SIND: A Framework for Binary Translation
Trek Palmer Dino Dai Zovi Darko Stefanovic

Department of Computer Science
University of New Mexico
Albuquerque, NM 87131

e-mail: {tpalmer,ghandi,darko} @cs.unm.edu

December, 2001

Abstract

Recent work with dynamic optimization in platform independ virtual machine based
languages such as Java has sparked interest in the pog®biipplying similar techniques
to arbitrary compiled binary programs. Systems such as Dgn®AISY, and FX32 exploit
dynamic optimization techniques to improve performanceative or foreign architecture bi-
naries. However, research in this area is complicated byattleof openly licensed, freely
available, and platform-independent experimental fraorks: SIND aims to fill this void by
providing a easily-extensible and flexible framework f@earch and development of applica-
tions and techniques of binary translation. Current resefircuses are dynamic optimization
of running binaries and dynamic security augmentation ategjrity assurance.

1 Introduction

The ideas of program optimization and instruction tramstaare not new, however their primary
application has been in the static process of compilationed¢ent years, efforts have been made to
adapt these concepts to a dynamic setting. Projects suchresio [2] and the Java HotSpot [12]
system attempt to overcome (in a dynamic context) some dfdheers to static optimization such
as those that object-oriented languages can create. Theithea is that while a compiler must
treat every code branch as equally possible, a dynamidatansan let the program itself tell the
translator which branches are important and likely. Thisrimation can be used to transform the
running program into a more efficient version. It can also $&duto more intelligently monitor its
execution for potentially dangerous activity.

SIND is a modular framework for dynamic program profiling amansformation. SIND
emerged when we were searching for an existing dynamic gmand found either non-free
implementations or optimizers tied down to one specific it@cture. We then decided that what
was needed was a free and platform independent dynamidatiandramework that could be used
by everyone doing dynamic binary translation research. @yrening other dynamic optimizers,

1

a basic structure was abstracted. This structure (detamldte design section), would allow for
multiple underlying and target architectures to be sumggabrs well as for multiple translation and
profiling tasks. Specifically, the developers wanted to emthat SIND supported both the SPARC
and PowerPC architectures and could be used for both dyraptiinization and runtime security
checking.

2 Design

The SIND framework is composed of a group of inter-operatimglules. The bootstrapper loads
and halts the running binary just before execution of thentireg (but after library linking). Then
control is handed over to the dispatcher which is the cecmaimunications hub of the SIND
process. The dispatcher mediates inter-module commimnicand provides interfaces to allow
seamless module-swapping. The dispatcher coordinathghvéitmemory manager to allow trans-
parent and safe reads and writes between the running bindrtha separate SIND process’ ad-
dress spaces. After initializing the memory manager theatther starts up the interpreter which
begins software interpretation of the running executablas allows non-invasive binary profil-
ing and allows the interpreter to gather statistics anckthahavior without having to modify the
source binary at all. When an ‘interesting’ code trace ientered, the interpreter can do one of
several things. It can immediately ‘bail out’ and halt extemu (if, for instance, an unsafe operation
occurred while the binary was executing). It can start a ¢atee and fill an instruction buffer with
all subsequent instructions (until an end-of-trace comwlits satisfied). It can also modify ‘unsafe’
input data to guarantee ‘safe’ behavior of the running byifismch as truncating a buffer to prevent
it from overwriting stack frame boundaries). If a code tra@es generated, the interpreter can then
hand the instruction buffer (along with processor statermftion) to the dispatcher for transfor-
mation. The transformer module is a program that takes aades as input, safely transforms
them into an equivalent piece of code and then requestshbatispatcher place them in a code
fragment cache. This cache is then later used in place dafistiaterpretation when that particular
code trace is encountered again. Such code fragments nrapéhgersistently stored so that on
subsequent executions of the application, the cache canebidled. Thus, we eliminate costly
re-transformations of the same code. The following diagthustrates the module relationships:

Transformer
Fragment Cache

Bootstrap /

!

Interp Dispatch - Memory

Manager
f

Transformer

Running
Binary

2.1 Dispatcher and Bootstrapper

The system bootstraps by using the debugging facilitieb@foperating system to run the target
executable as an inferior process. The two current expeatathenplementations use tipgrace
[11] andprocfs [10] facilities of the Solaris operating system. The inderprocess is halted
at an appropriate point (usually the beginning of executistart , or upon entering thenain
function) and the process is resumed in a software intepret

The Dispatcher is primarily concerned with correctly ializing other SIND modules and in
mediating communication between them to remove unnegesggar-dependence. After the boot-
strapper has successfully started and halted the exeeytatdess, the dispatcher will initialize
the memory manager to allow controlled reading and writnogtfthe address space of the binary
to the SIND address space. It will then initialize the intetpr with references to the appropri-
ate memory manager. This memory manager will handle all étaild of accessing the running
program’s memory and so will present the interpreter witlngpte interface allowing reads and
writes. In the event that the interpreter generates a cage that requires transformation the dis-
patcher will initialize an appropriate transformer anddéehe, and create a link between them
through the memory manager. This link will then later be uséen the interpreter encounters
a previously transformed code trace. A specific advantagheotlispatcher system is that it al-
lows multiple modules of the same type to co-exist withowtifigito explicitly know about each
other. This can be advantageous in situations where théfispeodules need to be swapped or
duplicated while SIND is running.

2.2 Interpreter

The SIND interpreter is a software Instruction Set intetgae The interpreter maintains regis-
ter and processor state in SIND memory as well as furtheuugdgbrmation about the running
binary. Because the interpreter is for a specific InstramcBet and not for any specific proces-
sor implementation, the interpreter doesn’'t need to wobgua low-level hardware issues such
as device control. However, the interpreter must be coralyletware of instructions that may
transfer control out of SIND. The interpreter must guaramensistency between its registers and
the underlying hardware state when control is restored.utreat experimental implementations
the SPARC and PowerPC interpreters interpret only userenmdructions and let the OS handle
supervisor code, updating registers after returning frgstesn calls. This is not to suggest that su-
pervisor code could not also be interpreted, but such imgigations would be considerably more
complicated [9] [7]. As the executable is interpreted, titerpreter gathers statistics and profiling
information. This information may simply be archived fotdaanalysis; or, more interestingly,
may be used to trigger actions by the interpreter.

The Interpreter may simply halt the running binary basederrtin-time statistics. This could
be useful for a number of applications (such as preventingtenpially unsafe code segment from
executing). The interpreter may also modify ‘unsafe’ inpubrder to prevent unsafe execution.
This could be used to stop an overflowing memory buffer fromrugating the stack (by trunca-
tion), among other things. The interpreter may also hauoalty determine that a specific code
trace is ‘interesting’. This could, for instance, take tbeni of an often-executed function call or
branch (indicative of a loop). The interpreter may thentdtihing an instruction buffer with the
subsequently executed code. While the interpreter is stthte mode it will associate auxiliary

3

information with specific instructions to aid any possibkmisformation (such as the destinations
of indirect branches or function calls). The trace is stappden the interpreter encounters an
end-of-trace condition (such as another start-of-tracelition, or some constant maximum limit
on trace size). The interpreter can then hand the trace ovee ispatcher for transformation and
caching. Then, as long as the trace remains valid (detechfipdiit-or-miss statistics gathered by
the fragment cache) the interpreter will transfer contrkardo the cache the next time that trace is
encountered.

2.3 Memory Management

The memory manager module coordinates memory reads arebwgtween the SIND, Running
Executable, and Fragment cache address spaces. This shioulghlatform-independent interfac-
ing with multiple address spaces. This also permits utitizaof more efficient platform-specific
optimizations without exposing the details of such optatians to modules on the other side of the
interface. Debugging interfaces suclpaimce andprocfs allow access to an inferior process’
address space (albeit with the expense of a system call ébr@zeration). Future optimizations
include the use of shared memory pages and other forms adhagmory.

2.4 Transformers and Fragment Caches

A SIND transformer module is responsible for transformingode trace gathered by the inter-
preter, and placing the transformed version in a cache fer lese. Such a transformer could, for
instance, apply several linear-pass optimizers to thetraspeed-up subsequent executions. Or
it could place guard code around potentially unsafe codekislto automatically perform safety
checking. The fully transformed trace is called a fragmand is placed in the fragment cache for
direct execution by the Interpreter/Dispatch.

The fragment cache is responsible for maintaining an efffii@ccessible list of fragments, as
well as guaranteeing that fragments correctly return obbtck to the SIND process. This is done
by adding entry and exit references to the fragment so thatlague function is called before entry
of the fragment proper, and every exit point of the fragmanigs to an epilogue function which
correctly restores control and state to SIND. The fragmeche may further support ‘linking’,
by which fragments that branch to each other are linked hegehto a super-fragment, which
eliminates the overhead of having to leave the fragmentecaold then immediately re-enter it.

2.5 Offline Processes and Persistence

Because SIND is likely to generate similar fragment cachas fone execution of a given appli-
cation to the next, it makes sense to store the fragment dackmme persistent fashion so that
the next time the application is run through SIND, the fragtm@ache can be pre-filled to elim-
inate costly re-interpretation. Persistent code fragsatgo allow for offline processing of the
fragments. Such processing would normally be far too expene do at runtime and so could
be started at some later point to work on the persistent feausn Examples include expensive
optimization routines, code verification, or generatiompdfof carrying code from the fragments.

3 Applications of the SIND Framework

The SIND Framework is meant to be a flexible binary transtasioftware suite and so must ac-
commodate a variety of possible applications. Several sisels for the SIND framework are
presented below.

3.1 Dynamic Binary Optimization

A popular use for binary translation is to exploit run-timejperties of programs to optimize
them even further that static compilation can. For instantaken branches can be eliminated,
function calls can be inlined, and indirect branches caarolie converted into direct branches.
In such a scenario the interpreter would be for the sametaathre as the one the SIND process
was running on. It would collect traces of commonly executed code’, and the transformer
would be a collection of simple linear-pass optimizationtioes to speed up the trace. The offline
processing of the fragments would then be much more intepsmiaation routines to generate
even more optimized code fragments.

This is the current focus of the experimental implementafar the SPARC architecture.
Building upon the work of the Dynamo and B2 [4] projects, the SIND Dynamic Optimizer
hopes to combine efficient binary optimization with intgdint persistent storage without being
restriced to a specific platform.

3.2 Runtime Assertions of Process Integrity

The low-level interpretation and instrumentation offelsd SIND makes possible the dynamic
instrumentation of the process to ensure integrity andrggcun particular, it allows SIND to
protect the inferior process from many sorts of buffer oesvfl. By taking special precautions
with respect to the saved program counter in the stack fratlassic “stack-smashing” [13] attacks
can be detected and the process can be halted. This can benpedfthrough the interpretation
and instrumentation of the code traces. Because this atgedan happen “out-of-band” in the
SIND process, it is very difficult to bypass by an attackemi&ir protections can be extended
to all saved registers in the stack frames, limiting theaffef a stack buffer overflow to other
automatic variables on the stack.

3.3 Transparent Binary Instrumentation and Profiling

Because the SIND interpreter interface allows any profilifigrmation to be gathered, it allows

for custom interpreters to be constructed that will gatkegtistics on running programs for research
purposes. Apart from the standard timing information SINIDId gather information about spe-

cific segments of code. Certain chunks of the binary coulddggld as interesting or ignorable,
leading to a high-resolution timing system. For instandd| @rograms could have the wait portion

of their event loop ignored, thus allowing more accuratertgrof the program’s logic sections. Or

more interactive benchmarks could be used to analyze progxacution patterns.

3.4 Dynamic Binary Translation

Because the SIND dispatcher isolates modules from one enattdynamic binary translator could
consist of an interpreter that translates code from onetanthre into instructions on another, with
a transformer then used to optimize the translated fragsndntthis way, code for two similar
platforms (Solaris/SPARC and Solaris/x86, for instanam)ld be executed on either platform,
with one interpreter and transformer being used for natbgee@and another interpreter transformer
pair being used to translate foreign binaries.

4 Dynamic Binary Optimization

The SIND framework is designed to facilitate implementata§ a dynamic optimizer, and thus
includes all the necessary parts for active transparefitipgoand optimization. As in many binary
translators [2] [7] [9] [4], native code is executed in areipreter for the purpose of transparently
gathering information. Specifically, a heuristic analy#®s current instruction and determine if
it is “interesting”, and if so it associates a counter withttparticular instruction. Each time that
instruction is later encountered, that counter is increienWhen this counter exceedes a given
threshold, the interpreter will begin to gather a trace. a@éris a sequence of instructions from
one “interesting” instruction (the trace head) to the néxteresting” instruction encountered (the
trace tail). Note that it is possible for the head and taildédh®e same (as in a loop). Also note that a
trace may include function invocations. Once a trace istified, this trace is then combined with
some auxiliary information (such as the value of a givenstegiat the time an indirect branch/call
was taken) and is then handed over to dispatch for procebgiagiransformer. The transformer
optimizes the trace and places the optimized version (ndedta ‘fragment’ in Dynamo parlance)
in a cache. Then the next time the interpreter encountetsréiee head instruction, control then
transfers to the cache and the optimized version is run omprbeessor directly. Based on the
idea that most of a program’s execution is confined to a mihgmlaset of the code, after an initial
warm-up period most of the execution will actually take pladgthin the trace cache. This more
than makes up for the initial overhead of running an integsre

4.1 The Optimizing Interpreter

The interpreter does no actual optimizing itself, althoygtins should be taken to make it as
efficient as possible. Of primary concern in the interpretdroth choosing “interesting” instruc-
tions, and picking an appropriate threshold value. Culyenbst dynamic optimizers fixate upon
backwards-taken branches (because these are indicativeps), and so consider any such fre-
guently taken branch “interesting”. This has the advantad®eing both intuitive and simple to
implement. It is also a relatively fast heuristic. Howeas SIND makes no requirements on what
internal profiling the interpreter performs, different histics could be easily tested and compared
on sample code, perhaps resulting in a superior heuristic.

Likewise, the threshold value can also be determined byrarpat. Current dynamic opti-
mizers seem to pick values of about 15 [2] [1], but little hatually been written on why that
value seems best. With SIND it would be relatively simple teate a series of Interpreters with
different heuristics and thresholds, and to subject thdrtoa battery of tests to determine the

best heuristic/threshold pairing for a specific platfornmlike Dynamo or DAISY, SIND’s flexible
module framework would allow several different interprst® run independantly, each with their
own heuristics and thresholds.

4.2 The Optimizing Transformer and Trace Cache

The Transformer and Trace Cache are where most of the woek f@lace. The transformer must
take a trace and then transform it into a functionally edeng optimized version. Time con-
straints on the Dynamic Optimizer effectively restrict #wets of transformations that can be done
to linear pass optimizations. Therefore the more comm@ataptimizations often found in com-
pilers cannot be used here. But, more hardware specificaenagions can be used. For instance,
translating indirect branches into direct branches toiekte an unnecessary memory reference.
Also, because the trace crosses function boundaries, seatedly gets inlining for free. Only
minimal translation needs to occur to remove the unnecgfsaction call and return.

The transformer also has the advantage that the trace’s ss@ignificantly narrowed from
that of the whole program. This means that certain optiromatthat could not be performed on
the whole program may be valid in the trace’s restricted exnt-or instance, a variable that may
vary over the whole program’s execution may be locally camisin the context of the trace, and so
may be folded away. Once such transformations have beeorped, the fragment is then handed
over to the fragment cache for future execution.

The fragment cache has two important responsibilities. usinguarantee that any executing
fragment will return control to the cache (and therefore B)Mdfter executing, the cache must also
monitor the usage of loaded fragments and be able to remalefsagments. Control over the
fragments is maintained by examining each submitted frazued cataloging each possible exit
point from the fragment. Special prologue and epilogue ddeks are then created to verify that
the fragment was called correctly and to initialize a congswitch back to the fragment cache. The
target addresses of the fragment’s exiting branches isfraddb point to the fragment epilogue.
Because a loaded fragment cannot be entered except throcajhta its prologue, and cannot
be exited except by a call to the epilogue, the fragment cgclagantees that no fragment will
“break out” of SIND (this was a potential problem with Dynasimemory layout). The cache
has several options for monitoring hit-or-miss statistitsthe Dynamo project, a fairly course-
grained measure was used, and the whole cache flushed witentieénts were deemed too cold.
In SIND, the thought is to have finer control by measuringistias separately for each fragment.
This would then eliminate the costly dump-everything-aeldad-cache procedure, and spread the
cost over the whole execution in an incremental fashionh@lgh SIND is not yet in a state to
support such experiments, our goal is to develop SIND sotthatmeasurement can be taken.
Optimizations to the basic fragment cache are possiblélydoagment cache exits and entrances
may be eliminated by internally linking together fragmentspractice, this has greatly increased
execution speed of the optimized binary [9] [2] [7] [12].

4.3 Persistence and Offline Processing

Unlike most other dynamic optimizers [2] [7] [9], the SINDafmework facilitates the addition
of further components to the dynamic optimizer without hgvio rework pre-existing modules.

With this in mind, it should be easy to integrate a more pemnanache “archiver” module with the
existing runtime dynamic optimizer. This archiver wouldkegersistent dumps of the fragment
cache to disk, allowing any future execution of the binarpite-load the fragment cache, and thus
eliminate costly interpretation/optimization calls. Oniis system it should be simple to graft an
offline batch optimizer. Such an optimizer would run in thekground and perform expensive
optimizations on the archived fragment caches. This woesdilt in faster fragments [4], and
wouldn’t impact the running time of the dynamic optimizer.

4.4 The Memory Manager

The primary function of the memory manager is to maintainithegrity of the virtual memory
space of a process both when the process is executing whthsoftware interpreter and when it is
executing natively on the processor. There are severabappes to this. Some include translating
memory references when running in the interpreter to adtesgalues in the address space of a
process. Another approach involves mapping pages betvwee8IND process and the inferior
process such that the memory is accessible in both. A thpcoagh is to run SIND and the target
process in one address space so that memory accesses deddb e translated nor relayed
when the target process is being interpreted [2].

The goal of the memory manager is to maintain this consigtesttbout further impacting per-
formance. Methods of accessing the address space of amottass typically require a system
call. Although this may be mitigated through batch changdsef switching back to native exe-
cution, for example), the cost of a mode switch may be too.hidigher-performance but more
platform-specific options such as shared pages may exisi@pceferred. Some platform-specific
methods may require specific operating system facilities/en modifications to the kernel image
through loadable modules. Through the abstractions peoMiy the SIND architecture, portable
and implementation-dependent memory managers will beemrguch that the fastest supported
method is used. This ability to dynamically select a memoayager provides a level of flexibility
lacking from many other dynamic optimizers.

5 Runtime Assertion of Process Integrity

The low-level control of a binary translation system makg®ossible to externally augment the
security of an executable. In particular, process intggudin be asserted through defenses against
code injection attacks. Code injection attacks, such aebaberflows and format string attacks,
subvert the vulnerable process by taking control of thegss@nd directing it to execute injected
code. Typically, the first step in this is overwriting cortstructures such as function return ad-
dresses and Global Offset Table entries. Through softwéeegaretation and code instrumentation,
many of these structures can be protected.

5.1 Protecting Return Addresses

The typical target of “stack-smashing” buffer overflow altais the function return address stored
in the stack frame. Controlling this value can cause theanalble program to return control into

dynamically injected code. Several protections againstitivolve the use of compiler extensions
to check the validity of a saved return address before jugfunt [5]. However, this can also be
done dynamically.

Some static stack protections like StackGuard alter thok $tame format to include a “canary”
value before the return address. These solutions requipecas stack frame format and hence
require recompilations of the executable. In a StackGuastepted executable, before returning
from a function, this canary is checked to ensure that it hagen overwritten (indicating that the
return address has been overwritten also). If the canary mloiematch its original, random value,
execution of the process is halted. With knowledge that susistem is in use, an attacker may
use other attack techniques to overwrite a saved returreasléxactly (without altering the canary
value) [3]. More recent versions of StackGuard XOR the readdress with the canary to detect
if either has changed. SIND, however, is not vulnerable t® itiethod of attack. Regardless of
whether an attacker knows that a system is running in SIN&gigpvalues such as return addresses
are verified with values in a separate address space, anueaeédre inaccessible to an attacker.

When running in a software interpreter, the return addréadenction can be duplicated out-
of-band in the interpreter. Upon returning from a functitimis value can be checked against the
address stored in the function linkage. If there is a disamep, the process can be terminated,
or SIND may attempt to correct the return address so that itheeps may continue executing.
However, precautions must be taken so that the continuexnit®a is safe. When running natively
on the processor, the code may be instrumented dynamicadigld similar integrity checks. For
example, on the SPARC architecture, instead of restoriagebisters in the branch-delay slot of
theret instruction, SIND may translate the instructions into ausste that restores the registers,
compares the return address to an immediate value, andutmasjto the calling function.

6 Transparent Binary Instrumentation and Profiling

SIND already includes the necessary components for tramsparofiling and instrumentation
as these are needed for both dynamic optimization and panésgrity assertion. So a pure
profiler would simply be a custom interpreter that would memm the behavior being profiled.
Instrumentation can be achieved with a custom transforiete that this instrumentation is not
directly added to the binary itself, and so is transpareMDS flexibility allows for a combination
of optimization with instrumentation, which may result mstrumented running times close to
uninstrumented times.

7 Dynamic Binary Translation

Dynamic translation is the rewriting of a binary compiled éme platform to another target plat-
form. One can see that with a few modifications, the Dynamitif@iper can be turned into a
translator. Simple translation of instructions and sinmgylstem call translation would easily allow
a binary compiled for Solaris/SPARC to run on Solaris/x8&erk different platforms could be
supported (as in FreeBSD [8] and Solaris Linux emulatioi. [B}s in dynamic optimization, bi-
naries would be translated on the fly, but offline persistemzkoptimization would become more
important. The persistently stored fragment cache dumpsdiben become the translated binary

9

on the target system. As in the B32 project, offline processing of the cache dumps would mean
that after a few run-throughs, a foreign binary would be exeg at near-native speeds.

8 Related Work

StackGuard [5] uses static compiler extensions to augmegrgms with increased stack pro-

tection. By placing “canary” values before return addregeestack frames, stack overflows are
detected when the canary is altered. Later revisions eer¢he return address with the canary so
that the alteration of the return address is detected ewhr ifanary is not touched.

Dynamo [2] is an experimental dynamic optimization systemthe HPPA architecture. It
used both interpretation and simple optimization to spgethe execution of native code. The
fragments were stored in a cache and internally linked, kkewthe cache contents were never
stored persistently and using Dynamo required an HPPA ueatrtka running a version of HP-UX
with a modified linker.

FX!32 [4] is a program for running WINNT binaries compiled on @®>n an Alpha running
the same operating system. BR translated the binaries into x86 instructions, and ldiatch-
processed” the translated fragments into heavily optichagsions. FX32 achieved good runtime
performance exclusively through offline batch optimizatio

Both the FreeBSD [8] and Solaris [6] operating systems happart for runtime Linux emula-
tion. No binary translation occurs, so this only works on p8&forms. The emulation consists of
system call translation, and so only works on binaries tbattdely upon Linux-specific features
(such as direct access to video hardware).

The Transmeta Crusoe [9] processor uses “code-morphicghiques to translate foreign in-
structions into the Crusoe’s native VLIW instruction sehis“code-morphing” software exists
at a higher level than standard processor optimizationls aadranch prediction. This software
relies upon dynamic optimization techniques in order to gensate for the Crusoe’s lower clock
speed.

The Java Hotspot VM [12] is a Java virtual machine that usés 8id compilation and runtime
optimization to greatly speed execution of running Javetytle. However, many of the HotSpot
optimizations are very specific to the Java language.

The DAISY binary translator [7] is a dynamic optimizer foetfPowerPC architecture. Like
Crusoe, it sits above the bare processor but below the apgststem. Although now open source,
DAISY requires extra hardware to effectively function.

9 Future Directions

9.1 OS Interfaces

Further development of the SIND Dynamic Optimizer mightliie moving SIND logic into
kernel-space (for instance, as a loadable module). Thisdradlow for much more efficient access
to the running binaries’ address space, as well as moreegffitiansfer of control to other kernel
functions.

10

9.2 Hardware ‘Aware’ Transformers

Another direction for development might be the creationasfrhardware specific interpreter/transformer
pairs. These would take into account the idiosyncrasiepaficular hardware platform and could

then accordingly optimize for things such as cache perfac@@r memory performance. If these
interpreter/transformer pairs were keyed by a specifidgiat identifier, then it should be possi-

ble for the SIND dispatcher to instantiate a more highly mjpted interpreter on those platforms,
rather than the more generic instruction set interpreter.

9.3 Advanced Security Assertions

Future applications of the SIND work related to securityldanclude the protection of higher-
level operating system services, protecting against headlows, function pointer overwriting,
and other trespasses of process memory. Further apphisatauld include work with proof car-
rying code and other formal security methods.

References

[1] Ole Agesen and David Detlefs. Mixed-mode bytecode ettenu Technical report, Sun
Microsystems Labs, June 2000.

[2] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banebinamo: a transparent dynamic
optimization system. I8 GPLAN Conference on Programming Language Design and Im+
plementation, pages 1-12, 2000.

[3] Bulba and Kil3r. Bypassing stackguard and stackshiBlitack, 10(56), May 2000.

[4] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin]ye, S. Yadavalli, and J. Yates.
Fx!32 a profile-directed binary translator, 1998.

[5] Crispin Cowan, Calton Pu, David Maier, Heather HintoeaPBakke, Steve Beattie, Aaron
Grier, Perry Wagle, and Qian Zang. Automatic detection aiestgntion of buffer-overflow
attacks.7th USENIX Security Symposium, 1998.

[6] Mike Davidson. Lxrun. http://www.ugcs.caltech.etateven/Ixrun/.

[7] Kemal Ebcioglu and Erik R. Altman. DAISY: Dynamic contgiion for 100% architectural
compatibility. InISCA, pages 26-37, 1997.

[8] Brian N. Handy, Rich Murphey, and Jim Mock. Linux binargrapatibility. In FreeBSD
Handbook.

[9] A. Klaiber. The technology behind Crusoe processor§020
[10] Sun Microsystems. proc - /proc, the process file systar®unOS 5.8 Manual, chapter 4.

[11] Sun Microsystems. ptrace - allows a parent processritralthe execution of a child process.
In SUNOS 5.8 Manual, chapter 2.

11

[12] Sun Microsystems. The Java Hotspot performance erageigtecture, 1999.
[13] Aleph One. Smashing the stack for fun and prd®itrack, 7(49), 1996.

12

