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ABSTRACT
We wish to make it easier and quicker to write well-performing
scientific simulations that (1) have single-thread performance com-
petitive with low-level languages, (2) use object-oriented program-
ming to properly structure the code, and (3) are very easy to de-
velop. Instead of prototyping in a high-level language and then
rewriting in a lower-level language, we created a DSL embedded
in Python that is transparently usable, retains some OOP features,
compiles to machine code, and executes at speed similar to C.

CCS Concepts
•Software and its engineering → Domain specific languages;
Object oriented languages; •Applied computing → Chemistry;
Physics;

Keywords
domain-specific languages; scientific simulations; Python

1. INTRODUCTION
One of the most widely used numerical methods is the Kinetic
Monte Carlo (KMC) algorithm [4] of statistical physics, also
known to chemists as the Gillespie algorithm [9], as the 7700 ci-
tations in the literature to just the two original articles demonstrate.
In this approach, the scientist-programmers represent their natu-
ral phenomenon of interest as a continuous-time Markov process
model, and each execution of the algorithm computes a single tra-
jectory of that model by repeatedly drawing from a pseudo-random
source to select next events and times. As the available choices for
next event depend on the state of the model, and the state intricately
depends on the complete history of past events, each execution is
inherently sequential. However, to numerically explore the model
typically requires many thousands of trajectories for statistically
valid results, which means that the approach overall is inherently
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embarrassingly parallel. Much programming language research
today focuses on automatic parallel execution of concurrent pro-
grams, which is neither needed nor applicable to this domain. In-
stead, simulations using the KMC algorithm require stellar single-
thread performance, and how to deliver that to scientists wishing to
write in a convenient high-level language is the focus of this paper.

Generally, scientists writing custom domain-specific simulations
face a difficult choice selecting a programming language. High
execution speed is of great importance since stochastic simulation
requires many executions. This suggests using a low-level language
such as C. Another issue is code reuse: while working on a topic
a scientist often creates many different simulations that are similar
but explore different properties of the model. Since it is hard to
know which properties will be relevant in the end, it is important to
keep the code well structured and easy to reuse, otherwise improve-
ments to the framework in one simulation will have to be ported by
hand to the remaining simulations. In C this is time-consuming and
error-prone, to a large degree because it is not easily possible to use
an object-oriented programming (OOP) style. Another dimension
is that of code optimization, algorithmic and otherwise. We should
not optimize prematurely [11], but optimizing in later stages makes
it a challenge to keep the code compatible with previously written
simulations. Again, C falls short.

One common approach is to use a high-level scripting language
(HLSL) as a prototyping language and, once the relevant proper-
ties are identified, to rewrite the “final” simulation in C. This takes
advantage of the high productivity HLSLs allow but does not solve
the code reuse issues raised above. And since today HLSLs are
convenient and fast enough for many general tasks, programmers
would like to more fully utilize their features, and somehow avoid
the headache of rewriting.

Python, a mature, general-purpose HLSL, is a popular language in
the scientific community [13, 20, 22], not least because it encom-
passes rich libraries for numerical computation (NumPy, SciPy)
and data plotting (matplotlib). For Python it is the recommended
practice to refactor the performance-critical code into a separate
module and then re-implement that module in a lower-level lan-
guage [12]. This may be a feasible approach for software that is
widely distributed and reused by many since then the additional ef-
fort is amortized. However, this is nothing but using Python as a
prototyping language: there is a rewriting cost and maintenance is-
sues as noted above. The smaller the section with the performance-
critical code is, the more viable is the re-implementation advice.
However, there are classes of programs where the critical section
is broad, such as KMC simulations (see Section 2.2). There, fac-
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toring only part of the simulation into a foreign language module
results in many costly transitions into and out of the scripting lan-
guage run time, negating much of the speed benefit. In that case re-
implementing the performance-critical section can be tantamount
to rewriting the whole program.

Would it be possible to avoid rewriting the performance-critical
sections in C simply by having Python run fast enough? We ex-
plored the performance with a KMC simulation from [19]. Un-
fortunately the performance penalty of the default implementation
is prohibitive, running up to three orders of magnitude. Differ-
ent Python implementations (Jython, PyPy) only marginally im-
proved the run-time of the simulation. For comparison we also
implemented the simulation in C++, which was significantly faster
than Python, but remained significantly slower than the C refer-
ence. Not surprisingly, then, several existing approaches to speed-
ing up Python code have been developed (discussed in Section 5).
While they provide a benefit, they all come rather short of C-like
performance, especially for our scientific simulations, because they
either aim to support the complete language (always difficult to do
efficiently for a feature-rich dynamic language), or to integrate so
well with Python that it is easy inadvertently to call into the slow
run-time (something we would rather avoid), or focus mainly on
parallel execution (not relevant to our problem domain). There-
fore, we have been developing a domain-specific language (DSL),
called STELLA, with Python language features selected for custom-
written scientific simulations. With the reduced feature set we can
make execution speed a priority, allowing us to compile the DSL
into native code rather than interpreting it.

We avoid all expensive language features in STELLA, in order that
it can be obvious to the programmer that any single statement is
quick to execute. Among other ramifications, this design goal fa-
vors static over dynamic typing, since the run-time type checks are
a hidden cost in dynamically typed languages. This potential loss
of functionality will be compensated in part by staging the exe-
cution: STELLA code is constructed within CPython, the standard
implementation of Python. Thus the full language is available in a
pre-processing, or generative, stage. Hence there will be no restric-
tions during the many tasks that the programmer must solve outside
of the main simulation loop, such as parsing command-line param-
eters, configuration, and state files, accessing databases, and coor-
dinating the simulation execution [15]. Additionally, the dynamic
features of Python can be used to assemble classes and objects at
run-time. The results of the DSL execution are made available to
the Python run-time for post-processing. Thus it is easy to use the
excellent data analysis and visualization tools that Python libraries
offer, because now the complete language is available again.

Properly structuring simulations and frameworks should be done
with OOP, therefore we deem this support essential. Full OOP sup-
port is expensive: it takes great development effort and the com-
plexities are likely to require some run-time support. Thus STELLA
supports a limited range of OOP patterns which give the program-
mer useful features without adding run-time overhead.

Although it shares Python’s syntax, STELLA is a different lan-
guage, and some adjustments are necessary for existing Python
simulations to make them valid STELLA programs. But in prac-
tice we found that only small changes were required.

We have three main goals: (1) Execution speed at the level of C.
This requires both compiling to machine code, and a strict separa-
tion from the Python run-time. (2) Access to object-oriented pro-

gramming. OOP is an established method for organizing source
code, which we want to exploit to share code between simulations,
and to encapsulate optimizations. It is important that the OOP im-
plementation should work without run-time overhead, to preserve
the first goal (3) Ease of use. From a programmer’s perspective, the
dynamic capabilities of Python make it possible to execute STELLA
seamlessly—we want only minimal changes, if any, to be needed
from an original Python program. Again, trade-offs are required to
respect the first goal.

In this paper we describe the design and implementation of
STELLA. The evaluation of the prototype suggests that our ap-
proach allows all three goals to be simultaneously achieved for the
application domain of interest to us, scientific simulations.

2. FEATURES AND RATIONALE
STELLA is a statically typed, just-in-time compiled language em-
bedded in Python. We aim to use Python and stay faithful to its
semantics, but only make those features available that can be effi-
ciently implemented without run-time support. This lets STELLA
deliver predictable performance whilst remaining compatible with
Python.

A program using the STELLA DSL initially runs inside the standard
Python interpreter. All code is first parsed by the Python interpreter,
and execution starts as for any Python program. Therefore the pro-
gram can initially use all features of the complete Python language,
e.g., to compute constants, dynamically assemble classes and ob-
jects, and load initial data. All libraries are usable at this point
since the DSL is not yet active. STELLA then executes the sim-
ulation core. After the DSL finishes, the program returns to the
full-Python stage. Thus, Python natively handles all pre- and post-
processing, which avoids any compatibility problems. STELLA is
activated from within Python only for the simulation core.

Marking the starting point for STELLA code, the entry function, is
the only modification of the source code that is always required;
this function must be wrapped by the STELLA library. This ap-
proach is very flexible because (1) it processes exactly the same
code as the Python interpreter would, the bytecode; (2) the original
function stays intact and remains usable within Python; and (3) it
reduces the barrier of entry for the programmer.

When the wrapped entry function is called, the bytecodes that the
Python interpreter created are examined at run-time. As a result,
modules can be used as appropriate, objects can be dynamically
assembled, and libraries can be distributed in native Python manner.
Any native Python function or object is compatible with STELLA,
as long as it adheres to supported Python features.

DSLs typically allow making calls into the host language. This
is also the case for most existing methods to speeding up Python
programs (see Section 5). STELLA takes the opposite approach:
all function in the call graph of the entry function are automati-
cally translated to STELLA as well. We do so for performance rea-
sons: the Python run-time is slow, so allowing transparent calling of
Python functions (or in fact, any Python feature), would introduce
the risk that the programmer does so unintentionally. Such per-
formance regressions are difficult to identify, and must be avoided
by any high-speed implementation anyway. Therefore by not even
implementing this convenience feature we let the programmer save
time in the end because then best practices are being followed from
the onset.



Since the original Python function remains usable, and has the same
semantics, any prototyping and debugging can be performed di-
rectly in Python. Then once the program is working as desired,
STELLA can be introduced by changing one source line—or even
added to the program at run-time. Being dynamically invoked
means STELLA can infer enough information about the program to
behave like Python, despite being a statically typed and compiled
language. This is the reason that only the entry function needs to
be marked: types are automatically inferable, and do not require
annotation, because the function input parameter types are known
at run-time.

The call graph is computed while analyzing functions. Once a call
is encountered, the callee is marked to be analyzed later. The call
graph is easy to compute because STELLA does not support dy-
namic language features such as “eval()” . While dynamic lan-
guage features are a useful tool in general, they are inherently slow.
Even if they were natively implemented in STELLA, the perfor-
mance could not meet the programmer’s expectations, therefore we
disallow them.

The particular supported language features of Python are selected
according to a simple criterion: does the feature have a constant
run-time cost? For example, accessing a dictionary element re-
quires calculating the hash value of the key before accessing the
memory location. This is a hidden cost since Python’s syntax does
not distinguish between array indices and hash indices. Another
hidden cost in scripting languages is the frequent memory alloca-
tion and deallocation. Since STELLA focuses on high-performance
code, we believe it is reasonable to preallocate the required mem-
ory, and to discourage strongly from allocating memory within the
DSL.

After the analysis is completed, the code is compiled and executed
using LLVM [14], a proven compiler toolkit. Therefore one way
to look at STELLA is as a compiled subset of Python. This view,
however, immediately evokes the question of a roadmap to support
all of Python, and that is not our goal. We believe that describ-
ing it as a domain-specific language is more accurate, since it is a
more restrictive, but very efficient approach for some domains. We
mention the “Python subset” viewpoint because it makes it easier
to understand what STELLA looks and feels like. STELLA is a com-
plete programming language, but the initial design is more suited
for scientific simulations than other domains.

2.1 Example Program
Figure 1 lists the source for a STELLA simulation of a simple ran-
dom walk in one dimension. The RandWalk class and the “s” ob-
ject are created in plain Python. This includes running the initial-
ization function, which creates a NumPy array on line 4. Line 19
invokes STELLA on “s.run()” .

The analysis determines that the called function is a bound method
of RandWalk.run() to the object “s” . First a shadow structure is
created for this object, and then it is initialized with the same data
that “s” currently contains. Afterwards the method starting on
line 9 is analyzed. We discover that RandWalk.keep_going() is
called, and include it into the translation pipeline. The access of the
attribute surface on line 12 will directly read and write the mem-
ory backing the NumPy array. The function rng.mt_drand()

called on line 14 is part of an external C library, and therefore not
included in the analysis and translation but directly called by the re-
sulting STELLA code. The two Python methods are then compiled

import stella, numpy, mtpy as rng

class RandWalk(object):

def __init__(self, size, max_t):

self.max_t = max_t

self.surface = numpy.zeros(size, dtype=int)

self.t = 0

def keep_going(self, pos):

return pos < len(self.surface) \

and self.t < self.max_t

def run(self):

pos = 0

while self.keep_going(pos):

self.surface[pos] += 1

self.t += 1

if rng.mt_drand() < 0.5 and pos > 0:

pos -= 1

else:

pos += 1

s = RandWalk(3000, 30000000)

stella.wrap(s.run)() # DSL executing the core

print(s.t, s.surface)

# pylama:ignore=E265,E401,E302,E702,E301,E126

Figure 1: Example simulation: a semi-infinite random walk.

Figure 2: Simplified structure of a typical simulation.

and the entry method “s.run()” is executed. Once it returns, line
20 will again be executed by the regular Python interpreter, and
print the results.

2.2 Size of Performance-Critical Sections
We believe that STELLA is a useful approach for a multitude of pro-
grams, but, as mentioned in Section 1, it is particularly difficult to
rewrite the performance-critical section in a lower-level language
for Kinetic Monte Carlo simulations. In many cases the “80/20”
rule applies: 80% of the execution time is spent in 20% of the
program—but there are also classes of programs where it does not
apply, and this is one.

Consider the structure of a typical simulation (Figure 2): a main
loop keeps track of the progress of the simulation, and often also
decides what event is currently being simulated. Then, depending
on the event, it calls some function to evaluate the effects. These
functions may call helper functions. It is easy to see that the main
loop will be called very frequently. But if only the main loop is
rewritten, the program will constantly transition from the high-level
to the lower-level language and back.

An attempt at a workaround would be to implement the most fre-
quently called subset of functions. But the programmer does not



necessarily know with what frequency these events will occur, i.e.,
the frequency of calls to the event-handling functions. Finding the
distribution of the events may very well be what the simulation is
meant to compute in the first place!

Transitioning from one run-time system to another can be costly.
When the operations in the optimizing language, e.g. NumPy, ma-
nipulate only small amounts of data instead of larger data sets,
then the transition cost from Python is not amortized by the large
speedup that the optimizing language is able to provide. This is a
similar situation to when only part of a simulation is rewritten in a
lower-level language.

2.3 Language Description
Since STELLA operates on the Python bytecodes, the supported
language features are defined by just those. Yet for the program-
mer this is merely an implementation detail, and therefore we in-
stead describe the language in high-level terms with references to
Python features.

The supported expressions are arithmetic operators on integers and
floating point numbers, comparisons, conditional expressions, and
the creation of tuples. Lambdas are not supported, since they are
implemented as a dynamically created closure in Python. Operator
precedence is identical to Python.

Simple statements such as assignment, pass, return, break,
continue, are supported. The raise statement can be used to
abort the current simulation, i.e., to return to Python, but no ex-
ception handling is done within STELLA, for efficiency reasons.
The import statement is not supported, but can easily be used in
the pre-processing phase. The global statement is supported, but
nonlocal does not apply, since nested scopes are not supported.

Compound statements such as if and while are fully supported.
The for loop is currently restricted to the most common forms, but
this restriction is only in place because of the state of the imple-
mentation, and not inherent to the language design. As mentioned
above, try is not supported, because exceptions cannot be caught
within STELLA. The with statement is not part of the language be-
cause it is mainly useful for I/O operations which are not the focus
of STELLA.

Functions and classes can only be defined in Python, and subse-
quently used in STELLA. Nested function definitions are similar
to lambda statements, and not supported. Methods (functions de-
fined as part of a class) are supported. Dictionaries and sets are not
currently supported (see Section 6 for future work).

Classes are only accessible in Python, i.e., one cannot create new
objects in STELLA because this would negatively impact run-time
performance. Instead, the programmer should pre-create the ob-
jects used during the life time of the simulation. This is a perfor-
mance optimization in other languages, which is simply required
from the outset for STELLA. Object instances that are reachable
from the simulation are automatically available in STELLA pro-
grams.

The current typing rules for objects are a cross of Python’s duck
typing, and the static typing that STELLA imposes. An object at-
tribute access is successful if the type that the static analysis in-
ferred contains such an attribute. That is the synopsis of duck typ-
ing. Additionally the type inference must conclude only one con-
crete type whenever an object is accessed, i.e., polymorphism is not
allowed. This is not a restriction for the receiving object, i.e., self,

Figure 3: A high-level overview of the analysis phases for a function.

since these are cloned for each subtype.

As a result the prototype implementation does not consider subtyp-
ing relationships when determining type compatibility. The reason
for this limitation is that multiple inheritance is available in Python,
which in general does not have a low-level memory layout that can
be accessed without dynamic type checks. Therefore the only limi-
tation that is inherent to the design is the unavailability of full mul-
tiple inheritance. More limited styles, such as mix-ins, could be
supported in the future with an improved static analysis.

2.4 Semantic Differences
We were forced to deviate from the Python semantics in a few areas
to preserve the goal of C-like efficiency in the generated code. We
do not believe these differences will have a major impact on the
programmer. These exceptions are:

Machine types: In Python the basic types are boxed, while in
STELLA they are the machine types, as in C. This causes differ-
ences in, e.g., overflow or underflow of a variable because Python
automatically switches to arbitrary precision math.

Module sign: Modulo always has the sign of the divisor in
Python, unlike STELLA and C, where it is the sign of the dividend.

pow return type: The power function for integers in Python re-
turns an integer result when the exponent is positive, but a float
result when the exponent is negative. STELLA implements power
identically to C, where the result only depends on the type (integer
or float) of the exponent, not the sign.

3. IMPLEMENTATION
The analysis uses a queue to store which functions remain to be
analyzed. The queue is initialized with the entry method. Functions
are added to the queue once they are discovered, or if the analysis
must be interrupted due to missing information.

3.1 Analysis
The analysis is organized into different phases (Figure 3). First
Python’s introspection facilities are used to disassemble the byte-
code of the function. Each bytecode is decoded and stored in an
intermediate representation (IR-S) object. Initially this object only
stores the arguments of the bytecode, but the remaining analysis
steps progressively fill in further information. If a bytecode is un-
supported, an exception is raised.

Now we have an explicit representation, a list of bytecodes which
can be easily manipulated programmatically. The next step is to ap-
ply rules to rewrite those Python bytecodes which represent higher-
level functionality (Section 3.2)



With the structure of the bytecodes set, the intra-method control
flow converts the index-based information that the Python byte-
codes supply into explicit references to the IR-S objects. Not only
is this representation more efficient to process, it also makes it eas-
ier to write the subsequent analysis and transformation code.

Python’s bytecodes operate on a stack of values. This makes it dif-
ficult to manipulate the stream of bytecodes [17]. Therefore we
transform values on the stack into a register to facilitate the gen-
eration of LLVM IR, which is also based on registers. Note that
here the bytecode arguments are not yet references to the values
being processed, but to the bytecodes that create these values. This
makes the representation explicit, but temporarily adds one level of
indirection (Section 3.4).

The last phase is the type analysis. Since the flow of information
is explicit, each IR-S object examines its arguments to determine
the type of its result. This removes the indirection introduced in the
previous phase. Function calls interrupt this analysis if the return
type is not yet known, since further type deductions depend on it.

3.2 Loop Rewriting Phase
Python handles for-loops by creating an iterator and using it to tra-
verse the given object. While this approach works well to support
flexible iteration over different object types, it is not necessarily
the most efficient. Therefore STELLA recognizes the common for-
loop patterns and rewrites them into a traditional C-style for-loop,
in particular without creating an iterator object or using function
calls.

3.3 Control Flow Phase
When the type analysis determines a function call, the called
method is added to the analysis queue. Note that all steps until
the type analysis are only performed once, but several iterations of
type analysis may be necessary until types can be completely de-
duced. This simple control flow analysis suffices since there are
no dynamic ways to call a function, such as “eval()” in regular
Python.

3.4 Stack to Register Phase
The LLVM IR operates on an unlimited number of registers, and
requires instructions to be in the single static assignment format
(SSA). This in principle makes it easy to transform the stack values
to registers by assigning a new register to every stack location. In
reality it is slightly more complicated because Python places some
things on the stack that STELLA needs to handle at compile time
and therefore is not a register. The transformation of stack values is
therefore split into two parts: the stack operations are replayed but
instead of immediately creating registers, we keep track of which
IR-S object put the value into the stack location. The creation of
registers is deferred until the next phase.

3.5 Typing Phase
Each IR-S object contains its typing rules and evaluates them based
on the types of the operands. The typing rules match those of
Python, with the exceptions listed in Section 2.4. Typing must also
make decisions about whether an IR-S object is created, i.e., the
involved operation is static, or if LLVM IR will be used to perform
the operation at run-time. For example, consider the expression
“foo.bar” : if foo is an object, then this is an attribute access
for which code must be generated. On the other hand, if foo is

a module, then the attribute bar is examined at compile time, and
evaluated accordingly (e.g., it could be a global variable or a func-
tion).

3.6 Types
STELLA’s type system represents machine types, as used in LLVM.
The resulting types are compatible with C, which also uses machine
types, so the behavior should be familiar to most programmers.

Scalar Types: Booleans are represented as 8-bit integers. Inte-
gers and floating point numbers are presently defined to be 64 bits
wide to support accurate calculations for science applications.

Tuples: An anonymous structure is created, which is passed by
value.

Arrays: For scalar values NumPy arrays are required. These
are a popular choice in existing scientific programs. NumPy arrays
do not support complex types such as objects. Instead, STELLA
uses regular Python lists for elements with complex types, which
are implemented as arrays of pointers. No resize operations are
implemented within the DSL.

Objects: Python does not have a structure type akin to the C
“struct”. Instead programmers use dictionaries or objects for the
same purpose. In particular the ability to modify objects on the fly
makes them a popular choice when a structured collection of data
is required. For this reason alone it is important to support objects
in STELLA. When the DSL is invoked, we use introspection to dis-
cover the current structure, and create a static C-style structure for
the class. This is necessary because a Python object has a memory
layout that is not accessible without overhead (e.g., attributes are
stored in dictionaries). Therefore the attribute contents need to be
transfered from Python to the STELLA representation. Note that ob-
ject introspection leverages Python’s abilities to construct objects,
including multiple inheritance, mix-ins, and method resolution. All
of these features behave exactly as in Python because CPython han-
dles them. Within STELLA the behavior is much simpler, but we
believe that this is not a limiting factor, in part because of the pow-
erful construction mechanisms. Everything is statically resolved,
e.g., there is no virtual method table for overloading methods in
subtypes. This not only makes the language implementation sim-
pler, but also ensures that there is no hidden overhead caused by
run-time type checks.

3.7 Data Transfer Phase
The data representation outlined in Section 3.6 is more low-level
than Python’s, and therefore the program data needs to be trans-
fered between the two.

NumPy arrays conveniently offer access to their internal represen-
tation, which is compatible with C-style array layouts, and hence
can be directly used in STELLA as a pointer to the same memory
which is being used in Python. No data transfer is necessary.

A shadow structure is created for every object and its attributes
are copied over before the DSL execution starts, and copied back
after it finishes. While this incurs some overhead, it will be easily
amortized by the many attribute accesses which otherwise would
have to be routed through the Python data layout.

NumPy arrays can only contain scalar values and therefore lists of
objects must be represented in a different manner: each object in
the list is handled as an individual object, i.e., STELLA creates a



shadow structure and transfers the content back and forth, and then
a list of pointers to these shadow objects is used.

3.8 Compilation and Execution Phase
LLVM is a general compiler framework with an initial focus on C
and C++. So while the optimization passes that LLVM currently
implements may not be optimal for dynamic languages such as
Python itself [10], they are an exact fit for STELLA, a static lan-
guage without dynamic features: We generate LLVM IR that is
very similar to the LLVM IR generated by clang. Therefore it
comes as no surprise that existing optimizations apply well.

Given the list of IR-S objects we translate each into one or more
LLVM IR instructions. This process is straightforward: the explicit
control and information flow, together with the type annotations,
make it easy to write LLVM IR that performs according to Python’s
rules. Once LLVM’s IR is completely assembled, the MCJIT com-
ponent is used to just-in-time compile and execute the simulation.

3.9 Interfacing C
C libraries are often used to provide high-speed implementations,
and since they also use machine types, it is a good fit to provide
easy access to them.

Recall that all STELLA programs are also valid Python programs.
This continues to be the case even in the presence of C libraries,
with just a little extra effort. A Cython [3] wrapper of the C library
with manual type annotations is used to provide Python access to
the library. This is very easy to create: Cython will automatically
generate the wrapper, and the type information is present in the C
sources anyway—the types only need to be translated into Python’s
ctypes representation.

When a STELLA program is run, all module references are checked
to see if they are backed by a C library. If so, then instead of com-
piling the functions contained in the module itself, STELLA will
call the C function directly.

3.10 Testing
A goal of our project is that each DSL code fragment should have
the same semantics as its literal equivalent in Python (with the ex-
ceptions defined in Section 2.4). Ideally, this would be ensured
via formal verification, e.g., as with the Filet-o-Fish (FoF) frame-
work [7]. Unfortunately, Python does not have a specification but
rather is defined by its reference implementation, meaning that for-
mal verification would be a major project on its own, well outside
the scope of this paper.

However, STELLA was developed using the test-driven develop-
ment methodology: for any feature that was implemented, we first
wrote a functional test. Here we make use of the fact that all
STELLA programs are also valid Python programs: each test runs
exactly the same code first in the Python interpreter, then using the
DSL compiler, and finally checks if the result is the same. This
gives us confidence that STELLA does not have bugs in the features
that it does implement.

4. PERFORMANCE EVALUATION
We take C as the standard measure for fast-performing single-
threaded programs. Therefore all benchmarks were once imple-
mented in Python, if necessary modified for STELLA, and then
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Figure 4: Benchmark: Relative performance of the C implementa-
tions compared with STELLA. Values above one correspond to better
performance of the given language or compiler, values less than one
correspond to better STELLA performance.

translated by hand to C. The modifications to the Python programs
that STELLA required were minimal. The C programs were com-
piled both with gcc 4.9.2 and clang 3.4 at -O3. STELLA was linked
against LLVM 3.5 and also used -O3. All benchmarks were run on
an AMD FX(tm)-4100 CPU. In each case, the average of 11 runs
is reported.

Fibonacci is a micro-benchmark that recursively calculates a large
Fibonacci number. Therefore the cost of function calls dominates
the cost of arithmetic operations.
While the gcc binary is faster than STELLA, the clang binary is
slower. On average C is 14% faster than STELLA for this micro-
benchmark. We have not investigated the difference between the
two C compiler performances.

nbody is part of Debian’s programming language benchmark
game. It is a deterministic simulation of n celestial bodies and
iteratively calculates the forces they exert on each other, and the
resulting change in position and velocity.
Both C compilers produce similarly fast binaries, which are on av-
erage 13% fasten than STELLA.

1D-spider is a simple simulation in which a spider performs a ran-
dom walk on a semi-infinite 1D surface. For this stochastic bench-
mark the random number seed was identical for all languages.
The performance of the gcc binary is virtually identical to STELLA,
while the clang binary is slower. On average C is 19% slower.

heat is a simulation that iteratively computes the finite difference
to approximate the differential equations for heat transfer. For
STELLA we had to separate the GUI from the simulation logic—a
modification that is considered good practice even for the original
Python program.
Both C binaries are faster than STELLA, on average 23%.

This benchmark runs faster in its C version, but the STELLA slow-
down of about 20% slower is acceptable and we have not yet fine-
tuned

http://benchmarksgame.alioth.debian.org/u32/performance.php?test=nbody
http://benchmarksgame.alioth.debian.org/u32/performance.php?test=nbody


In summary, STELLA is on average 7% faster than C. Without the
micro-benchmark “fib”, STELLA is 0.1% slower than C. If the C
compiler producing the fastest executable is used for every bench-
mark, then STELLA is 12% slower. On the other hand, if the
C compiler that creates the slowest executable is used for every
benchmark, then STELLA is 26% faster. While these differences
are significant, the performance of STELLA is still in the same cat-
egory as C’s performance. This can especially be seen by compar-
ing against the native Python performance. Note that the STELLA
run-time includes some overhead which is not present in the C ver-
sions, namely LLVM’s JIT compilation cost. Since this overhead is
required for running a STELLA program, it is correct to include it
in the comparison. The time for the analysis and creation of LLVM
IR is not included in this comparison.

5. RELATED WORK
It is no secret that Python’s performance can at times be inade-
quate. Therefore many projects exist with varying scope and use
cases [12].

Speeding up all of Python: PyPy [18] is a Python virtual ma-
chine (VM) written in Python, or rather RPython (see below). It
follows a very modular approach to VM construction which uses
many different layers. It is incompatible with CPython’s modules
written in foreign languages, just like STELLA, but does not offer
a staging phase where such modules can be used freely. While for
many benchmarks PyPy runs much faster than CPython, the speed-
up was not significant for scientific programs of interest to us.

Falcon [17] is an optimizing bytecode interpreter for Python. It is
implemented as a Python library in C++ and applies aggressive op-
timizations, but since it implements all of Python semantics faith-
fully, its potential speed-up is limited.

Unladen-Swallow [21] was started as a branch of CPython to gen-
erally speed up the default Python run-time. The project stalled
shortly after its inception for a multitude of reasons [10], which
can all be linked to supporting the complete language with all its
complexities.

Shedskin [2] is an experimental Python to C++ compiler. It sup-
ports all statically typed Python programs as long as they only use
standard library functions, which have been re-implemented. It is
similar to STELLA in that it separates from the Python run-time,
but again aims to support the complete language. The implementa-
tion is not mature yet, and errors are difficult to interpret since they
occur at the C++ level.

Speeding up some of Python: Cython [3] allows easy calling
of C libraries as well as Python code by generating C source code,
which is then compiled into a CPython module. Cython can either
faithfully translate arbitrary Python code into C using the Python
run-time, or be used as a language extension. Then it is very similar
to Python but declares types statically. This allows a translation
to pure C code if only C variables are involved in a computation.
Cython does support OO programming with its “extension types”.
Overall its goal is to provide transparent integration with Python,
which makes it difficult to predict program performance.

Numba [16] is a compiler for Python with support for the scien-
tific software stack, in particular NumPy. It uses LLVM to compile
to machine code, and integrates seamlessly into Python. Numba
restricts the supported language features so that many features are
unavailable at the present time. OOP is supported, and tries to in-

tegrate with Python. Numba allows easy calling of Python code as
well as native libraries. Even though compilation happens at run-
time, Numba inspects the source code. The current implementation
focuses on translating single functions.

RPython [1] is a restricted subset of Python aimed at executing
efficiently on a virtual machine (VM) built for statically typed lan-
guages. It was developed for the PyPy project. The program is
generated by a bootstrapping full Python interpreter; the RPython
code is then generated from the live objects, and translated into a
back-end language, e.g., JVM or CLI. Programs must be statically
typable and some dynamic features are disallowed. The focus on
removing dynamic language features is somewhat different from
STELLA, as it is aimed at better VM support and not necessarily
efficient execution in general.

SEJITS [5] describes a general approach to selectively specialize a
program. It has a strong focus on alternative hardware targets, e.g.,
multicore, GPUs. In contrast to our work SEJITS also explicitly in-
tegrates with the host language, allowing calls and interaction with
the slow Python run-time. Copperhead [6] is an implementation
of SEJITS for specializing Python code to a CUDA back-end and
hence focuses strictly on parallel processing.

Other language projects: Terra [8] is a language which builds
on lua. It recognizes the importance of being able to execute code
independently from the host language run-time and implements
lua-style basic OOP. In contrast to STELLA it focuses on multi-
stage execution, is a more general framework, and requires more
extensive source changes.

6. CONCLUSION AND FUTURE WORK
STELLA is a new embedded domain-specific language initially
aimed at writing scientific simulations within Python, which will be
compiled and executed at C-like speed. The approach goes against
the trend of complete integration, meaning that it is not possible
to call Python code from within the DSL. However, this separation
makes it easier for the programmer to write fast programs.

It is also crucial to have modern code management practices avail-
able in the form of object-oriented programming, so important
OOP patterns are implemented to enable easy code reuse as well
as specializations. This support does not compromise run-time per-
formance, as the OOP patterns are rewritten during compilation.

Our prototype implementation succeeds at enabling programmers
to write very fast simulations while still having OOP available and
many of the comforts of modern high-level languages. In other
words, STELLA enables scientist-programmers to work within an
easy-to-use platform which gives them many of the modern tools
they expect, to avoid much of the tedium of lower-level languages,
and to focus their efforts on the science rather than the manage-
ment of code. The finished prototype implementation is available
at https://github.com/squisher/stella.

There are plentiful opportunities for future work. Dictionaries and
sets are common types used in Python programs. Fully supporting
these types would be against the spirit of STELLA, since using these
types adds hidden costs to programs. However, more limited oper-
ations should be supported. E.g., constructing a dictionary or set in
in Python, and then providing a frozen interface in STELLA. Addi-
tional object-oriented features could be supported. In particular the
so-called magic methods, e.g., for custom subscription implemen-
tation, would be useful syntactic sugar. While general exception

https://github.com/squisher/stella


handling is likely to incur too much run-time overhead, some lim-
ited functionality to abort the DSL execution and report errors back
to Python would be helpful. Some functional features, such as list
comprehension, could be supported with an improved static analy-
sis. Fine-grained numeric data type detection, e.g., shorter-width or
unsigned integers, could reduce the memory footprint and possibly
also speed up arithmetic operations, but would require an improved
static analysis and enhanced intermediate type information.
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