiment hierarchy’s primary key—a polymorphic association. We examine
natural keys in the relation further in Sec. 6.2.

6.1 Inheritance Mapping Strategies

The relational data model has no built-in concept of inheritance, but support for inher-
itance and polymorphism can be enforced by appropriately structuring the relational
schema and queries. There are three standard methods for mapping inheritance hier-
archies to a relational schema [5]: (1) the single table strategy maps all classes in an
inheritance hierarchy to a single table; (2) the class table strategy maps each class to its
own table; and (3) the concrete table strategy maps only concrete classes to tables.

The single and class table strategies are particularly useful for polymorphic queries
and associations as for every class in the hierarchy they store the class name (i.e., the
type) and a surrogate object id in a single top level table. Concrete table inheritance
lacks these properties and is not considered further.

Single and class table strategies are distinguished by the technique they use to rep-
resent the differing attributes for classes in the hierarchy. Single table inheritance has



natural_key=("width")
width=Field(Float)

OneDimExperiment

max_time=Field(Float)
measurements=OneToMany("Measurement")
abstract=True 

Experiment

natural_key=("width", "height")
width=Field(Float)
height=Field(Float)

TwoDimExperiment
inheritance="join"
time_step_size=Field(Float)
measure(max_time) = <<func>>

TimeMeasurement

natural_key=("experiment", "type")
experiment=ManyToOne("Experiment")
abstract=True 

Measurement

inheritance="share"
dist_step_size=Field(Float)
measure(max_dist) = <<func>>

DistanceMeasurement

id:Int {PK}
type:Varchar {NotNull}
max_time:Float 

table_experiment

id:Int {PK}  {FK(table_expriment.id)}
width:Float {NK}

table_one_dim_experiment

id:Int {PK}
type:Varchar {NotNull} {NK}
experiment:Int {FK(table_experiment.id)} {NK}
dist_step_size:Float

table_measurement

(a)

(b)

id:Int {PK}  {FK(table_expriment.id)}
width:Float {NK}
height:Float {NK}

table_two_dim_experiment

id:Int {PK} {FK(table_measurment.id)}
time_step_size:Float

table_time_measurement

Fig. 2. (a) A simple example of a class schema with two inheritance hierarchies, abstract classes,
multiple natural key bases, polymorphic associations, and both shared and joined inheritance
mappings. The text in each class entry is close to the actual amount of code needed to specify
this hierarchy. We use syntax that is similar to our Python-based reference implementation of the
natural entity framework. (b) The relational schema generated by the natural entity framework
from the class schema in (a). The foreign key constraints are shown.

a single relation which includes all attributes of all classes in the hierarchy. It allows
polymorphism by permitting attributes to be null for objects that do not include them.
In contrast, class table inheritance only includes non-inherited attributes in each class
table. It permits polymorphic queries by using joins on the primary surrogate key to
retrieve attribute values from all the relations that store an object’s state. These differ-
ences lead to quantifiable performance and space trade-offs [7]. Modern ORMs allow
the user to specify a mixture of these strategies within a single inheritance hierarchy [2].
When mixing strategies, the single table approach is called shared or horizontal map-
ping, while the class-table approach is called joined or vertical mapping [12]. Shared
table inheritance works best when the cost of additional join operations needed to load
rows is a limiting factor, or when a portion of the class hierarchy shares almost all of
the same persistent attributes. Joined table inheritance works best when database space
is constrained, or in portions of the hierarchy where few persistent attributes are shared
between classes.

In the natural entity framework each class in a hierarchy only needs to specify if it
will use the shared or joined inheritance strategy and the ORM can automatically derive
the relational schema.



6.2 Natural Keys and Inheritance

Every concrete class that derives from NaturalEntity must define or inherit a natural
key, so that the constructor can enforce the value-based uniqueness constraint. Abstract
classes need not define a natural key, and any class that has no natural key must be
declared as abstract.

Because of the option to use joined inheritance, an individual object can have its at-
tributes stored in several relations, but there is always a relation that stores the attributes
declared specifically in a class. This is the primary relation of the class.

Consider a class C that defines a natural key and that has no superclass which also
defines a natural key (i.e., it has only abstract superclasses). The natural key results in a
uniqueness constraint which is implemented by the database. A constraint can typically
only be defined on attributes in a single table and not on joined tables. It follows that
exactly one of the relations representing C must enforce this constraint. None of C’s
superclasses could have a natural key constraint, as enforcing a uniqueness constraint on
Super(C)’s primary relation would prevent other subclasses of Super(C) from defining
different natural keys. Hence, the natural key constraint for C must be enforced in C’s
primary relation. This implies that all C’s natural key attributes must be defined in C and
cannot be inherited, or they would not be present in C’s primary relation. Finally, note
that any subclass of C will inherit C’s natural key attributes, and because these attributes
have a uniqueness constraint defined on the relation that stores them, the subclass must
also inherit the natural key from C.

Therefore in any inheritance chain, i.e., starting at a concrete class and following
the super relation to a base class, there is exactly one class that declares a natural key.
Such a class is called a natural key base, as all classes that inherit from the natural key
base share the same natural key constraint and store their natural key attributes in the
primary relation of the natural key base. Furthermore, a natural key base, must use the
joined inheritance mapping strategy, because if C is a natural key base, Super(C) does
not have a natural key, and so the natural key attributes and uniqueness constraint must
be defined in a separate relation from Super(C)’s primary relation.

Hence, when mapping a class hierarchy to a relational schema, the mapping will
require: (1) a single table for the root class to store the primary key and object type; (2)
a table for each natural key base (unless the class is also the root); and (3) a table for
each class that uses joined inheritance (unless the class is a natural key root or the base
class).

Full-fledged multiple inheritance does not fit into the semantic model of object iden-
tity in this paper. However, the concept of mixins (additional abstract base classes) is
easily supported, because a mixin does not define entity identity or uniqueness.

6.3 Type as a Natural Key Attribute

A natural key base will pass on its natural key to all of its subclasses, and thus only
one object of any derived class may have a given natural key value. Sometimes this is
too restrictive a condition on the classes. Because the natural key distinguishes objects
based on their value, but not their type, it restricts cases where objects have identical
values but different behavior because their respective classes have different methods.



For example, consider the class structure of the distributed simulation system in
Fig. 2. The Measurement class defines a simple natural key as a foreign key relation-
ship to the Experiment it measures. An experiment should be able to include both
a TimeMeasurement and DistanceMeasurement instance. However, because these
objects have the same natural key this becomes impossible. The two measurement sub-
classes have the same attributes, but the meaning of the attributes differs due to different
method implementations. Thus, it can make sense to have more than one measurement
object with the same natural key, provided they belong to different classes. This can
be accomplished by adding the implicit type attribute to the natural key base’s primary
relation and thus adding the type to the uniqueness constraint. This allows multiple
Measurements to belong to a single Experiment, provided they are from different
classes.

In the natural entity framework the type can optionally be declared to be part of the
natural key of a class to allow this distinction when it is required. The type attribute is
automatically managed by the ORM, since it is always present as an attribute of any
object in the OO programming language.

7 Conclusion

The natural entity framework provides an OO interface for programming with objects
that have a strongly enforced concept of value-based uniqueness. These semantics re-
quire restrictions on object creation, initialization, inheritance, and relational structure.

The constructor methods of natural entities provide a consistent interface that dis-
tinguishes the different mechanisms by which a persistent class may be created and
initialized. These constructors prevent the ORM from representing the same conceptual
entity with different in-memory objects by ensuring that the value-based natural key
constraints are maintained for all natural entity objects in the execution environment.

Enforcing value-based object identity changes the semantics of object models in the
context of OO languages. However, these constraints only apply to objects from classes
that inherit from NaturalEntity. Thus natural entities can coexist with objects of
other less-strict persistent classes, as well as normal transient objects. Hence the natural
entity framework makes it easier for a programmer to reason about object uniqueness
for those entities which require it, but does not otherwise constrain the expressiveness
of programs or programming languages. This level of flexibility makes a performance
evaluation or validation of the framework complicated, as the natural entity framework
will only be used in applications that benefit from value-based uniqueness constraints,
and hence the specific application context is essential to the performance characteristics.
In future work, we will quantify the performance of the Natural Entity framework under
different application workloads and degrees of concurrency. Our own experience tells
us that many applications have classes of persistent objects that logically require value-
based uniqueness, and easily enforcing these constraints has been an invaluable tool in
writing correct scientific software.

The natural entity framework can be implemented in any OO language that supports
a strong concept of object identity. It relies on the facilities and abstractions provided
by modern ORMs. Object and class introspection, and the ability to instrument object



construction and destruction are helpful features in making the implementation easy to
use. Our reference implementation in Python is built on top of the SQLAlchemy ORM,
and the Elixir extension.
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