
The Triton Branch Predictor

Josh Karlin Darko Stefanovic Stephanie Forrest

Department of Computer Science
University of New Mexico

{karlinjf,darko,forrest}@cs.unm.edu

October 22, 2004

Abstract. We describe a new branch predictor that is designed to balance multiple
constraints—predicting branch biases versus predicting specific branch instance behav-
ior. Most branch instances only require branch bias information for accurate predictions
while a select few require more sophisticated prediction structures. Our predictor uses a
cache mechanism to classify branches and dynamically adjust the balance of the predic-
tor. On average, our predictor mispredicts 24% less often than YAGS and 19% less often
than a global perceptron predictor with the same bit budget.

1 Introduction

Effective and efficient branch prediction remains an important component in the
design of modern microprocesors, essential to the goal of exploiting instruction-
level parallelism. The hardware budget for branch prediction, however, is rela-
tively limited. Many recently proposed predictors [4–7] focus on reducing de-
structive aliasing in the predictor’s data structures (which arise in large applica-
tions with many branch instructions in the working set), while others [1,2] attempt
to create entirely new prediction mechanisms (in order to capture the behavior
of individual branches that are difficult to predict with simple mechanisms). In
general-purpose microprocessors, a balance must be maintained between the two
strategies, as applications favorable to each will arise.

We propose a new hybrid predictor, namedTriton, in which we have care-
fully balanced the allocation of the bit budget between predicting branch biases



and predicting specific branch instance behavior. Like mostmodern predictors,
the Triton predictor is built upon the results of previous work. Our design was
inspired by the Yet Another Global Scheme (YAGS) cache structure. One of our
components is a “hard”-branch predictor. Any good predictor can play this role,
but we have found that a global perceptron works the best.

2 Related Work

The YAGS predictor is intended to reduce destructive aliasing [4]. Its structure
is very similar to the popular bi-mode predictor [5], but thedirection pattern his-
tory tables (PHTs) are replaced with direction caches. Instead of always using the
direction PHT for the prediction, as in the bi-mode predictor, the YAGS predictor
first looks for a branch bias in the choice PHT and then checks the appropriate
direction cache for an entry. If an entry exists in the cache,then the cache’s pre-
diction will override the choice PHT’s. An entry is insertedinto the cache if the
choice PHT’s bias was wrong. The cache is indexed by thexor of the program
counter and the global history register. Therefore, each entry in the cache corre-
sponds to a branch instance (PCxor history) that disagreed with the branch bias
at the time.

We have found this cache structure to be advantageous for resource-constrained
predictors because, unlike bi-mode predictors, only a handful of important branch
instances are kept in the cache. By not allowing biased branch instances to enter
the cache, the cache is therefore less polluted than the bi-mode PHT.

The Triton predictor uses the cache mechanism found in the YAGS predictor,
but makes two extensions. The bias field of the cache is used asa test of branch
stability, and if it fails the branch instance is known to be difficult and passed off
to a better predictor. We have also merged the taken and not taken caches found
in the YAGS predictor into one; this improves performance because it is often the
case that the majority of a program’s branches are biased in the same direction.

The Perceptron branch predictor is based on neural networks. Its advantage
over other prediction mechanisms such asgshare[3] is that it requires signifi-
cantly less space to predict over long histories. An individual perceptron assigns
a weight (an 8-bit integer suffices) to each position in the history to indicate cor-
relation. If there is a strong positive correlation betweenthe history position and
the outcome of the branch’s prediction, then the weight willbe a large positive
integer. Likewise, if there is a negative correlation the weight will be negative.

2



Since each perceptron is large (8× history length), there can be only a few
hundred perceptrons in a straight perceptron predictor with a 64Kb resource bud-
get and history length at least 16; thus, many branches are mapped to each percep-
tron and the perceptrons become polluted. Our predictor alleviates this aliasing
problem by applying its perceptron component only to the subset of branch in-
stances which are not heavily biased.

3 Triton

Our predictor comprises three major components. The first isthe bias table (1/4
of budget). It keeps track of each branch address’ bias. The second component is
the cache (1/2 of budget). Each branch instance that disagrees with its prior bias
is inserted into the cache. The third component is the perceptron predictor (1/4 of
budget).

The Bias Table. Our predictor uses a table of 8192 bi-modal counters to main-
tain each branch address’ bias. It is indexed by branch PC, incremented if the
instance is taken, and decremented otherwise. This takes up16Kb of state.

The Cache. Each cache entry holds a bi-modal counter and a 6-bit addressfield.
The cache is indexed exactly as agsharePHT: The branch PCxored with the
global history. An instance is inserted into the cache by writing the low 6 bits
of the branch PC into the address field and initializing the bi-modal counter. The
counter is initialized to 0 if the branch was not taken, otherwise it is initialized
to 3. To check if a branch instance exists in the cache (a cachehit), the index is
computed and then the low order bits of the branch PC and the cache entry are
compared. The cache holds 4096 entries and uses 32Kb of state.

The Perceptron. We use a 16Kb perceptron predictor with a global history size
of 64. This allows for 32 entries. The predictor is exactly asdescribed in the
literature [1].1

1Any other predictor can trivially be swapped in. The fast path-based neural predictor [2] may
be a candidate, but could not be evaluated in time for this submission.

3



Figure 1:Triton Prediction

4



3.1 Prediction

The prediction stage is a simple parallel operation with priorities assigned to each
component. Each component is first queried for its prediction. The bias table
responds with its bi-modal prediction. The cache has a 3-bitresponse: one bit
signifies a cache hit or miss, and the other two hold the index’s bi-modal counter
value. The perceptron responds with a 1-bit prediction.2

Once the components have been queried, arbitrator logic chooses the appro-
priate result. The bias table has least priority, and thus ifthe branch instance exists
in the cache the cache bi-modal counter takes precedence. Ifthe cache’s counter
value is 0 or 3, it is strongly biased and that will be used for the final prediction.
However, if the cache’s counter value is 1 or 2, the instance’s bias is weak and
the instance is therefore considered very hard to predict. Only in this case is the
perceptron’s prediction used. Note that once a cache entry’s counter reaches 1 or
2 it will not change until the entry is evicted.

3.2 Update

The Triton update step is simple. Whichever component of thepredictor was used
in the prediction is updated. The bias table and cache simplyupdate their bi-modal
predictor with the result of the outcome, just asgsharedoes. The perceptron
update is also no different from its original description.

Once the tables have been updated the cache may need to be updated. Since
the cache is used to signal a branch instance that does not follow its bias, an
instance is inserted into the cache if the bias table was usedfor the last prediction
and it predicted incorrectly. The insertion changes the address field at the cache
index to the bottom 6 bits of the branch’s PC and sets its counter to 3 if the branch
was taken and 0 otherwise.

The final step is to update the histories. The globalgshare-like history is
updated just as ingshare. The perceptron history is also shifted at each update, as
described in [1].3

2For simulation efficiency, the provided code calls the perceptron predictor only when its result
is actually needed.

3The longer perceptron history obviously subsumes thegshare-like history. However, for the
sake of keeping the “hard” branch predictor pluggable, we maintain both.

5



�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� 	� 	� 	� 	� 	� 
��


�

�

��

�

�
�

�

���

�

�
�

�

���

�

�
�

�

���

�

�
�

�

���

�

�
�

�

���

�

�
�

�

���

�

�
�

�

���

�

�
�

�

���

�

�
�

�

���

�

�

�

�

����������

�����

� �!

������"

�
�

��
�

�
��

�
�

#�
��

$
 �

��
$

Figure 2:Component Usage

4 Results

We ran our predictor against 20 sample program execution traces containing only
branch instruction addresses and their outcomes. The programs are split into cat-
egories (five each) of Floating Point, Integer, Multimedia,and Server, but are
otherwise unknown to us. The language, compiler, and even architecture are also
unknown to us. We show the overall performance (using the misprediction rate
metric) of our predictor and its predecessors, each tuned optimally for a 64Kb
budget. and we analyze the usage of the Triton predictor’s components.

It can be seen in Figure 3 that the Triton predictor outperforms the other pre-
dictors by a wide margin. In fact, the Triton predictor has onaverage 31% fewer
mispredictions thangshare, 24% fewer than YAGS, and 19% fewer than the global
perceptron predictor, all of which are well tuned to a 64Kb constraint. Using the
contests metric of average number of mispredicted branchesper 1000 instructions,
our predictor averages 3.592, which is 32% better thangshare, 23% better than
YAGS, and 20% better than the global perceptron.

Of particular interest are three observations. First, our predictor outperforms
the YAGS predictor in the server benchmarks by 14%. Second, Triton outperforms
the global perceptron in all cases but two, and when the server applications are not
considered, our predictor still bests it by 13%. Finally, owing to the perceptron’s
long (64 branches) history in our predictor, we are able to predict the M3 program

6



�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� 	� 	� 	� 	� 	� 
��




�

�

�

�

�

�

�

�

�

�


��

��

��

������

����

����������

�� ���

������!

�
 �

�
��

"
 �

� 
�

�
#$

�
��

#%
&

'

Figure 3:Predictor Comparison

nearly as well as a small local branch history predictor can.
Figure 2 breaks down the predictions by component that produced them. Here

we can see that the server applications consistently use thebias table the majority
of the time. This makes sense when Figure 4 is also considered. Figure 4 shows
the number of branch addresses per program that are frequently accessed (> 200
times) and that also disobey their bias at least 20% of the time. Since the server
programs have so many frequent and difficult branches to dealwith, they quickly
get evicted from the cache. Therefore only those branch instances that are really
frequent and are consistently resident in the cache will usethe perceptron for their
predictions. This shows that under high aliasing pressure,our predictor backs off
from the highly trafficked cache and uses the bias table—which is better for high
degrees of aliasing. Yet many of the most frequent and difficult branches will
remain in the perceptron predictor.

We offer the following observations about our predictor’s performance im-
provement over the global perceptron. In all cases save F4 where the Triton pre-
dictor beats the perceptron by at least 30%, the Triton predictor uses the bi-modal
predictors at least 65% of the time. Likewise, in all cases save I2 where the Triton
preditor uses the bi-modal predictors at least 65% of the time, the Triton predictor
bested the perceptron by at least 30%. This is evidence of ourpredictor’s ability to

7



distinguish easily predicted from difficult branches and todelegate them correctly.
Our last observation regards the tradeoff between keeping track of local and

global history. In a previous predictor of ours, we were ableto predict the M3
at a 0.64% mispredict rate using a 12-bit local history scheme. Notice that other
predictors such as the 24-bit history global perceptron canat best achieve 2.59%.
It is therefore conceivable that having a 64-bit global history is nearly as useful as
keeping a 12-bit local history in some, if not many cases. This hypothesis requires
further study.

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� 	� 	� 	� 	� 	� 
��




��

�


��

�



���

��


���

�



���

��


���

�



���

��


���

�



���

��


�������

�
�
�
�
�
��
�
��
�
�
��
�	
��
��
�
��
��
 
�
!
�
"

Figure 4:Hard Branches

5 Conclusions

The Triton predictor succesfully allocates its resources where they are needed.
The bias table holds each branch’s bias and is used to predicthighly biased branches
and branches that are seldom frequented and are hence evicted from the cache.
The cache/perceptron combination handles the difficult (and generally frequent)
branch instances. This balance is so effective that the Triton predictor mispredicts
19% less often than the global perceptron and 14% less than YAGS on bench-
marks with large static branch signatures.

8



Acknowledgments. The authors gratefully acknowledge the partial support of the National

Science Foundation (grants ANIR-9986555i, CCR-0219587, CCR-0085792, EIA-0218262, EIA-

0238027, and EIA-0324845), Hewlett-Packard gift 88425.1,and Microsoft Research. Any opin-

ions, findings, conclusions, or recommendations expressedin this material are the authors’ and do

not necessarily reflect those of the sponsors.

References
[1] D.A. Jimenez and C. Lin, Neural Methods for Dynamic Branch Prediction,TOCS20 (4),

Nov. 2002.

[2] D.A. Jimenez, Fast Path-Based Neural Branch Prediction, Proc. MICRO36, Dec. 2003.

[3] S. McFarling. Combining Branch Predictors.Technical Report36, Digital Western Research
Laboratory, June 1993.

[4] A. Eden and T. Mudge. The YAGS Branch Prediction Scheme.Proc. MICRO31. Nov. 1998.

[5] C.-C. Lee, I.-C. Chen, and T. Mudge. The Bi-Mode Branch Predictor.Proc. MICRO30,
Dec. 1997.

[6] P. Michaud, A. Seznec, and R. Uhlig. Trading Conflict and Capacity Aliasing in Conditional
Branch Predictors.Proc ISCA24, May. 1997.

[7] E. Sprangle, R. Chappell, M. Alsup, and Y. Patt, The AgreePredictor: A Mechanism for
Reducing Negative Branch History Interference.Proc. ISCA24, May. 1997.

9


