
This space is reserved for the Procedia header, do not use it

Towards a Calculus of Echo State Networks
Alireza Goudarzi1 and Darko Stefanovic1,2

1 Department of Computer Science, University of New Mexico, Albuquerque, New Mexico, USA
alirezag@cs.unm.edu

2 Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, USA
darko@cs.unm.edu

Abstract
Reservoir computing is a recent trend in neural networks which uses the dynamical perturba-
tions on the phase space of a system to compute a desired target function. We present how one
can formulate an expectation of system performance in a simple class of reservoir computing
called echo state networks. In contrast with previous theoretical frameworks, which only re-
veal an upper bound on the total memory in the system, we analytically calculate the entire
memory curve as a function of the structure of the system and the properties of the input and
the target function. We demonstrate the precision of our framework by validating its result
for a wide range of system sizes and spectral radii. Our analytical calculation agrees with nu-
merical simulations. To the best of our knowledge this work presents the first exact analytical
characterization of the memory curve in echo state networks.
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1 Introduction

In this paper we report our preliminary results in building a framework for a mathematical
study of reservoir computing (RC) architecture called the echo state network (ESN). Reser-
voir computing (RC) is a recent approach in time series analysis that uses the perturbations
in the intrinsic dynamics of a system, as opposed to its stable states, to compute a desired
function. The classic example of reservoir computing is the echo state network, a recurrent
neural network with random structure. These networks have shown good performance in
many signal processing applications. The theory of echo state networks consists of analysis of
memory capacity [4], e.g., how long can the network remember its inputs, and the echo state
property [18], which consist of analysis of long term convergence of the phase space of the net-
work. In RC, computation relies on the dynamics of the system and not its specific structure,
which makes the approach an intriguing paradigm for computing with unconventional and
neuromorphic architectures [13–15]. In this context, our vision is to develop special-purpose
computing devices that can be trained or “programmed” to perform a specific task. Conse-
quently, we would like to know the expected performance of a device with a given structure
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on given a task. Echo state networks (ESN) give us a simple model to study reservoir comput-
ing. Extant studies of computational capacity and performance of ESN for various tasks have
been carried out computationally and the main theoretical insight has been the upper bound
for linear memory capacity [5, 12, 17].

Our aim is to use ESN to develop a theoretical framework that allows us to form an expec-
tation about the performance of RC for a desired computation. To demonstrate the power of
this framework, we apply it to the problem of memory curve characterization in ESN. Whereas
previous attempts used the annealed approximation method to simplify the problem [17], we
derive an exact analytical solution to characterize the memory curve in the system. Our formu-
lation reveals that ESN computes an output as a linear combination of the correlation structure
of the input signal and therefore the performance of ESN on a given task will depend on how
well the output can be described as the input correlation in various time scales. Full devel-
opment of the framework will allow us to extend our predictions to more complex tasks and
more general RC architectures.

2 Background

In RC, a high-dimensional dynamical core called a reservoir is perturbed with an external input.
The reservoir states are then linearly combined to create the output. The readout parameters
can be calculated by performing regression on the state of a teacher-driven reservoir and the
expected teacher output. Figure 1 shows an RC architecture. Unlike other forms of neural
computation, computation in RC takes place within the transient dynamics of the reservoir.
The computational power of the reservoir is attributed to a short-term memory created by the
reservoir [9] and the ability to preserve the temporal information from distinct signals over
time [10, 11]. Several studies attributed this property to the dynamical regime of the reservoir
and showed it to be optimal when the system operates in the critical dynamical regime—a
regime in which perturbations to the system’s trajectory in its phase space neither spread nor
die out [1–3,11,16]. The reason for this observation remains unknown. Maass et al. [10] proved
that given the two properties of separation and approximation, a reservoir system is capable of
approximating any time series. The separation property ensures that the reservoir perturba-
tions from distinct signals remain distinguishable, whereas the approximation property en-
sures that the output layer can approximate any function of the reservoir states to an arbitrary
degree of accuracy. Jaeger [8] proposed that an ideal reservoir needs to have the so-called echo
state property (ESP), which means that the reservoir states asymptotically depend on the input
and not the initial state of the reservoir. It has also been suggested that the reservoir dynamics
acts like a spatiotemporal kernel, projecting the input signal onto a high-dimensional feature
space [6].

3 Model

In this paper we restrict attention to linear ESNs, in which both the transfer function of the
reservoir nodes and the output layer are linear functions, Figure 2. The readout layer is usu-
ally a linear combination of the reservoir states. The readout weights are determined using
supervised learning techniques, where the network is driven by a teacher input and its out-
put is compared with a corresponding teacher output to estimate the error. Then, the weights
can be calculated using any closed-form regression technique [12] in offline training contexts.
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Figure 1: Computation in a reservoir computer (RC). The reservoir is an excitable dynamical
system with N readable output states represented by the vector X(t). The input signal u(t) is
fed into one or more points i in the reservoir with a corresponding weight win

i denoted with
weight column vector Win = [win

i ].

Mathematically, the input-driven reservoir is defined as follows. Let N be the size of the reser-
voir. We represent the time-dependent inputs as a column vector u(t), the reservoir state as
a column vector x(t), and the output as a column vector y(t). The input connectivity is rep-
resented by the matrix V and the reservoir connectivity is represented by an N × N weight
matrix W. For simplicity, we assume one input signal and one output, but the notation can be
extended to multiple inputs and outputs. The time evolution of the linear reservoir is given
by:

x(t + 1) = Wx(t) + Vu(t), (1)

u(t)

W
b

reservoir state x(t)

V Wout

y(t)

Figure 2: Schematic of an echo state network (ESN). A dynamical core called a reservoir is
driven by input signal u(t). The states of the reservoir x(t) extended by a constant 1 and com-
bined linearly to produce the output y(t). The reservoir consists of N nodes interconnected
with a random weight matrix W. The connectivity between the input and the reservoir nodes
is represented with a randomly generated weight matrix Win. The reservoir states and the
constant are connected to the readout layer using the weight matrix Wout. The reservoir and
the input weights are fixed after initialization, while the output weights are learned using a
regression technique.
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The output is generated by the multiplication of an output weight matrix Wout of length N
and the reservoir state vector x(t):

y(t) = Woutx(t). (2)

The coefficient vector Wout is calculated to minimize the squared output error E = 〈||y(t)−
ŷ(t)||2〉 given the target output ŷ(t). Here, || · || is the L2 norm and 〈·〉 the time average. The
output weights are calculated using ordinary linear regression using a pseudo-inverse form:

Wout =
〈
XX′

〉−1 〈XŶ′〉, (3)

where each row t in the matrix X corresponds to the state vector x(t), and Ŷ is the target output
matrix, whose rows correspond to target output vectors ŷ(t).

4 Deriving the Expected Performance

Our goal is to form an expectation for the performance based on the structure of the reservoir
and the properties of the task. Our approach is to calculate an expected output weight Wout

using which the error of the system can be estimated. The calculation of Wout using the regres-
sion equation Equation 3 has two components: the Gramm matrix 〈XX′〉, and the projection
matrix XT ŷ. We now show how each of the two can be computed.

To compute the Gramm matrix, we start by expanding the recursion in Equation 1 to get
an explicit expression for x(t) in terms of the initial condition and the input history:

xt = Wtx0 +
t−1

∑
i=0

Wt−i−1Vui, (4)

(5)

Note that we have written the time as subscript for readability. The first term in this expression
is the contributions from the initial condition of the reservoir which will vanish for large t
when λmax < 1, where λmax is the spectral radius of the reservoir. Therefore without loss of
generality we can write:

xt =
t−1

∑
i=0

Wt−i−1Vui, (6)

(7)

Now we can expand the Gramm matrix as follows:

〈
XX′

〉
=

1
T

T

∑
t=0

xt ⊗ x′t, (8)

=
1
T

T

∑
t=0

(
t−1

∑
i=0

Wt−i−1Vui

)
⊗
(

t−1

∑
j=0

Wt−j−1Vuj

)′
(9)

=
1
T

T

∑
t=0

(
t−1

∑
i=0

t−1

∑
j=0

Wt−i−1Vui ⊗ u′ jV′W′
t−j−1

)
(10)

4



Towards a Calculus of Echo State Networks Goudarzi and Stefanovic

The symbol ⊗ is the product. Similarly, we can write the projection matrix as:

〈XŶ′〉 = 1
T

T

∑
t=0

xtŷ′t, (11)

=
1
T

T

∑
t=0

(
t−1

∑
i=0

Wt−i−1Vui

)
⊗ ŷt (12)

=
1
T

T

∑
t=0

t−1

∑
i=0

Wt−i−1Vui ⊗ ŷ′t (13)

Note that in Equation 10 and Equation 13, we have an explicit dependence on the reservoir
weight matrix W, the input weight matrix V, the autocorrelation of input signal ui ⊗ uj, and
correlation of input and output ui ⊗ ŷ′t, at various time scales. In the next section we use our
fundamental equations, Equation 10 and 13, to calculate Wout and ultimately the expected
performance of the system on a given task.

5 Computing the Memory Curve

In this section, we use our derivation to analytically calculate the memory capacity curve for a
given reservoir structure defined by W and V. Our assumption is that W is non-singular and
has spectral radius λmax < 1. Memory capacity is the ability of the ESN to reconstruct its input
after a delay of τ. It is defined as [7]:

MCτ =
Cov2(ut−τ , yt)

Var(ut)Var(yt)
, (14)

where ut is the input at time t, ut−τ is the corresponding target output, and yt is the output
of the network after calculating the Wout. The inputs ut are drawn from identical and inde-
pendent uniform distributions in the range [−1, 1]. The total memory capacity of a network is
then given by:

MC =
∞

∑
τ=1

MCτ . (15)

We now demonstrate how we can use the structure of the memory function and the i.i.d.
property to analytically compute each component of Wout.

To compute 〈XX′〉, we can assume that we have access to a one-dimensional infinitely long
input-output stream to calculate the output weights. Then we can write:

〈
XX′

〉
= lim

T→∞

1
T

T

∑
t=0

(
t−1

∑
i=0

t−1

∑
j=0

Wt−i−1Vui ⊗ ujV′W′
t−j−1

)
(16)

=
t−1

∑
i=0

t−1

∑
j=0
〈uiuj〉Wt−i−1V⊗V′W′t−j−1 (17)

Since ui are drawn from i.i.d. uniform distribution between [−1, 1], we have:

〈uiuj〉 =
{

0, if i 6= j
1
3 , if i = j

(18)
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Moreover, let W = UDU−1 be the eigenvalue decomposition of W, d be a column vector
corresponding to the diagonal elements of D, V̄ = U−1V be the input weights in the basis
defined by the eigenvectors of W, and I◦ the identity of Hadamard product denoted by ◦. We
can rewrite Equation 17 as follows:

〈
XX′

〉
= U

(
lim
t→∞

t−1

∑
i=0
〈uiui〉V̄⊗ V̄′ ◦ di−1 ⊗ d′ i−1

)
U′ (19)

= 〈u2〉U
(
V̄⊗ V̄′ ◦ d̄⊗ d̄′

)
U′ (20)

Here 〈u2〉 = 1
3 is the variance of the input, and d̄ is a column vector whose elements are

d̄l = 1
1−dl

. We have thus, computed the Gramm matrix as a function of the variance of the
input, W, and V. Note that for MCτ , 〈XX′〉 is constant for all τ. However, for each τ we
have to calculate 〈XŶ′〉τ separately, denoted by the subscript τ. Under the assumption of i.i.d.
input, the calculation of 〈XŶ′〉τ directly follows from Equation 13:

〈XŶ′〉τ = 〈u2〉Wτ−1V. (21)

Our analytical solution of Wout assumes the true variance of the input. By appeal to the cen-
tral limit theorem, we can expect that if one calculates the memory curve for a given ESN
numerically, due to finite training size, the results should vary according to a normal distribu-
tion around the analytical values. We should note that previous attempts to characterize the
memory curve of ESN [17] used an annealed approximation over the Gaussian Orthogonal
Ensemble (GOE) to simplify the problem. Here, in contrast, we presented an exact solution to
this problem.

6 Results

In this section we calculate the memory capacity of a given ESN using our analytical solu-
tion and compare it with numerical estimations. For the purpose of demonstration, we create
ten N × N reservoir weight matrices W and corresponding N × 1 input weight matrix V by
sampling a zero-mean normal distribution with standard deviation of 1. We then rescale the
weight matrix to have a spectral radius of λ∗ = λ. For each {W, V} pair we run the system
with an input stream of length 5000. We discard the first 2000 reservoir states and use the
rest to calculate MCτ , and repeat this experiment 10 times to calculate the average the τ-delay
memory capacity MCτ . As we will see, the variance in our result is low enough for 10 runs
to give us a reliable average behavior. We choose 1 ≤ τ ≤ 100, and try the experiment with
N ∈ {25, 50, 75, 100} and λ ∈ {0.1, 0.50, 0.95}.

Figure 3a and Figure 3b illustrate the probability distribution of our simulated results for
the entries of 〈XX′〉 and 〈XY′〉 for a sample ESN with N = 50 nodes and spectral radius
λ = 0.95. We drove the ESN with 20 different input time series and for each input time series
we calculated the matrices 〈XX′〉, 〈XŶ′〉. To look at all the entries of 〈XX′〉 at the same time
we create a dataset XX′∗ by shifting and rescaling each entry of 〈XX′〉 with the corresponding
analytical values so all entries map onto a zero-mean normal distribution. As expected there
is no skewness in the result, suggesting that all values follow a normal distribution centered at
the analytical calculations for each entry. Similarly for Figure 3b, we create a dataset XY′∗ by
shifting and rescaling each entry of 〈XY′〉 with the corresponding analytical values to observe
that all values follow a normal distribution centered at the analytical values with no skewness.
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Figure 3: Agreement between analytical and simulation results for 〈XX′〉 (a), 〈XY′〉 (b) and the
memory curve MCτ (c).

Figure 3c shows the complete memory curve MCτ for the sample ESN. Our analytical
results (solid red line) are in good agreement with simulation results (solid blue line). Note that
our results are exact calculations and not approximation, therefore the analytical MCτ curve
also replicates the fluctuations for various values of MCτ that are signatures of a particular
instantiation of the ESN model.

Next, we analyze the accuracy of our analytical results with respect to changes in the reser-
voir size N and its spectral radius λ. Figure 4 shows the result of this analysis, and reveals two
interesting trends for accuracy and memory behavior for different N and λ. For all N and λ
the analytical calculation of MCτ agrees very well with the numerical simulation. However, as
we approach λ = 1, the variance in the simulation result increases during the phase transition
from MCτ = 1 to MCτ = 0, likely because the reservoir approaches the onset of chaos, e.g.,
λ = 1.

The behavior of the memory function also shows interesting behavior. For small N < 50,
the transition from high to low MCτ occurs very close to τ = N, as expected from the funda-
mental limit MC ≤ N. However, as the reservoir size grows, the position of the transition in
MCτ diverges from N. Note that our analytical calculation is equivalent to using infinite size
training data for calculating the output weights, therefore divergence of the actual memory
capacity from the bound N cannot be attributed to finite training size. Determining the reason
for this discrepancy requires a more careful analysis of the memory function.
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(a) N = 25
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(b) N = 50
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(c) N = 75
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Figure 4: Sensitivity of the analytical (red solid lines) and simulation results (data markers) for
the memory curve MCτ to changes in the system size N and the spectral radius λ. The data
were generated from 20 systems each driven with 20 different input streams. For all N and λ
values, the analytical and simulated results are in good agreement. However, as the spectral
radius approaches λ = 1 the variance of the simulated results increases, suggesting that the
system is approaching the chaotic dynamical phase.

7 Conclusion and Future Work

Our aim is to go beyond only the memory bounds in dynamical system and develop a rig-
orous understanding of the expected memory of the system given its structure and a desired
input domain. Here, we have built a formal framework that expresses the memory as a func-
tion of the system structure and autocorrelation structure of the input. Previous attempts to
characterize the memory in ESN used an annealed approximation to simplify the problem.
Our approach, however, gives an exact solution for the memory curve in a given ESN. Our an-
alytical results agree very well with numerical simulations. However, discrepancies between
the analytical memory curve and the fundamental limit of memory capacity hint at a hidden
process that prevents the memory capacity from reaching its optimal value. We leave careful
analysis of this deficiency for future work. In addition, we will study the presented frame-
work to gain understanding of the effect of the structure of the system on the memory. We are
currently extending this framework to inputs with non-uniform correlation structure. Other
natural extensions are to calculate expected performance for an arbitrary output function and
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analyze systems with finite dynamical range.
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