The Triton Branch Predictor
Josh Karlin Darko Stefanovic Stephanie Forrest

Department of Computer Science
University of New Mexico
{karlinjf,darko,forrest}@cs.unm.edu

October 22, 2004

Abstract. We describe a new branch predictor that is designed to ba&analtiple
constraints—predicting branch biases versus predictipgc#ic branch instance behav-
ior. Most branch instances only require branch bias infotima for accurate predictions
while a select few require more sophisticated predictioncitires. Our predictor uses a
cache mechanism to classify branches and dynamically attjadalance of the predic-
tor. On average, our predictor mispredicts 24% less oftemtMAGS and 19% less often
than a global perceptron predictor with the same bit budget.

1 Introduction

Effective and efficient branch prediction remains an im@orcomponent in the
design of modern microprocesors, essential to the goal@bgg instruction-
level parallelism. The hardware budget for branch prealicthowever, is rela-
tively limited. Many recently proposed predictors [4—7t@s on reducing de-
structive aliasing in the predictor’s data structures @liharise in large applica-
tions with many branch instructions in the working set), ieloithers [1,2] attempt
to create entirely new prediction mechanisms (in order fgwa the behavior
of individual branches that are difficult to predict with sil@ mechanisms). In
general-purpose microprocessors, a balance must be maihtaetween the two
strategies, as applications favorable to each will arise.

We propose a new hybrid predictor, namegdton, in which we have care-
fully balanced the allocation of the bit budget between j@taty branch biases

and predicting specific branch instance behavior. Like maostiern predictors,
the Triton predictor is built upon the results of previousrkvoOur design was
inspired by the Yet Another Global Scheme (YAGS) cache stinec One of our
components is a “hard”-branch predictor. Any good predictm play this role,
but we have found that a global perceptron works the best.

2 Reated Work

The YAGSpredictor is intended to reduce destructive aliasing [4]. Its strrectu
is very similar to the popular bi-mode predictor [5], but thieection pattern his-
tory tables (PHTS) are replaced with direction cachesebltsbf always using the
direction PHT for the prediction, as in the bi-mode predidioe YAGS predictor
first looks for a branch bias in the choice PHT and then chdoksappropriate
direction cache for an entry. If an entry exists in the cathen the cache’s pre-
diction will override the choice PHT’s. An entry is insertigdo the cache if the
choice PHT's bias was wrong. The cache is indexed byxtreof the program
counter and the global history register. Therefore, eatty @mthe cache corre-
sponds to a branch instance (R history) that disagreed with the branch bias
at the time.

We have found this cache structure to be advantageous farnessconstrained
predictors because, unlike bi-mode predictors, only a fuhelimportant branch
instances are kept in the cache. By not allowing biased brarstances to enter
the cache, the cache is therefore less polluted than thetdemHT.

The Triton predictor uses the cache mechanism found in tHeAredictor,
but makes two extensions. The bias field of the cache is usadest of branch
stability, and if it fails the branch instance is known to bi#icllt and passed off
to a better predictor. We have also merged the taken and ket tzaches found
in the YAGS predictor into one; this improves performanceause it is often the
case that the majority of a program’s branches are biasdekisame direction.

The Perceptron branch predictor is based on neural networks. Its advantage
over other prediction mechanisms suchgabare[3] is that it requires signifi-
cantly less space to predict over long histories. An indigidoerceptron assigns
a weight (an 8-bit integer suffices) to each position in trstdmy to indicate cor-
relation. If there is a strong positive correlation betw#ass history position and
the outcome of the branch’s prediction, then the weight balla large positive
integer. Likewise, if there is a negative correlation thegliewill be negative.

2

Since each perceptron is large x8history length), there can be only a few
hundred perceptrons in a straight perceptron predictdr a/i4Kb resource bud-
get and history length at least 16; thus, many branches gvpeddo each percep-
tron and the perceptrons become polluted. Our predictevialies this aliasing
problem by applying its perceptron component only to thesstibf branch in-
stances which are not heavily biased.

3 Triton

Our predictor comprises three major components. The filtsteidias table (1/4
of budget). It keeps track of each branch address’ bias. &b@sl component is
the cache (1/2 of budget). Each branch instance that disagrigh its prior bias
is inserted into the cache. The third component is the p&@epredictor (1/4 of
budget).

The Bias Table. Our predictor uses a table of 8192 bi-modal counters to main-
tain each branch address’ bias. It is indexed by branch RZenmented if the
instance is taken, and decremented otherwise. This tak&8Kip of state.

TheCache. Each cache entry holds a bi-modal counter and a 6-bit adfieéss
The cache is indexed exactly aggsharePHT: The branch PGored with the

global history. An instance is inserted into the cache byimgithe low 6 bits

of the branch PC into the address field and initializing thenbdal counter. The
counter is initialized to 0O if the branch was not taken, othse it is initialized

to 3. To check if a branch instance exists in the cache (a daithehe index is
computed and then the low order bits of the branch PC and ttfeecantry are
compared. The cache holds 4096 entries and uses 32Kb aof state

The Perceptron. We use a 16Kb perceptron predictor with a global history size
of 64. This allows for 32 entries. The predictor is exactlydascribed in the
literature [1]%

LAny other predictor can trivially be swapped in. The fashglaased neural predictor [2] may
be a candidate, but could not be evaluated in time for thisésgion.

address

history

Bias

»| Perceptron —»| Cache

YVY

arbiter

prediction

Figure 1:Triton Prediction

3.1 Prediction

The prediction stage is a simple parallel operation witbnies assigned to each
component. Each component is first queried for its predicti®he bias table
responds with its bi-modal prediction. The cache has a Belspponse: one bit
signifies a cache hit or miss, and the other two hold the iredeixmodal counter
value. The perceptron responds with a 1-bit predicfion.

Once the components have been queried, arbitrator logiasesothe appro-
priate result. The bias table has least priority, and thtiseibranch instance exists
in the cache the cache bi-modal counter takes precedenttee ¢hche’s counter
value is 0 or 3, it is strongly biased and that will be used far final prediction.
However, if the cache’s counter value is 1 or 2, the instanbé&ls is weak and
the instance is therefore considered very hard to predioty {D this case is the
perceptron’s prediction used. Note that once a cache srtoyinter reaches 1 or
2 it will not change until the entry is evicted.

3.2 Update

The Triton update step is simple. Whichever component optkdictor was used
in the prediction is updated. The bias table and cache siogagte their bi-modal
predictor with the result of the outcome, just gsharedoes. The perceptron
update is also no different from its original description.

Once the tables have been updated the cache may need to hedugsiace
the cache is used to signal a branch instance that does thaw fité bias, an
instance is inserted into the cache if the bias table wasfasele last prediction
and it predicted incorrectly. The insertion changes theesklfield at the cache
index to the bottom 6 bits of the branch’s PC and sets its @uot3 if the branch
was taken and O otherwise.

The final step is to update the histories. The glafgstharelike history is
updated just as igshare The perceptron history is also shifted at each update, as
described in [1}

2For simulation efficiency, the provided code calls the pghan predictor only when its result
is actually needed.

3The longer perceptron history obviously subsumesgstearelike history. However, for the
sake of keeping the “hard” branch predictor pluggable, wentaa both.

100.00%
95.00% —
90.00% —
85.00% —
80.00% -
75.00% —
70.00%

] L
[
= — [
S 65.00% | — — — T H
v 60.00% — — — :l: — 1 1
O 55.00% o — o E[
% 50.00% 1] BN ETETET R [[] Perceptron
T 45.00% 11— 1 rerrrtrrrnrt T rtrerterrrterrrtrrrr [l Cache
2
A s niaie e e n s B s o B B B B B B B :
Y 3500%H — 1 — H 1 H H B BN B M Bias
5 3000% 41 [o T
O 2500%H | (e O 1 1 1t

200 HH—HHHAH— 1 111" &1 -

5.00%H 1 HH 11+ HH A HHHF

1000%H 1 H+H 111+ HAH AR

5.00% 1 — 1 [o O O H H H HF

0.00% T

F1 F2 F3 F4 F5 11 12 13 14 I5 ML M2 M3 M4 M5 S1 S2 S3 S4 S5 Avg
Program
Figure 2:Component Usage

We ran our predictor against 20 sample program executigegreontaining only
branch instruction addresses and their outcomes. Thegregare split into cat-
egories (five each) of Floating Point, Integer, Multimedaad Server, but are
otherwise unknown to us. The language, compiler, and eatacture are also
unknown to us. We show the overall performance (using themadction rate
metric) of our predictor and its predecessors, each tunéichally for a 64Kb
budget. and we analyze the usage of the Triton predictongpoments.

It can be seen in Figure 3 that the Triton predictor outpenthe other pre-
dictors by a wide margin. In fact, the Triton predictor hasawerage 31% fewer
mispredictions thagshare 24% fewer than YAGS, and 19% fewer than the global
perceptron predictor, all of which are well tuned to a 64Khsteaint. Using the
contests metric of average number of mispredicted bramudreR000 instructions,
our predictor averages 3.592, which is 32% better tipsimare 23% better than
YAGS, and 20% better than the global perceptron.

Of particular interest are three observations. First, sadigtor outperforms
the YAGS predictor in the server benchmarks by 14%. Secamtonloutperforms
the global perceptron in all cases but two, and when the sap@ications are not
considered, our predictor still bests it by 13%. Finally,imgvto the perceptron’s
long (64 branches) history in our predictor, we are able édljgt the M3 program

] Gshare
L H M Yags
i Ll [] Perceptron

[Triton
10 L
0 ’_._H

T T
F1 F2 F3 F4 F5 11 12 13 14 IS5 ML M2 M3 M4 M5 S1 S2 S3 S4 S5 Avg
Program

Misprediction Rate (%)

Figure 3:Predictor Comparison

nearly as well as a small local branch history predictor can.

Figure 2 breaks down the predictions by component that pedithem. Here
we can see that the server applications consistently udadhéable the majority
of the time. This makes sense when Figure 4 is also consid&igdre 4 shows
the number of branch addresses per program that are frégjaenessed> 200
times) and that also disobey their bias at least 20% of the.ti&ince the server
programs have so many frequent and difficult branches tovdéal they quickly
get evicted from the cache. Therefore only those branchmasts that are really
frequent and are consistently resident in the cache wilthies@erceptron for their
predictions. This shows that under high aliasing pressurepredictor backs off
from the highly trafficked cache and uses the bias table—wisibetter for high
degrees of aliasing. Yet many of the most frequent and difflaanches will
remain in the perceptron predictor.

We offer the following observations about our predictor&rfprmance im-
provement over the global perceptron. In all cases save etenthe Triton pre-
dictor beats the perceptron by at least 30%, the Triton pteduses the bi-modal
predictors at least 65% of the time. Likewise, in all case® $2 where the Triton
preditor uses the bi-modal predictors at least 65% of the,ttire Triton predictor
bested the perceptron by at least 30%. This is evidence giredictor’s ability to

distinguish easily predicted from difficult branches andetegate them correctly.

Our last observation regards the tradeoff between keepauf ©f local and
global history. In a previous predictor of ours, we were abl@redict the M3
at a 0.64% mispredict rate using a 12-bit local history sanheNotice that other
predictors such as the 24-bit history global perceptronatdest achieve 2.59%.
It is therefore conceivable that having a 64-bit globaldngis nearly as useful as
keeping a 12-bit local history in some, if not many casess Tigpothesis requires
further study.

450
425 I
400
375
350
325
300
275
250
225 1 *
200
175
150
125
100

75
50 [
2(5) ’—‘ T = T T = T == T —I: 517 T ’—‘ T T T T T T

FIL F2 F3 F4 F5 11 12 13 14 I5 ML M2 M3 M4 M5 S1 S2 S3 S4 S5 Avg
Program

Number of Hard Static Branches

o || ||

Figure 4:Hard Branches

5 Conclusions

The Triton predictor succesfully allocates its resourcéen they are needed.
The bias table holds each branch’s bias and is used to phegidy biased branches
and branches that are seldom frequented and are hencedeivate the cache.
The cache/perceptron combination handles the difficull @enerally frequent)
branch instances. This balance is so effective that thermptedictor mispredicts
19% less often than the global perceptron and 14% less th&SY&n bench-
marks with large static branch signatures.

Acknowledgments. The authors gratefully acknowledge the partial supportefNational
Science Foundation (grants ANIR-9986555i, CCR-02195&R@085792, EIA-0218262, EIA-
0238027, and EIA-0324845), Hewlett-Packard gift 8842&rd Microsoft Research. Any opin-
ions, findings, conclusions, or recommendations exprassbdé material are the authors’ and do
not necessarily reflect those of the sponsors.

References

[1] D.A. Jimenez and C. Lin, Neural Methods for Dynamic BramRrediction,TOCS20 (4),
Nov. 2002.

[2] D.A.Jimenez, Fast Path-Based Neural Branch PredicBorc. MICRO36, Dec. 2003.

[3] S.McFarling. Combining Branch Predictofi®chnical Repor®6, Digital Western Research
Laboratory, June 1993.

[4] A.EdenandT. Mudge. The YAGS Branch Prediction SchePnec. MICRO31. Nov. 1998.

[5] C.-C. Lee, I.-C. Chen, and T. Mudge. The Bi-Mode Branckd#etor.Proc. MICRO30,
Dec. 1997.

[6] P.Michaud, A. Seznec, and R. Uhlig. Trading Conflict arap&city Aliasing in Conditional
Branch Predictor®?roc ISCA24, May. 1997.

[7] E. Sprangle, R. Chappell, M. Alsup, and Y. Patt, The Agreedictor: A Mechanism for
Reducing Negative Branch History Interfereneoc. ISCA24, May. 1997.

