
Towards a Biomolecular Learning Machine

Matthew R. Lakin, Amanda Minnich, Terran Lane, and Darko Stefanovic

Department of Computer Science
University of New Mexico

Albuquerque, NM 87131, USA
{mlakin,aminnich,terran,darko}@cs.unm.edu

Abstract. Learning and generalisation are fundamental behavioural traits of in-
telligent life. We present a synthetic biochemical circuit which can exhibit non-
trivial learning and generalisation behaviours, which is a first step towards demon-
strating that these behaviours may be realised at the molecular level. The aim of
our system is to learn positive real-valued weights for a real-valued linear function
of positive inputs. Mathematically, this can be viewed as solving a non-negative
least-squares regression problem. Our design is based on deoxyribozymes, which
are catalytic DNA strands. We present simulation results which demonstrate that
the system can converge towards a desired set of weights after a number of train-
ing instances are provided.

1 Introduction

Learning and generalisation are fundamental capabilities of intelligent life. In biological
organisms, learning takes place in the brain: a vastly complex, massively parallel bio-
logical computing device. In computer science, the field of machine learning has made
great strides in designing and implementing learning algorithms on digital computers,
which are themselves highly sophisticated machines. Our interest lies in the computa-
tional possibilities at the molecular scale of matter, using devices orders of magnitude
smaller and simpler than a microchip or even a single neuron. Our goal is to demonstrate
that complex learning behaviour is feasible at the molecular level.

In this paper we take the first steps towards designing and constructing synthetic
biomolecular devices capable of learning and generalising from a series of training in-
puts. We choose DNA as our computational medium, because of its highly specific bind-
ing and innate programmability. In order to function as a learning device our biomolecu-
lar circuits must meet certain design criteria: (i) the circuit must be reusable, so multiple
training instances can be presented sequentially; (ii) the parameters to be learned must
persist in time across multiple training instances; and (iii) these parameters must be
modulated by each use of the circuit, so learning can occur. We will present a chemi-
cally plausible design for a biomolecular learning device that meets these criteria.

Biomolecular computing is a promising field, in which biomolecules, such as nucleic
acids, are rationally designed so that their interactions carry out some computational
function. Our designs are based on deoxyribozymes, which are catalytically active sin-
gle strands of DNA [8]. A deoxyribozyme catalyses the cleavage of a particular DNA
substrate molecule, as outlined in Figure 1(a). Previous work [9] has shown that the cat-
alytic activity of deoxyribozymes can be made conditional on the presence (or absence)

J. Durand-Lose and N. Jonoska (Eds.): UCNC 2012, LNCS 7445, pp. 152–163, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Towards a Biomolecular Learning Machine 153

Fig. 1. Basic deoxyribozyme reactions. (a) Deoxyribozyme E catalyses the cleavage of a substrate
molecule SE into product molecules PE . The substrate binding arms of the deoxyribozyme (shown
in black) bind to the complementary substrate molecule (shown in grey). The catalytic action
of the deoxyribozyme breaks the phosphodiester backbone of the substrate strand at an RNA
base (shown as a small black circle), and the two product strands subsequently unbind from
the deoxyribozyme. In the example above, the cleavage causes a rise in fluorescence since the
fluorophore F and quencher Q attached to the substrate S are separated when S is cleaved. (b)
We can inhibit a deoxyribozyme E by providing the inhibitor species IE , so that the catalytically
inactive E-IE complex is formed. Adding an activator AE removes the inhibitor to produce a waste
complex IE -AE and an activated deoxyribozyme E, which catalyses the conversion of substrates
SE into products PE .

of particular input DNA strands, thereby allowing them to function as logic gates. In
this paper we employ deoxyribozyme reactions of the form shown in Figure 1(b), where
an activator AE converts the deoxyribozyme E from its inactive state into an active one
[2]. Once a deoxyribozyme has been activated, it will continue to cleave substrates un-
til either it is deactivated or it runs out of substrate. This makes deoxyribozymes ideal
for use over extended periods of time or in situations where the circuit may need to be
reused to process multiple sequential input signals.

We will tackle the problem of learning a linear function of the form f (X1,X2) =
w1 ·X1+w2 ·X2, for positive input values X1,X2 and positive weights w1,w2. We re-
strict the inputs and weights to be positive as this makes it much simpler to represent
them as concentrations of chemical species. The system begins with initial weights ŵ1

and ŵ2, which represent its current approximation ̂f (X1,X2) = ŵ1 ·X1 + ŵ2 ·X2 to the
target function f . The system is repeatedly presented with training instances of the form
(x1,x2, f (x1,x2)) and responds by adjusting ŵ1 and ŵ2 so that ̂f better approximates f .
Given enough training data, the system should converge on the correct weight values.
Mathematically, this is equivalent to solving a non-negative least-squares regression
problem [1]. This problem is simple enough that our solution could conceivably be im-
plemented in the laboratory, while still displaying non-trivial learning behaviour. Our
design is modular and the elements could, in principle, be replicated to learn similar
functions of three or more inputs.



154 M.R. Lakin et al.

Fig. 2. Deoxyribozyme-based reusable multiplier design. (a) General reaction mechanism. When
an activated deoxyribozyme E cleaves the self-inhibitory substrate SE � IE , the released inhibitor
species IE returns an activated deoxyribozyme to the inactive E-IE state. Other competing sub-
strates SE �PE,i produce output products PE,i when they are cleaved, and the resulting concentra-
tions of PE,i are multiples of the input concentration of the activator AE . (b) Graphical shorthand
notation for the general multiplier motif presented in (a).

2 Deoxyribozyme-Based Signal Multipliers

In this section we present the basic computing motif for our design—a self-inhibiting
deoxyribozyme gate that can serve as a reusable multiplier to scale up (or down) an
input signal encoded as the concentration of some chemical species.

The design of our self-inhibiting deoxyribozyme gate is presented in Figure 2(a). As
in Figure 1(b), we assume that the inactive deoxyriboyzme complex E-IE can be acti-
vated by the addition of an activator AE , producing inert waste IE -AE and the activated
deoxyribozyme E . At this point, however, we introduce a number of additional con-
cepts. The first of these is substrate molecules that sequester another chemical species
until after they are cleaved, rather than just producing a fluorescent signal as shown in
Figure 1(a). We write SE �X to denote a substrate for deoxyribozyme E which releases
the chemical species X into solution after cleavage. In Figure 2(a) we use i = 1, . . . ,n to
represent n output signals PE,1, . . . ,PE,n which are produced by the cleavage of n differ-
ent substrate molecules SE �PE,1, . . . ,SE �PE,n. This allows an input signal to “fan out”
and be sent to multiple different parts of the circuit. Note that these substrates must
compete to bind to an activated deoxyribozyme E before they can be cleaved.

Our main technical innovation is the use of a special self-inhibiting substrate SE � IE ,
which sequesters the same inhibitory species IE that was initially used to inactivate
the deoxyribozyme E . When the deoxyribozyme cleaves one of these substrates, the
IE inhibitor which is released will react with an active deoxyribozyme E and return it
to the inactive state E-IE , as shown in Figure 2(a). When an input signal activates a
certain number of inactive deoxyribozymes, cleavage of the SE �PE,i substrates passes
new signals on to the downstream computational elements, whereas the effect of the
SE � IE substrate will be eventually to return all of the deoxyribozymes to the inactive
state, at which point they are ready to receive another input signal.

In order to analyse this design, we assume that all of the substrate molecules are
present in excess relative to the number of activated deoxyribozymes. This means that
we can neglect changes in the absolute populations of the substrate molecules due to



Towards a Biomolecular Learning Machine 155

cleavage, allowing us to perform a simple mathematical analysis of the signal levels
generated by the computational element presented in Figure 2(a). Suppose that amount
X of the activator species AE is provided, where X is less than the amount of inactive
deoxyribozyme complexes E-IE . This will result in X of the deoxyribozymes E being
activated. In order to completely deactivate these again, X new inhibitors IE must be
produced, which means that X of the self-inhibiting substrates SE � IE must be cleaved.
Now, since there is competition from the other substrates SE � PE,i, during this time
some output species PE,i will also be produced by cleavage events. Assuming that the
rates of the cleavage reactions are all equal, the expected amount of PE,i produced is

wi · X , where wi =
[SE�PE,I ]

[SE�IE ]
is the weight associated with output PE,i. Thus the total

concentration of each of the outputs is a multiple of the initial input concentration,
and the weight (multiplicative factor) for each output is determined by the ratio of the
substrate concentrations. Hence we refer to the computing motif from Figure 2(a) as a
multiplier.

Since the SE �PE,i molecules are consumed in proportions according to the associated
weights, it is not hard to show that when all of the deoxyribozymes have been deacti-
vated, the expected substrate ratios wi are the same as the ratios were before the input
was added. Thus computational circuits based on our self-inhibiting deoxyribozyme
design are truly reusable.

Figure 2(b) shows our graphical shorthand for the network of chemical reactions
presented in Figure 2(a), which we will use for the remainder of this paper. We use the
flat-headed arrow to signify self-inhibition and we label the other output arcs with their
weights, that is, the multiplicative factor applied to the input signal when generating
that output signal.

3 Deoxyribozyme-Based Linear Classifiers

In this section we use the multiplier from Figure 2(a) to design a simple linear classifier
circuit, as shown in Figure 3(a). This circuit accepts two input signals X1 and X2, which
represent the two arguments to the function, along with a third input signal Y , which
is the expected output. We assume that the weights w1 and w2 are already encoded as
substrate concentration ratios as outlined above. Each of the deoxyribozymes Ei (for
i = 1,2) produces an output concentration equal to wi · [Xi], and since each produces
the same output molecule ̂Y it follows that the total concentration of ̂Y produced is
w1 · [X1]+w2 · [X2].

For the final reaction at the bottom of Figure 3(a) we will assume that the Y and ̂Y
species can react together very rapidly in order to annihilate, producing an inert waste
complex Y -̂Y (this is feasible if they are complementary DNA strands, for example). If
the concentration of one of these species is greater than the other, then that species will
remain after the rest has been annihilated, and the final concentration of that species will
be the difference between the two values. Thus the circuit from Figure 2(a) will reach
one of two steady states: if [̂Y ]> [Y ] initially then [Y ] = 0 and [̂Y ] = (w1 ·X1 +w2 ·X2)−
[Y ] in the steady state; or if [Y ] > [̂Y ] initially then [Y ] = (w1 ·X1 +w2 ·X2)− [̂Y ] and
[̂Y ] = 0 in the steady state. This is the desired behaviour for a linear classifier circuit.



156 M.R. Lakin et al.

[X1]

[X
2]

0 100 200 300 400 500

0

100

200

300

400

500
900 = 2*[X1] + 3*[X2]

Fig. 3. Linear classifier circuit using deoxyribozymes. (a) Two instantiations of the reusable mul-
tiplier motif from Figure 2 can be combined to compute a weighted sum of the two input concen-
trations [X1] and [X2], represented as the concentration [̂Y ] of their shared output species ̂Y . The
concentration [Y ] of the third input species denotes the value with which the result of the sum
should be compared. An annihilation reaction between ̂Y and Y results in an excess of whichever
was present in the larger concentration. (b) Two-dimensional contour plot showing simulation re-
sults for the deoxyribozyme-based linear classifier, using the classifier line 900 = 2 · [X1]+3 · [X2],
for values of [X1] and [X2] ranging from 0 to 500 (arbitrary units) in increments of 5. Positive con-
tour values denote a final excess of ̂Y and negative contour values denote a final excess of Y .

The contour plot in Figure 3(b) summarises simulation results from a test of our
linear classifier circuit. We tested the circuit for initial concentrations [X1] and [X2]
ranging from 0 to 500 in increments of 5. For each run, the initial substrate ratios were

set as w1 =
SE1�

̂Y
SE1�IE1

= 2 and w2 =
SE2�

̂Y
SE2�IE2

= 3, and the initial concentration [Y ] was

900. Thus the system was set up to classify input pairs according to whether they plot
above or below the classifier line 900 = 2 · [X1]+ 3 · [X2]. For each input, a time course
was produced by integrating the ordinary differential equation model of the chemical
reactions from above the dotted line in Table 1. These reactions correspond to the linear
classifier design discussed here. The contour plot presents the output concentrations
from the linear classifier simulations, interpreting a non-zero final concentration of ̂Y
as a positive number and a non-zero final concentration of Y as a negative number. The
plot shows that the output from the classifier circuit matches the expected behaviour—
the line of zero output precisely matches the classifier line, and the other contours plot
with the correct position and orientation relative to the classifier line. Thus we conclude
that, for this range of inputs and these weight values, the linear classifier circuit works
correctly according to its specification.



Towards a Biomolecular Learning Machine 157

Fig. 4. Design for a biomolecular learning machine, conceptually split into two components. (a)
The predictor component consists of the linear classifier circuit from Figure 3(a), with additional
substrates and reactions which copy the input signals X1 and X2 into K1 and K2. (b) The feedback
component uses the excess concentration of Y or ̂Y produced by the predictor component to mod-
ulate the weights in the predictor, by activating deoxyribozymes which generate new substrate
molecules for the deoxyribozymes in the predictor. The arrows from the Ki species which point
to reaction arrows denote catalysis of those reactions.

4 Feedback Reactions for Biomolecular Learning

In this section, we present chemical reactions and simulation results for our biomolecu-
lar learning machine. We build on the linear classifier design presented in the preceding
section by adding a feedback phase, which modulates the weights used in the linear
classifier according to the difference between the predicted and desired output values.

Figure 4 presents the full design for our biomolecular learning machine. For the
sake of clarity, we divide the chemical reactions into conceptually distinct prediction
(Figure 4(a)) and feedback (Figure 4(b)) phases. In practice we allow all the reactions
to run simultaneously in simulations, and our initial results suggest that the results are
very similar to those obtained from the system split into two temporally distinct phases.

Suppose that we wish to teach the machine weights w1 and w2 for the linear function
Y = w1 · X1 +w2 ·X2, using training instances (x1

1,x
1
2), . . . ,(x

n
1,x

n
2). We begin by set-

ting up the initial concentrations of the substrates, inhibited deoxyribozyme complexes
and other chemical species. The initial weights ŵ1 and ŵ2 are encoded in the ratios
of the SEi � ̂Y and SEi � IEi substrates, as described above. The first training instance
(x1

1,x
1
2) is presented by adding quantities of species X1, X2, and Y to the mixture such

that [X1] = x1
1, [X2] = x1

2, and [Y ] = w1 · x1
1 +w2 · x1

2. The X1 and X2 species activate the
deoxyribozymes E1 and E2, and the reactions in Figure 4(a) proceed to compute the dif-
ference between the prediction ̂Y and the desired value Y supplied by the experimenter.
The only difference between Figure 4(a) and Figure 3(a) is the addition of substrates
SE1 �K1 and SE2 �K2, which each have weight 1 and therefore serve to take a copy of
the input concentrations [X1] and [X2]. This allows us to consume the inputs in order to
compute ̂Y , while remembering their original concentrations for later use.



158 M.R. Lakin et al.

The output signal from the reactions shown in Figure 4(a) is the difference between
the prediction ̂Y and the desired value Y , expressed as a non-zero concentration of ei-
ther Y (if Y > ̂Y ) or ̂Y (if ̂Y > Y ). The concentrations of these two species, together
with the copied input values represented as concentrations of the Ki species, can be
thought of as the inputs to the feedback phase of the learning machine, whose design is
shown in Figure 4(b). The effect of the feedback phase is to use the output signal from
the predictor in order to adjust the predictor’s weights towards the target values. Since
the weights in the predictor are encoded as substrate ratios, it follows that in order to
adjust the weights we must modify those substrate concentrations. Thus we introduce
the notion of a presubstrate, that is, a species which serves as the substrate for one
deoxyribozyme and which, upon cleavage, releases a species which serves as the sub-
strate for another deoxyribozyme. Using our notation from above, we write SA � SB �C
for a presubstrate molecule that serves as a substrate for deoxyribozyme A and, when
cleaved, releases a substrate for deoxyribozyme B that produces species C on cleavage.
For example, in Figure 4(b) the presubstrate for FN1, which generates a self-inhibitory
substrate SE1 � IE1 for E1, is SFN1 � SE1 � IE1. Now, there are two cases to consider.

Excess of YYY . If Y is left over from the linear classifier phase then Y > ̂Y , so we must
increase the weight estimates ŵ1 and ŵ2 to reflect this. This is achieved using the two
deoxyribozymes FP1 and FP2 on the left-hand side of Figure 4(b). In order to take a
learning step in (approximately) the right direction in weight vector space, we must
adjust weight wi by an amount proportional to the input value Xi, in the correct direc-
tion. To achieve this, we assume that the Ki species produced during the predictor phase
catalyse the transformation of Y into the activator species AFP1 and AFP2 , at the same
rate. Since the concentrations of the Ki species are a copy of the original concentra-
tions of the Xi inputs, the amount of AFPi produced will be [Ki ]

[K1]+[K2]
· [Y ]. Since [Y ] at

this point is actually the difference Y − ̂Y , the amount of AFPi generated is proportional
to the excess of ̂Y and the original input concentration of Xi. The activators then acti-
vate their target deoxyribozymes FPi, which multiply this signal by the learning rate
a and generate additional substrate molecules SEi � ̂Y for the Ei deoxyribozymes in the
predictor phase. Since the weights in the predictor are encoded as substrate concentra-

tions ŵi =
[SEi�

̂Y ]
[SEi�IEi ]

, this serves to increase the weights wi additively, by increasing the

numerator. The new weight value ŵi
′ is related to the previous weight value ŵi by

ŵi
′ =

[SEi � ̂Y ]+ a · ([Y ]− [̂Y ]) · Xi
X1+X2

[SEi � IEi]
= wi +

a · ([Y ]− [̂Y ]) · X1
X1+X2

[SEi � IEi]
.

Excess of ̂YYY . If ̂Y is left over then ̂Y > Y , so we must decrease ŵ1 and ŵ2. For this
we use the FN1 and FN2 deoxyribozymes on the right-hand side of Figure 4(b). The
mechanism here is similar to that described above for increasing the weights: the main
difference is that the FNi deoxyribozymes generate self-inhibitory substrates SEi � IEi

for the predictor deoxyribozymes, and since the weights in the predictor are encoded as

substrate concentrations ŵi =
[SEi�

̂Y ]
[SEi�IEi ]

, this causes the weights wi to decrease. There is

an additional subtlety in this case: since we are generating additional SEi � IEi substrates



Towards a Biomolecular Learning Machine 159

for the predictor deoxyribozymes we must also generate the same amount of additional
SEi �Ki substrates. This is necessary because the concentration of Ki generated is in-
tended to be the same as the input concentration [Xi], which requires that the weight
be 1 on the arrow to Ki from Ei in Figure 3(a). Adding extra SEi � IEi substrates for Ei

would decrease this weight, so we must also generate the same amount of additional
SEi �Ki substrates to compensate. Note that, in this case, the weight update operation is
not additive, since generating more SEi � IEi substrate molecules increases the denomi-
nator of the substrate ratio. This reflects the fact that our weight values are restricted to
be positive, so they can only be decreased asymptotically towards zero. The new weight
value ŵi

′ is related to the previous weight value ŵi by

ŵi
′ =

[SEi � ̂Y ]

[SEi � IEi]+ a · ([̂Y ]− [Y ]) · Xi
X1+X2

.

Once the feedback reactions reach steady state, the predictor weights will have been
modified and we can begin preparations for the next training phase. Since the Ki species
only act as catalysts in the feedback phase, they must somehow be filtered out of the
mixture at the end of the feedback phase, which we model by resetting [K1] and [K2]
to zero. Finally, the learning rates a of the feedback deoxyribozymes must be reduced,
so the learning mechanism takes smaller steps over time. For simplicity we assume that
the experimenter performs this step by adding a constant amount of the self-inhibitory
substrates SFP1 � IFP1 , SFP2 � IFP2 , SFN1 � IFN1 and SFN2 � IFN2 at the end of each cycle.

When these steps have been taken, the system is ready to receive the next training
instance. Moving on to the second training instance (x2

1,x
2
2), the experimenter adds

more of species X1, X2, and Y in quantities such that [X1] = x2
1, [X2] = x2

2, and [Y ] =
w1 ·x2

1 +w2 ·x2
2 (the action of the previous cycle will have reduced these concentrations

back to zero) and the reactions proceed as before. This procedure can be iterated for
many training instances, provided that the deoxyribozymes do not run out of substrate.
In our examples we use large initial substrate concentrations to avoid this problem.

5 Results of Learning Simulations

The intention is that, as more training instances are presented, the weight values ŵ1 and
ŵ2 stored in the predictor should approach the target weight values w1 and w2. Since
the mathematics of our weight update mechanism is slightly different from the classic
perceptron learning rule [4], we do not have a formal proof that the system is guaranteed
to converge on the correct result for all learnable functions. However, results from our
simulations indicate that convergence to approximately correct weights is possible.

We modelled the learning process using the full set of chemical reactions listed in
Table 1. We used weights from the interval [0,10] and inputs X1 and X2 from the interval
[0,500]. The initial concentrations of self-inhibitory substrates were set at 100,000, with
the initial concentrations of signal-generating substrates chosen to encode the initial
weights ŵ1 and ŵ2 and the initial learning rate a, which was set to 250. The initial
concentration of each inhibited deoxyribozyme was set to 20,000 to cover the full range
of possible output values. At the beginning of each simulated training cycle, the system



160 M.R. Lakin et al.

Table 1. Full chemical reactions for the biomolecular learning machine. In our simulations we
use rate constants vfast = 100.0, fast = 1.0 and slow = 0.01, with arbitary units. These rates were
chosen as they broadly reflect the expected separation of timescales for the intended deoxyri-
bozyme reactions. The reactions above the dotted line correspond to the linear classifier design
from Figure 3(a). The reactions below the dotted line implement the feedback mechanism, and
together they yield the full learning circuit design presented in Figure 4.

Description Reactants Products

E1 activation E1-IE1 +X1
fast−−→ E1 + IE1 -X1

E1 self-inhibition E1 +SE1 � IE1

slow−−−→ E1-IE1

E1 producing ̂Y E1 +SE1 � ̂Y
slow−−−→ E1 + ̂Y

E2 activation E2-IE2 +X2
fast−−→ E2 + IE2 -X2

E2 self-inhibition E2 +SE2 � IE2

slow−−−→ E2-IE2

E2 producing ̂Y E2 +SE2 � ̂Y
slow−−−→ E2 + ̂Y

Annihilation of Y and ̂Y Y + ̂Y
vfast−−−→ Y -̂Y

E1 producing K1 E1 +SE1 �K1
slow−−−→ E1 +K1

E2 producing K2 E2 +SE2 �K2
slow−−−→ E2 +K2

AFP1 production K1 +Y
slow−−−→ K1 +AFP1

AFP2 production K2 +Y
slow−−−→ K2 +AFP2

AFN1 production K1 + ̂Y
slow−−−→ K1 +AFN1

AFN2 production K2 + ̂Y
slow−−−→ K2 +AFN2

FP1 activation FP1-IFP1 +AFP1

fast−−→ FP1 + IFP1 -AFP1

FP1 self-inhibition FP1 +SFP1 � IFP1

slow−−−→ FP1-IFP1

FP1 producing SE1 �
̂Y FP1 +SFP1 �SE1 �

̂Y
slow−−−→ FP1 +SE1 �

̂Y

FP2 activation FP2-IFP2 +AFP2

fast−−→ FP2 + IFP2 -AFP2

FP2 self-inhibition FP2 +SFP2 � IFP2

slow−−−→ FP2-IFP2

FP2 producing SE2 �
̂Y FP2 +SFP2 �SE2 �

̂Y
slow−−−→ FP2 +SE2 �

̂Y

FN1 activation FN1-IFN1 +AFN1

fast−−→ FN1 + IFN1 -AFN1

FN1 self-inhibition FN1 +SFN1 � IFN1

slow−−−→ FN1-IFN1

FN1 producing SE1 � IE1 FN1 +SFN1 �SE1 � IE1

slow−−−→ FN1 +SE1 � IE1

FN1 producing SE1 �K1 FN1 +SFN1 �SE1 �K1
slow−−−→ FN1 +SE1 �K1

FN2 activation FN2-IFN2 +AFN2

fast−−→ FN2 + IFN2 -AFN2

FN2 self-inhibition FN2 +SFN2 � IFN2

slow−−−→ FN2-IFN2

FN2 producing SE2 � IE2 FN2 +SFN2 �SE2 � IE2

slow−−−→ FN2 +SE2 � IE2

FN2 producing SE2 �K2 FN2 +SFN2 �SE2 �K2
slow−−−→ FN2 +SE2 �K2

was perturbed by introducing appropriate amounts of the input species X1, X2, and Y .
After waiting sufficient time for the system to reach steady state (we chose 10 time
units) the learning rate was annealed by adding 2,500 units of self-inhibitory substrate
for each of the four deoxyriboymes in the feedback phase, as described above. The input



Towards a Biomolecular Learning Machine 161

species for the next training cycle were then added, and so on. Between perturbations,
the evolution of the species concentrations was computed by integrating the ordinary
differential equation model of the full set of reactions from Table 1.

Figure 5 presents results from our learning simulations. The left-hand plot shows the
evolution of the machine’s predicted weight values over a number of training sequences.
The target weight values were fixed at w1 = w2 = 5 (the intersection of the dotted lines)
and the starting weight values are denoted by filled circles. Each line corresponds to
the presentation of 25 randomly-chosen training instances, normally distributed across
the weight interval described above. As more training instances are presented, in each
case the machine appears to converge towards the target weight values, as expected. We
ran 10 training sequences in total (data not all shown) and all converged to the vicinity
of the w1 = w2 = 5 target weights. The right-hand plot shows a learning curve for
the molecular learning machine. with a logarithmic scale on the y axis, For each of 10
randomly-selected initial settings, that is, target weight vectors and initial weight values,
we presented sequences of random training data for a variety of sequence lengths S, with
S ranging from 1 to 100. The entire system was restarted from scratch for each training
sequence. After each training sequence we computed the root mean squared error in
the predictions computed by the resulting machine on a fixed, random set of 100 test
instances. This performance metric was averaged over the 10 different initial settings.
The plot shows that, as the amount S of training data is increased, the average predictive
performance of the machine improves, although the rate of improvement does seem to
flatten out over time. Hence approximately correct generalisation is taking place.

6 Discussion

We have presented a design for a biochemical learning machine using deoxyribozymes
as the basic computational elements. The data presented in Figure 5 are evidence that
learning at the biomolecular level may be possible.

We intend to further quantify the performance of our design, such as its convergence
properties and sensitivity to variations in starting parameters and reaction rates, and to
noise in the training data. We also plan to extend and refine the design presented in
this paper. In particular, we hope that improvements will further reduce the error rates
shown in the plot on the right-hand side of Figure 5 and lead to better convergence
across the entire weight space. This might be achieved by tuning the substrate con-
centrations and learning parameters of the circuit. Furthermore, the class of functions
that our design can learn does not include a bias term, which restricts it to functions f
such that f (0,0) = 0. Extending the design to learn more general functions of the form
f (X1,X2) = w0 +w1 ·X1 +w2 ·X2 would require additional computational elements to
deal with the third weight. It should also be straightforward to extend our design to learn
functions with more than two inputs, since the components can simply be duplicated to
process additional input signals.

Our use of real-valued inputs and outputs means that our learning machine does not
adhere to the classic definition of a perceptron [4]. Our design could form the basis of
a perceptron but we would need to use binary, as opposed to real-valued, inputs and
outputs, as well as thresholding and amplification operations to introduce a non-linear



162 M.R. Lakin et al.

●●

0 2 4 6 8 10

0

2

4

6

8

10

W1 predicted

W
2 

pr
ed

ic
te

d

●

●

●

W2

W1 0 20 40 60 80 100
Length, S, of training sequences

R
oo

t m
ea

n 
sq

ua
re

d 
er

ro
r 

in
 p

re
di

ct
io

ns
1e

+
01

1e
+

02
1e

+
03

Fig. 5. Results of learning simulations. (Left) Weight-space plot showing modification of weight
values in multiple training runs of the biomolecular learning machine. As additional training
instances are supplied, the predicted weights ŵ1 and ŵ2 approach the target values w1 = w2 = 5,
indicated by the intersection of the dotted lines. (Right) Learning curve for the biomolecular
learning machine. with a logarithmic scale on the y axis. We computed the root mean squared
error in predictions after exposure to random training sequences of length S, for S between 1
and 100. The plotted errors were averaged over 10 initial settings, that is, random target weights
and initial weight values. On average, the error decreases when more training data are presented,
which suggests that learning is occurring.

response. This might also make the learning behaviour less sensitive to errors. Finally,
our design is restricted to positive weights and positive input values. Generalising it
to handle negative weights and inputs would be non-trivial, but necessary in order to
achieve the full computational power of perceptrons in a feedforward neural network.

Our long-term goal is to construct a biomolecular learning device in the laboratory.
The number of circuit elements required to implement our design is well within the scale
of circuits that have been demonstrated experimentally, both using deoxyribozymes
[3,5] and other techniques such as DNA strand displacement [11,6,7], so a biochemical
implementation is not implausible. With this in mind, our design was intended to follow
the kind of reactions that could potentially be run in the laboratory. The main technical
challenges are likely to be the scalability of the circuit and the design of multi-cleavage
presubstrate molecules. We will also need a better means of splitting the Y and ̂Y signals
at the start of the feedback phase, to avoid filtering out the Ki species after each training
cycle.

In related work, Zhang and Seelig [10] designed and simulated linear classifiers using
catalytic amplifiers based on DNA strand displacement, based on mathematics similar
to those presented in Section 2 above. Their design was capable of handling negative
weights, but their circuits could not be reused to process multiple inputs. Qian et al.
[7] constructed a neural network in vitro using strand displacement cascades, but their
neural network was trained in silico and the weights were subsequently hard-coded into



Towards a Biomolecular Learning Machine 163

each molecular implementation, which could not be reused. Pei et al. [5] used deoxyri-
bozymes to construct an automaton that could be programmed to play any strategy in a
simple two-player game. The strategies were hard-coded, but the training inputs could
be removed and re-programmed to select a different strategy.

Acknowledgments. This material is based upon work supported by the National Sci-
ence Foundation under grants 1027877 and 1028238.

References

1. Lawson, C.L., Hanson, B.J.: Solving least squares problems. Prentice-Hall, Englewood Cliffs
(1974)

2. Lederman, H., Macdonald, J., Stefanovic, D., Stojanovic, M.N.: Deoxyribozyme-based
three-input logic gates and construction of a molecular full adder. Biochemistry 45(4), 1194–
1199 (2006)

3. Macdonald, J., Li, Y., Sutovic, M., Lederman, H., Pendri, K., Lu, W., Andrews, B.L., Ste-
fanovic, D., Stojanovic, M.N.: Medium scale integration of molecular logic gates in an au-
tomaton. Nano Letters 6(11), 2598–2603 (2006)

4. Minsky, M., Papert, S.: Perceptrons: an introduction to computational geometry, 2nd edn.
MIT Press, Cambridge (1972)

5. Pei, R., Matamoros, E., Liu, M., Stefanovic, D., Stojanovic, M.N.: Training a molecular
automaton to play a game. Nature Nanotechnology 5, 773–777 (2010)

6. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement
cascades. Science 332, 1196–1201 (2011)

7. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement
cascades. Nature 475, 368–372 (2011)

8. Santoro, S.W., Joyce, G.F.: A general-purpose RNA-cleaving DNA enzyme. PNAS 94, 4262–
4266 (1997)

9. Stojanovic, M.N., Mitchell, T.E., Stefanovic, D.: Deoxyribozyme-based logic gates.
JACS 124, 3555–3561 (2002)

10. Zhang, D.Y., Seelig, G.: DNA-Based Fixed Gain Amplifiers and Linear Classifier Circuits.
In: Sakakibara, Y., Mi, Y. (eds.) DNA16 2010. LNCS, vol. 6518, pp. 176–186. Springer,
Heidelberg (2011)

11. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reac-
tions. Nature Chemistry 3, 103–113 (2011)


	Towards a Biomolecular Learning Machine
	Introduction
	Deoxyribozyme-Based Signal Multipliers
	Deoxyribozyme-Based Linear Classifiers
	Feedback Reactions for Biomolecular Learning
	Results of Learning Simulations
	Discussion
	References




