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ABSTRACT
Call-by-need semantics underlies the widely used programming
language Haskell. Unfortunately, unlike call-by-value counterparts,
there are no verified compilers for call-by-need. In this paper we
present the first verified compiler for call-by-need semantics. We
use recent work on a simple call-by-need abstract machine as a
way of reducing the formalization burden. We discuss some of the
difficulties in verifying call-by-need, and show how we overcome
them.
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1 INTRODUCTION
Non-strict languages, such as Haskell, rely heavily on call-by-need
semantics to ensure efficient execution. Without the memoization
of results provided by call-by-need, Haskell would be prohibitively
inefficient, often exponentially slower than its call-by-value counter-
parts. Thanks to careful restriction of side effects, reasoning about
correctness in Haskell is easier than most mainstream languages. It is
for this reason that we would like to have a compiler that gives formal
guarantees about preservation of call-by-need semantics. We wish
to ensure that any reasoning we do about our non-strict functional
programs is preserved through compilation.

Unfortunately, one of the challenges for formalization of non-
strict compilers is that the semantics of call-by-need abstract ma-
chines tend to be complex, incorporating complex optimizations
into the semantics, requiring preprocessing of terms, and closures of
variable sizes [6, 13]. Recently we developed a particularly simple
abstract machine for call-by-need, the CE machine [16]. In addition
to being exceedingly simple to implement and reason about, the
machine shows performance comparable to state-of-the-art.

Verified compilers provide powerful guarantees about the code
they generate and its relation to the corresponding source code
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[4, 8, 10]. In particular, for higher order functional languages, they
ensure that the non-trivial task of compiling lambda calculus and
its extensions to machine code is implemented correctly, preserving
source semantics. The amortized return on investment for verified
compilers is high: any reasoning about any program which is com-
piled with a verified compiler is provably preserved.

Existing verified compilers have focused on call-by-value seman-
tics [4, 8, 10]. This semantics has the property of being historically
easier to implement than call-by-need, and therefore likely easier
to reason about formally. In this paper, we build on recent work de-
veloping a simple method for implementing call-by-need semantics,
which has enabled us to implement, and reason formally about the
correctness of, call-by-need. We use the Coq proof assistant [2] to
implement and prove the correctness of our compiler. We start with
a source language of λ calculus with de Bruijn indices:

t ::= t t | x | λ t

x ∈ N

Our source semantics is the big-step operational semantics of the
CE machine, which uses shared environments to share results be-
tween instances of a bound variable. To strengthen the result, and
relate it to a better-known semantics, we also show that the call-by-
name CE machine implements Curien’s call-by-name calculus of
closures.

It may surprise the reader to see that we do not start with a better
known call-by-need semantics; we address this concern in Section 8.
We hope that the proof of compiler correctness, along with the proof
that our call-by-name version of the semantics implements Curien’s
call-by-name semantics, convinces the reader that we have indeed
implemented a call-by-need semantics, despite not using a better
known definition of call-by-need.

For our target, we define a simple instruction machine, described
in Section 5. This simple target allows us to describe the compiler
and proofs concisely for the paper, while still allowing flexibility in
eventually verifying a compiler down to machine code for some set
of real hardware, e.g., x86, ARM, or Power.

Our main results is a proof that whenever the source semantics
evaluates to a value, the compiled code evaluates to the same value.
While there are stronger definitions of what qualifies as a verified
compiler, we argue that this is sufficient in Section 8. This main
result, along with the proof that the call-by-name version of our
semantics implements Curien’s calculus of closures, are the primary
contributions of this paper. We are unaware of any existing verified
non-strict compilers, much less a verified compiler of call-by-need.
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The paper is structured as follows. In Section 2 we give the
necessary background. In Section 3 we describe the source syntax
and semantics (the big-step CE semantics) in detail. We also use this
section to define a call-by-name version of the semantics, and show
that it implements Curien’s calculus of closures [5]. In Section 4
we describe the small-step CE semantics and its relation to the big-
step semantics. In Section 5 we describe the instruction machine
syntax and semantics. In Section 6 we describe the compilation
from machine terms to assembly language. In Section 7 we describe
how the evaluation of compiled programs is related to the small-
step CE semantics. We compose this proof with the proof that the
small-step semantics implement the big-step semantics to show
that the instruction machine implements the big-step semantics. In
Section 8 we discuss threats to validity, future work, and related
work. We conclude in Section 9. The Coq source code with all the
definitions and proofs described in this document is available at
https://github.com/stelleg/cem_coq.

2 BACKGROUND
Programming languages fall roughly into two camps: those with
strict and those with non-strict semantics. A strict language is one
in which arguments at a call-site are always evaluated, while a non-
strict language only evaluates arguments when they are needed. One
can further break non-strict into two categories: call-by-name and
call-by-need. Call-by-name is essentially evaluation by substitution:
an argument term or closure is substituted for every instance of a
corresponding variable. This has the downside that it can result in
exponential slowdown due to repeated work: every variable deref-
erence must re-evaluate the corresponding argument. Call-by-need
is an evaluation strategy devised to address this shortcoming. By
sharing the result of argument evaluation between instances of a
variable, one avoids duplicated work. Unsurprisingly, call-by-need
is the default semantics implemented by compilers for non-strict
languages like Haskell [13].

Also perhaps unsurprisingly, call-by-need implementations tend
to be more complicated than their strict counterparts. For example,
even attempts at simple call-by-need abstract machines such as the
Three Instruction Machine [6] require lambda lifting and shared
indirections, both of which make formal reasoning more difficult.
Our CE machine avoids these complications by using shared envi-
ronments to share evaluation results between instances of a variable.
We showed in previous work that in addition to being simpler to
implement and reason about, performance of this approach may be
able compete with the state of the art [16].

With recent improvements in higher order logics, machine verifi-
cation of algorithms has become a valuable tool in software devel-
opment. Instead of relying heavily on tests to check the correctness
of programs, verification can prove that algorithms implement their
specification for all inputs. Implementing both the specification and
the proof in a machine-checked logic removes the vast majority of
bugs found in hand-written proofs, ensuring far higher confidence
in correctness than other standard methods. Other approaches, such
as fuzz testing, have confirmed that verified programs remove effec-
tively all bugs [18].

This approach applies particularly well to compilers. Often, the
specification for a compiler is complete: source level semantics

for some languages are exceedingly straightforward to specify, and
target architectures have lengthy specifications that are amenable to
mechanization. In addition, writing tests for compilers that cover all
cases is even more hopeless than most domains, due to the size and
complexity of the domain and codomain. The amortized return on
investment is also high: all reasoning about programs compiled with
a verified compiler is provably preserved.

Due to the complexities discussed above involved in implement-
ing lazy languages, existing work has focused on compiling strict
languages [4, 8, 10]. Here we use the simple CE machine as a base
for a verified compiler of a lazy language, using the Coq proof
assistant.

As with many areas of research, the devil is in the details. What
exactly does it mean to claim a compiler is verified? Essentially,
a verified compiler of a functional language is one that preserves
computation of values. That is, we have an implication: if the source
semantics computes a value, then the compiled code computes an
equivalent value [4]. The important thing to note is that the implica-
tion is only in one direction. If the source semantics never terminates,
this class of correctness theorem says nothing about the behavior
of the compiled code. This has consequences for Turing-complete
source languages. If we are unsure if a source program terminates,
and wish to run it to check experimentally if it does, if we run the
compiled code and it returns a value, we cannot be certain that it
corresponds to a value computed in the source semantics.

While in theory one could solve this by proving the implication
the other direction, that is, if the compiled code computes a value
then the source semantics computes an equivalent value, in practice
this is prohibitively difficult. Effectively, the induction rules for the
abstract machine make constructing such a proof monumentally
tricky.

One approach for getting around this issue is to try and capture
the divergent behavior by defining a diverging semantics explicitly
[12]. Then we can safely say that if the source semantics diverges
according to our diverging semantics, then the compiled code also
diverges.

For this paper, we choose to take the approach of [4] and define
verification as the first implication above, focusing on the case in
which the source semantics evaluates to a value. This is still a strong
result: any source program that has meaning compiles to an exe-
cutable with equivalent meaning. In addition, if we ever choose to
extend the language with a type system that ensures termination, or
some notion of progress, then we can use this proof in combination
with our verification proof to prove the other direction.

3 CE BIG-STEP SEMANTICS
In this section we define our big-step source semantics. A big-step
semantics has the advantage of powerful, easy-to-use induction prop-
erties. This eases reasoning about many program properties. We
shall also define a small-step semantics and prove that it implements
the big-step semantics, but by showing that our implementation pre-
serves the big-step semantics, we prove preservation of any inductive
reasoning on the structure of evaluation tree.

As discussed in Section 1, our source syntax is the lambda calcu-
lus with de Bruijn indices. De Bruijn indices count the number of

https://github.com/stelleg/cem_coq
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intermediate lambdas between the occurrence of the variable and its
binding lambda.

t ::= t t | x | λ t

x ∈ N

The essence of the CE semantics (Figure 1) is that we implement
a shared environment, and use its structure to share results of compu-
tations. This makes possible a simple abstract machine that operates
on the lambda calculus directly, which is uncommon among call-by-
need abstract machines [6, 7, 9, 13]. This simplifies formalization,
as we do not need to prove that intermediate transformations, e.g.
lambda lifting, are semantics-preserving. Another advantage to the
CE machine is that it has constant-sized closures, obviating the need
to reason about re-allocating the results of computation and adding
indirections due to closure size changes from thunk to value [13].
We operate on closures, which combine terms with pointers into the
shared environment, which is implemented as a heap. Every heap
location contains a cell, which consists of a closure and a pointer
to the next environment location, which we will refer to as the envi-
ronment continuation. Variable dereferences index into this shared
environment structure, and if/when a dereferenced location evaluates
to a value, the original closure (potentially a thunk or closure not
evaluated to WHNF) will be replaced with that value. The binding of
a new variable extends the shared environment structure with a new
cell. This occurs during application, which evaluates the left hand
side to an abstraction, then extends the environment with the argu-
ment term closed under the environment pointer of the application.
The App rule ensures that two variables bound to the same argument
closure will point to the same location in the shared environment.
Because they point to the same location by construction of the shared
environment, we can update that location with the value computed at
the first variable dereference, and then each subsequent dereference
will point to this value. The variable rule applies the update by index-
ing into the shared environment structure and replacing the closure
at that location with the resulting value. It is worth noting that while
the closures in the heap cells are mutable, the shared environment
structure is never mutated. This property is crucial when reasoning
about variable dereferences. The µ

(
l, i
)

function looks up a variable
index in the shared environment structure by following environment
continuation pointers, returning the location and cell pointed to by
the final step. See the Coq source for a formal treatment. Note that
we require that fresh heap locations are greater than zero. This is
required for reasoning about compilation to the instruction machine,
which we will return to in Section 5. While here we constrain fresh
heap locations to not be fresh with respect to the entire heap domain,
for a real implementation, this is far too strong a constraint, as it
doesn’t allow any sort of heap re-use. We return to this issue in
Section 8, and discuss how this could be relaxed to either allow
reasoning about garbage collection or direct heap reuse.

The fact that our natural semantics is defined on the lambda cal-
culus with de Bruijn indices differs from most existing definitions
of call-by-need, such as Ariola’s call-by-need [1] or Launchbury’s
lazy semantics [9]. These semantics are defined on the lambda cal-
culus with named variables. While it should be possible to relate

Syntax

t ::= i | λ t | t t (Term)

i ∈ N (Variable)

c ::= t
[
l
]

(Closure)

v ::= λ t
[
l
]

(Value)

µ ::= ε | µ
[
l 7→ ρ

]
(Heap)

ρ ::= • | c · l (Environment)

l, f ∈ N (Location)

s ::=
(
c,µ

)
(Configuration)

Semantics
µ
(
l, i
)
= l′ 7→ c · l′′

(
c,µ

)
⇓
(
v,µ ′)(

i
[
l
]
,µ

)
⇓
(
v,µ ′ [l′ 7→ v · l′′

]) (Id)

(
t
[
l
]
,µ

)
⇓
(
λ t2

[
l′
]
,µ ′) f < dom

(
µ ′)(

t2
[

f
]
,µ ′ [ f 7→ t3

[
l
]
· l′

])
⇓
(
v,µ ′′)(

t t3
[
l
]
,µ

)
⇓
(
v,µ ′′) (App)

(
λ t

[
l
]
,µ

)
⇓
(
λ t

[
l
]
,µ

) (Abs)

Figure 1: Big step CE syntax and semantics (call-by-need)

our semantics to these 1, the comparison is certainly made more
difficult by this disparity. A more fruitful relation to semantics op-
erating on the lambda calculus with named variables would likely
be relating Curien’s calculus of closures to call-by-name seman-
tics implemented with substitution. We return to this discussion in
Section 8.

As mentioned in Section 1, these big-step semantics do not ex-
plicitly include a notion of nontermination. Instead, nontermination
would be implied by the negation of the existence of an evaluation
relation. This prevents reasoning directly about nontermination in
an inductive way, but for the purpose of our primary theorem this is
acceptable.

One interesting property of defining an inductive evaluation rela-
tion in a language such as Coq is that we can do computation on the
evaluation tree. In other words, the evaluation relation given above
defines a data type, one that we can do computation on in standard
ways. For example, we could potentially compute properties such
as size and depth, which would be related to operational properties
of compiled code. We hope in future work to explore this approach
further.

Finally, given a term t, we define the initial configuration as(
t
[
0
]
,ε
)
. As discussed, the choice of the null pointer for the envi-

ronment pointer is not completely arbitrary, but chosen across our
semantics uniformly to represent failed environment lookup.

3.1 Call-By-Name
In this section we define a call-by-name variant of our big-step
semantics and prove that it is an implementation of Curien’s call-by-
name calculus of closures [5].
1Both of these well known existing semantics have known problems that arise during
formalization, as discussed in Section 8.



IFL’18, September 2018, Lowell, MA, USA George Stelle and Darko Stefanovic

See Figure 3 for the definition of our call-by-name semantics.
Note that the only change from our call-by-need semantics is that we
do not update the heap location with the result of the dereferenced
computation. This is the essence of the difference between call-by-
name and call-by-need.

A well known existing call-by-name semantics is Curien’s cal-
culus of closures [5]. Refer to Figure 2 for a formalization of this
semantics. This semantics defines closures as a term, environment
pair, where an environment is a list of closures. Abstractions are in
weak head normal form, variables index into the environment, and
applications evaluate the left hand side to a value, then extend the
environment of the value with the closure of the argument.

We define a heterogeneous equivalence relation between our
shared environment and Curien’s environment. Effectively, this re-
lation is the proposition that the shared environment structure is a
linked list implementation of the environment list in Curien’s seman-
tics. This is defined inductively, and we require that every closure
reachable in the environment is also equivalent. We say two closures
are equivalent if their terms are identical and their environments are
equivalent.

Given these definitions, we can prove that our call-by-name se-
mantics implement Curien’s call by name semantics:

THEOREM 3.1. If a closure c in Curien’s call-by-name semantics
is equivalent to a configuration c′, and c steps to v, then there exists a
v′ that our call-by-name semantics steps to from c′ that is equivalent
to v.

PROOF OUTLINE. The proof proceeds by induction on Curien’s
step relation. The abstraction rule is a trivial base case. The variable
lookup rule uses a helper lemma that proves by induction on the
variable that if the two environments are equivalent and the variable
indexes to a closure, then the µ function will look up an equivalent
closure. The application rule uses a helper lemma which proves that
a fresh allocation will keep any equivalent environments equivalent,
and that the new environment defined by the fresh allocation will be
equivalent to the extended environment of Curien’s semantics.

By proving that Curien’s semantics is implemented by the call-
by-name variant of our semantics, we provide further evidence that
our call-by-need is a meaningful semantics. While eventually we
would like to prove that the call-by-need semantics implements an
optimization of the call-by-name, we leave that for future work.

One important note is that nowhere do we require that a term
being evaluated is closed under its environment. Indeed, it’s possible
that a term with free variables can be evaluated by both semantics to
a value as long as a free variable is never dereferenced. This theme
will recur through the rest of the paper, so it is worth keeping in
mind.

4 CE SMALL-STEP SEMANTICS
In this section we discuss the small-step semantics of the CE machine,
and show that it implements the big-step semantics of Section 3. This
is a fairly straightforward transformation implemented by adding a
stack. The source language is the same, and we simply add a stack to
our configuration (and call it a state). The stack elements are either
argument closures or update markers. Update markers are pushed
onto the stack when a variable dereferences that location in the heap.

Syntax

t ::= i | λ t | t t (Term)

i ∈ N (Variable)

c ::= t
[
ρ
]

(Closure)

v ::= λ t
[
ρ
]

(Value)

ρ ::= • | c ·ρ (Environment)

Semantics
t1
[
ρ
]
⇓λ t2

[
ρ ′]

t2
[
t3
[
ρ
]
·ρ ′] ⇓ v

t1t3
[
ρ
]
⇓ v

(LEval)

ci ⇓ v
i
[
c0 · c1 · ...ci ·ρ

]
⇓ v

(LVar)

Figure 2: Curien’s call-by-name calculus of closures

Syntax

t ::= i | λ t | t t (Term)

i ∈ N (Variable)

c ::= t
[
l
]

(Closure)

v ::= λ t
[
l
]

(Value)

µ ::= ε | µ
[
l 7→ ρ

]
(Heap)

ρ ::= • | c · l (Environment)

l, f ∈ N (Location)

s ::=
(
c,µ

)
(Configuration)

Semantics
µ
(
l, i
)
= l′ 7→ c · l′′

(
c,µ

)
⇓
(
v,µ ′)(

i
[
l
]
,µ

)
⇓
(
v,µ ′) (Id)

(
t
[
l
]
,µ

)
⇓
(
λ t2

[
l′
]
,µ ′) f < dom

(
µ ′)(

t2
[

f
]
,µ ′ [ f 7→ t3

[
l
]
· l′

])
⇓
(
v,µ ′′)(

t t3
[
l
]
,µ

)
⇓
(
v,µ ′′) (App)

(
λ t

[
l
]
,µ

)
⇓
(
λ t

[
l
]
,µ

) (Abs)

Figure 3: Big step call-by-name CE syntax and semantics

When they are popped by an abstraction, the closure at that location
is replaced by said abstraction, so that later dereferences by the same
variable in the same scope dereference the value, and do not repeat
the computation. Argument closures are pushed onto the stack by
applications, with the same environment pointer duplicated in the
current closure and the argument closure. Argument closures are
popped off the stack by abstractions, which allocate a fresh memory
location, write the argument closure to it, write the environment
continuation as the current environment pointer, then enter the body
of the abstraction with the fresh environment pointer. This is the
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Syntax

s ::= ⟨c,σ ,µ⟩ (State)

t ::= i | λ t | t t (Term)

i ∈ N (Variable)

c ::= t
[
l
]

(Closure)

v ::= λ t
[
l
]

(Value)

µ ::= ε | µ
[
l 7→ ρ

]
(Heap)

ρ ::= • | c · l (Environment)

σ ::=□ | σ c | σ u (Stack)

l,u, f ∈ N (Location)

Semantics

⟨v,σ u,µ⟩ → ⟨v,σ ,µ
(
u 7→ v · l

)
⟩ where c · l = µ

(
u
)

(Upd)

⟨λ t
[
l
]
,σ c,µ⟩ → ⟨t

[
f
]
,σ ,µ

[
f 7→ c · l

]
⟩ f < dom

(
µ
)

(Lam)

⟨t t ′
[
l
]
,σ ,µ⟩ → ⟨t

[
l
]
,σ t ′

[
l
]
,µ⟩ (App)

⟨i
[
l
]
,σ ,µ⟩ → ⟨c,σ l′′,µ⟩ where l′′ 7→ c · l′ = µ

(
l, i
)

(Var1)

Figure 4: Syntax and semantics of the CE machine

mechanism used for extending the shared environment structure.
The semantics is defined formally in Figure 4.

Note that the presentation given here differs slightly from our pre-
vious presentation [16], which inlined the lookup into the machine
steps. This is to simplify formalization and relation to the big-step
semantics, but does not change the semantics of the machine. As a
trade-off, it does make the relation to the instruction machine in the
later sections slightly more involved, but it is generally a superficial
change.

4.1 Relation to Big Step
Here we prove that the small-step semantics implements the big-
step semantics of Section 3. This requires first a notion of reflexive
transitive closure, which we define in the standard way. We also
make use of the fact that the reflexive transitive closure can be
defined equivalently to extend from the left or right.

LEMMA 4.1. If the big-step semantics evaluates from one con-
figuration to another, then the reflexive transitive closure of the
small-step semantics evaluates from the same starting configuration
with any stack to the same value configuration with that same stack.

PROOF OUTLINE. The proof proceeds by induction on the big-
step relation. We define our induction hypothesis so that it holds for
all stacks, which gives us the desired case of the empty stack as a
simple specialization. The rule for abstractions is the trivial base
case. Var rule applies as the first step, and the induction hypothesis
applies to the stack with the update marker on it. To ensure that the
Upd rule applies we use the fact that the big-step semantics only
evaluates to abstraction configurations, and the fact that the reflexive
transitive closure can be rewritten with steps on the right. For the
Application rule, we take advantage of the fact that we can append
two evaluations together, as well as extend a reflexive transitive
closure from the left or the right. As with the Var rule we use the fact

that the induction rule is defined for all stacks to ensure we evaluate
the left hand side to a value with the argument on the top of the stack.
Finally, we extend the environment with the argument closure, and
evaluate the result to a value by the second induction hypothesis.

Adding a stack in this fashion is a standard approach to converting
between big step and small-step semantics. Still, we appreciate that
this approach applies here in a straightforward way.

5 INSTRUCTION MACHINE
Here we describe in full the instruction machine syntax and seman-
tics. We choose a simple stack machine with a Harvard architecture
(with separate instruction and heap memory). We use natural num-
bers for pointers, though it shouldn’t be too difficult to replace these
with standard-sized machine words, e.g., 64 bits, making the stack
and malloc operations partial. Our stack is represented as a list of
pointers, though again it should be a relatively straightforward ex-
ercise to represent the stack in contiguous memory. With the fixed
machine word size, we would need to make push operations partial
to represent stacks this way. We define our machine to have only
four registers: an instruction pointer, an environment pointer, and
two scratch registers. Our instruction set is minimal, consisting only
of a conditional jump instruction, pop and push instructions, a move
instruction, and a new instruction for allocating new memory. Note
that for our program memory, we have pointers to basic blocks, but
for simplicity of proofs we choose to not increment the instruction
pointer within a basic block. Instead, the instruction pointer is con-
stant within a basic block, only changing between basic blocks. In
fact, we represent the program as a list of basic blocks, with pointers
indexing into the list. This has the advantage of letting us easily rea-
son about sublists and their relation to terms. As with other design
decisions, this also should be fairly unproblematic for formalization
to a more realistic hardware design. The full syntax of the machine
is given in Figure 5. Note that curly brackets {} denote optionality,
while stars ∗ denote zero or more elements, represented as a list.
Note that we’ll use some common list terminology, such as bracket
notation for indexing, i.e., l

[
i
]

accesses the i’th element in l (we
don’t worry about the partiality in this presentation of this operation;
see the Coq implementation for a full treatment). We also use for
list concatenation, and :: for consing an element onto the head of a
list.

We separate read (ro) and write (wo) operands. Write operands
can be registers or memory (defined by a register and a constant
offset). Read operands can be any write operand or a constant. For
reading, we have a read relation, which takes a read operand and
a state and is inhabited when the third argument can be read from
that read operand in that state. Similarly, a write relation is inhabited
when writing the second argument into the first in a state defined by
the third argument results in the state defined by the fourth argument.

The machine semantics should be fairly unsurprising. A State,
consists of a register file, program memory, a stack, and a heap. The
push instruction takes a read operand and pushes it onto the stack.
The pop instruction pops the top of the stack into a write operand.
The mov instruction moves a machine word from a read operand to a
write operand. The jump instruction is parameterized by an optional
pair, which, if present, reads the first element of the pair from a
read operand, checks if it is zero, and if so sets the IP to the second
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n, l,w ∈ N (Machine Word)

r := ip | ep | r1 | r2 (Registers)

wo := r | r%n (Write Operands)

ro := wo | n (Read Operands)

i := push ro | pop wo | new n wo | mov ro wo (Instructions)

bb := i : bb | jump{ro, l}ro (Basic Block)

p := bb∗ (Program)

s := w∗ (Stack)

h :=
(
l,w

)
∗ (Heap)

S := ⟨r f , p,s,h⟩ (State)

Figure 5: Instruction Machine Syntax

element of the pair, which is a constant pointer. If the condition is
not zero, then it sets the IP to the instruction pointer contained in the
second jump argument. If we pass nothing as the first argument, then
it becomes an unconditional set of the IP to the value read from the
second argument. Note that the second argument is a read operand,
so it can either be a constant or read from a register or memory. This
means it can be effectively either a direct or indirect jump, both
of which are used in the compilation of lambda terms. The new
instruction allocates a contiguous block of new memory and writes
the resulting pointer to the fresh memory into a write operand. We
take the approach of not choosing a particular allocation strategy.
Instead, we follow existing approaches and parameterize our proof
on the existence of such functionality [4]. For simplicity, we assume
that the allocation function returns completely fresh memory, though
it should be possible to modify this assumption to be less restrictive,
i.e., let it re-use heap locations that are no longer live. The complete
semantics of the machine is given in Figure 6. Note that we separate
instruction steps and basic block steps. Recall that a basic block
is a sequence of instructions that ends with a jump. The Step BB
relation will execute the instructions in the basic block in order, then
set the IP in accordance with the jump semantics. The Step relation
dereferences a basic block at the current IP, and if executing the
basic block results in a new state, then the machine executes to that
state.

6 COMPILER
In this section we describe the compiler, which compiles lambda
terms with de Bruijn indices to programs. The compiler proceeds by
recursion on lambda terms, keeping a current index into the program
to ensure correct linking without a separate pass. For variables, when
we get to zero we push the current environment pointer and a null
instruction pointer to denote the update marker to the location of
the closure being entered. Then we mov the closure at that location
into r1 and ep, and jump to r1, recalling that the jump sets the
ip. For nonzero variables, we replicate traversing the environment
pointer i times before loading the closure. For applications, we
calculate the program location of the argument basic block, and push
that and the current environment pointer onto the stack, effectively
pushing an argument closure on top of the stack. We then jump to

read ro ⟨r f , ps,h⟩ v
bb,⟨r f , p,v :: s,h⟩ →bb S

push ro : bb,⟨r f , p,s,h⟩ →bb S
(Push)

write wo w⟨r f , p,s,h⟩S′
bb,S′ →bb S

pop wo : bb,⟨r f , p,w :: s,h⟩ →bb S
(Pop)

∀i < n, f + i < dom
(
h
)

write wo f ⟨r f , p,s,zeroes n f h⟩S′
bb,S′ →bb S

new n wo : bb,⟨r f , p,s,h⟩ →bb S
(New)

read ro s v write wo v S S′ bb,S′ →bb S′′

mov ro wo : bb,S →bb S′′
(Mov)

read ro S 0 write ip k S S′

jump
(
ro,k

)
j,S →bb S′

(Jump 0)

l > 0 read ro S l
read j S k write ip k S S′

jump
(
ro,k′

)
j,S →bb S′

(Jump S)

read ro S l write ip l S S′

jump ro : S →bb S′
(Jump)

read ip ⟨r f , p,s,h⟩ k
p
[
k
]
= bb

bb,⟨r f , p,s,h⟩ →bb S′

⟨r f , p,s,h⟩ → S′
(Enter)

Figure 6: Instruction Machine Semantics

the left hand side of the application, as is standard for push-enter
evaluation. For abstractions, we use a conditional jump depending on
whether the top of the stack is a null pointer (and therefore an update
marker) or a valid instruction pointer (and therefore an argument).
If it is an update marker, we update the heap location defined by
the update marker with the current value instruction pointer and the
current environment pointer. We must point to the first of the three
abstractions basic blocks, as this value could later update another
heap location as well. In the case that the top of the stack was a valid
instruction pointer, we allocate a new chunk of 3 word of memory,
and mov the argument closure into it, with the current environment
pointer as the environment continuation. We then set our current
environment pointer to this fresh location. This is the process by
which we extend our shared environment structure in the instruction
machine. Finally, we perform an unconditional jump to the next
basic block, which is the first basic block of the compiled body of
the lambda. As this is an unconditional jump to the next basic block,
for real machine code this jump can be omitted.
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var 0 := push ep :

push 0 :

mov
(
ep%0

)
r1 :

mov
(
ep%1

)
ep :

jump r1

var
(
i+1

)
:= mov

(
ep%2

)
ep :

var i

compile i k :=
[
var i

]
compile

(
m n

)
k := let ms = compile m

(
k+1

)
in

let nk = 1+ k+ length ms in

push ep :

push nk :

jump
(
k+1

)
::

ms compile n nk

compile
(
λb

)
k := pop r1 :

jump
(
r1,k+1

) (
k+2

)
::

pop r1 :

mov k r1%0 :

mov ep r1%1 :

jump k ::

new 3 r2 :

mov r1
(
r2%0

)
:

pop
(
r2%1

)
:

mov ep
(
r2%2

)
:

mov r2 ep :

jump
(
k+3

)
::

compile b
(
k+3

)
Figure 7: Compiler Definition

Being able to define the full compiler this simply is crucial to this
verification project. Other, more sophisticated implementations of
call-by-need, such as the STG machine, are much harder to imple-
ment and reason about. It is worth noting that despite this simplicity,
initial tests suggest that performance is not as horrible as one might
suspect, and is often competitive with state of the art [16].

As with the relation discussed in Section 3, note that even when
compiling, we do not require that a term is closed to compile it.
Indeed, we will happily generate code that if entered, will attempt
to dereference the null pointer, leaving the machine stuck. Because
we are only concerned with proving that we implement the source
semantics in the case that it evaluates to a value, this is not a problem.
If we wanted to strengthen our proof further, we would try to show
that if the source semantics gets stuck trying to dereference a free
variable, the implementation would get stuck in the same way, both
failing to dereference a null pointer.

7 COMPILER CORRECTNESS
In this section we define a relation between the state of the small-
step semantics and the state of the instruction machine semantics,
and show that the instruction machine implements the small-step
semantics under that relation.

In general, we implement closures as instruction pointer, environ-
ment pointer pairs. For the instruction pointers, we relate them to
terms via the compile function defined in Section 6. Essentially, we
require that the instruction pointer points to a list of basic blocks that
the related term compiles to. For the current closure, we relate the
instruction pointer register in the instruction machine to the current
term in the small-step source semantics. The environment pointers of
each machine are more similar. Given a relation between the heaps
of the two machines, we define the relation between two environ-
ment pointers as existing in the relation of the heaps, or both being
the null pointers. While it should be possible to avoid this special
case, during the proof it became apparent that not having the special
case made the proof significantly harder. This forces us to add the
constraint to all machines that pointers are non-null, which for real
hardware shouldn’t be an issue.

We use null pointers in two crucial ways. One is to explicitly
define the root of the shared environment structure in both the source
semantics and the machine semantics. The other use is for instruction
pointers. To differentiate between update markers and pointers to
basic blocks, we use a null pointer to refer to an update marker, and
a non-null pointer as an instruction pointer for an argument closure.
Note that in fact, while the null pointers in heaps required us to
only allocate non-null fresh locations in the heaps of our semantics,
using null pointers to denote update markers requires no change to
our program generation, due to the fact that an argument term of an
application cannot occur at position 0 in the program.

The relation between the heaps of the small-step source semantics
and the instruction machine is the trickiest part of the state relation.
Note that for each location in the source semantics heap, we have a
cell with a closure and environment continuation pointer. Naturally,
the instruction machine represents these as three pointers: two for
the closure (the instruction pointer and environment pointer) and one
for the environment continuation. The easiest approach turned out
to be to use the structure of the heap constructs to define a one-to-
three mapping between this single cell and the three machine words.
The structure used for each of the heaps is a list of pointer, value
bindings. We use the ordering of these bindings in the list to define
a one binding to three binding mapping between the source heap
and the machine heap. We define a membership relation that defines
when an element is in our heap relation, proceeding recursively on
the inductive relation structure. This allows us to define a notion of
which pairs of each type of closure are in the heap, along with their
respective locations. Due to the ordering in which they are allocated
in the heap during evaluation, each pair of memory allocations
corresponds to an equivalent cell. We use this property as a heap
equivalence property that is preserved through evaluation: every
binding pair in the heap relation property described above defines
equivalent closures and environment continuations. For the relation
between our stacks, we define a similar notion. For update markers,
we require that every update marker points to related environments
(they are two pointers that exist in the heap relation). For argument
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closures, we require that the closures are equivalent (the instruction
pointer and environment pointer are equivalent to their respective
counterparts in the small-step semantics).

In summary, we require that the current closure in the small-step
semantics is equivalent to the closure represented by the instruction
pointer, environment pointer pair, and that the stacks and the heaps
are equivalent. The actual Coq implementation of this relation is too
involved to relate directly here. We encourage the reader to read the
linked Coq source to fully appreciate it.

Given this relation between heaps, we can state our primary
lemma.

LEMMA 7.1. Given that an instruction machine state i is related
to a small-step semantics state s, and that small-step semantics state
steps to a new state s′, the instruction machine will step in zero or
more steps to a related state i′.

PROOF OUTLINE. Our proof proceeds by case analysis on the
step rules for the small-step semantics. We’ll focus on the second
half of the proof, that i′ is related to s′. The proofs that i evaluates
to i′ follow fairly directly from the compiler definition given in Sec-
tion 6. For the Var rule, because we need to proceed by induction, we
have to define a separate lemma and proceed by induction on a basic
block while forgetting the program, as the induction hypothesis is
invalid in the presence of the program. We then use the lemma to
show that evaluation of a compiled variable implements the evalu-
ation of the variable in the small-step semantics. In particular, we
use the null environment as a base case for our induction, as we
know the only way lookup could fail is if both environment pointers
are null, but that cannot be the case due to the fact that we know
that the small-step semantics must have successfully looked up its
environment pointer in the heap. Therefore the only option is for
both environment pointers to exist in the heap relation, which when
combined with the heap equivalence relation in the outer proof gives
us the necessary property that the environment continuations are
equivalent. Finally, because the last locations reached must have
been in the heap relation, we know they are equivalent environment
pointers, and therefore the stack relation is preserved when we push
the update marker onto the heap. For the App rule, we use the defini-
tion of our compiler to prove that the argument term and argument
instruction pointer are equivalent and that the left hand side term and
instruction pointer are also equivalent. They share an environment
pointer which is equivalent by the fact that the application closures
are related. This proves that the stack relation is preserved as well
as the current closure, while the heap is unchanged. For the Lam
rule, we allocate a fresh variable and because of our stack relation
we can be sure that the closures that we allocate are equivalent, as
well as the environment continuations, as they are taken from the
previous current continuation. Because of how we define it, the new
allocations are equivalent under our heap relation, and preserve heap
equivalence. Finally, the Upd rule trivially preserves the stack and
current closure relations, and for proving that the relation is pre-
served for the heap, we proceed by induction on the heap relation.
In addition, we must prove a supporting lemma that all environment
relations are preserved by the update.

We now have a proof that the small-step semantics implements
the big-step semantics, and a proof that the instruction machine

implements the small-step semantics. We can now combine these to
get our correct compiler theorem.

THEOREM 7.2. If a term t placed into the initial configuration
for the big-step semantics evaluates to a value configuration v, then
the instruction machine starting in the initial state with compile 0
t as its program will evaluate to a related state v′.

PROOF OUTLINE. We first require that the relation defined be-
tween the small-step semantics state and the instruction machine
state holds for the initial configurations. This follows fairly directly
from the definition of the initial conditions and the compile func-
tion. Second, we have by definition of reflexive transitive closure
that Lemma 7.1 implies that if the reflexive transitive closure of the
small-step relation evaluates in zero or more steps from a state c to a
state v, then a related state of the instruction machine c′ will evaluate
to a state v′ which is related to v. We use these two facts, along with
the proof that the small-step implements the big-step for any stack,
specialized on the empty stack, to prove our theorem.

It is worth recalling exactly what the relation implies about the
two value states. Namely, in addition to the value closures being
equivalent, their heaps and environments are equivalent, so that every
reachable closure in the environment is equivalent between the two.

8 DISCUSSION
Here we reflect on what we have accomplished, including threats
to validity, future work, related work, and general discussion of the
results.

One thing we’d like to communicate is the difficulty we had in
writing comprehensible proofs. The reader is discouraged from at-
tempting to understand the proofs in any way by reading the Coq
tactic source code. While we attempted to keep our definitions and
lemmas as clean and comprehensible as possible, we found it ex-
tremely difficult to do the same with tactics. Partially this may be a
failure on our part to become more familiar with the tactic language
of Coq, but we suspect that the imperative nature of tactic proofs
prevents composability of tactic meta-programs.

Another lesson was the importance of good induction principles.
For example, in Section 8.1, we will discuss the issue of only proving
the implication of correctness in one direction. This is effectively
a product of the power of the inductive properties of high level
semantics, which makes them so much easier to reason about. Indeed,
this lesson resonates with the purpose of the paper, which is that we’d
like to reason about high level semantics, because they are so much
easier to reason about due to their pleasant inductive properties, and
have that reasoning preserved through compilation.

8.1 Threats to Validity
There are a few potential threats to validity that we address in this
section. The first is the one mentioned in Section 2, that we only
show that our compiler is correct in the case of termination of the
source semantics. In other words, if the source semantics doesn’t
terminate, we can say nothing about how the compiled code behaves.
This means that we could have a compiled program that terminates
when the source semantics does not terminate.

One argument in defense of our verification is that we generally
only care about preservation of semantics for preserving reasoning
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about our programs. In other words, if we have a program that we
can’t reason about, and therefore may not terminate, we care less
about having a proof that semantics are preserved. Of course, this
is a claim about most uses of program analysis. There are possible
analyses that could say things along the lines of if the source program
terminates, then we can conclude x. We claim these cases are rare,
and therefore the provided proof of correctness can still be applied
to most use cases.

Another potential threat to validity is the use of a high level
instruction machine language. While we claim that its high level and
simplicity should make it possible to show that a set of real ISAs
implement this instruction machine, we haven’t formally verified
this step. We believe that this would make for valuable future work,
and hope that the reader agrees that nothing in the design of our high
level instruction machine would prevent such work.

As a dual to the issue of a high level instruction machine language,
some readers may take issue with calling lambda calculus with de
Bruijn indices an "input language". Indeed, we do not advocate
writing programs in such a language. Still, the conversion between
lambda calculus with named variables and lambda calculus with de
Bruijn indices is a well understood topic, and we believe it would
distract from the presentation of the verified compiler provided
here. Indeed, as noted below, semantics using named variables and
substitution can be hard to get right [3, 11], so we stand by our
decision to use a semantics based on lambda calculus with de Bruijn
indices. One potential approach for future work would be to prove
that a call-by-name semantics using substitution is equivalent to
Curien’s calculus of closures, which when combined with a proof
that our call-by-need implements our call-by-name, would prove the
compiler implements the semantics of a standard lambda calculus
with named variables.

A third threat to the validity of this work is the question of whether
we have really proved that we have implemented call-by-need. The
question naturally arises of what exactly it means to prove an im-
plementation of call-by-need is correct. There are certainly well-
established semantics [1, 9], so one option would be to directly
prove that the C E semantics implements one of those existing se-
mantics. Unfortunately, recent work has shown that both of these
have small issues that arise when formalized that require fixes. In-
deed, we did stray down this path a good ways and discovered one
of these issues which has been previously described in the liter-
ature [11]. This raises the question of whether or not semantics
that aren’t obviously correct are a good base for what it means to
be a call-by-need semantics. Instead, we have chosen to relate our
call-by-name semantics formally to a semantics that is obviously
correct, Curien’s calculus of closures. Along with the tiny modifi-
cation required for memoization of results, we hope that we have
convinced the reader that it is extremely likely that the memoization
of results is correct. Of course, further evidence such as examples
of correct evaluation would go further to convince the reader, and
for that we encourage readers to play with a toy implementation
at https://github.com/stelleg/cem_pearl. Finally, a more convincing
result would be a proof that the call-by-need semantics implement
the call-by-name semantics.

Yet another threat to validity is our approach (or lack of approach)
to heap-reuse. For simplicity, we have assumed that our fresh loca-
tions are fresh with respect to all existing bindings in the heap. Of

course, this is unsatisfactory when compared to real implementa-
tions. It would be preferable to have our freshness constraint relaxed
to only be fresh with respect to live bindings on the heap. We believe
that this modification should be possible, at the cost of increased
complexity in the proofs.

8.2 Future Work
In addition to some of the future work discussed as ways of address-
ing issues in Section 8.1, there are some additional features that we
think make for exciting areas of future work.

One such area is reasoning about preservation of operational
properties such as time and space requirements. This would enable
reasoning about time and space properties at the source level and
ensuring that these are preserved through compilation. In addition,
there is the possibility of verified optimizations, where one can prove
that some optimizations are both correct, in that they provably pre-
serve semantics, and true optimizations, in that they only improve
performance with respect to some performance model. By defining
a baseline compiler and proving that it preserved operational proper-
ties such as time and space usage, one would have a good platform
for which to apply this class of optimizations, resulting in a full com-
piler that verifiably preserves bounds on time and space consumption.
As with correctness, reasoning about operational properties is often
likely to be easier in the context of the easy-to-reason-about high
level semantics, and having that reasoning provably preserved would
be extremely valuable.

Another exciting area of future work is powerful proofs of type
preservation through compilation. While there has been existing
work on type-preserving compilers, fully verified compilers like this
one provide such a strong property that type-safety should fall out
directly.

One useful feature of Coq is the ability to extract Coq programs
out to other implementations, e.g. Haskell. This raises the possibility
of extracting the verified compiler out to a Haskell implementation
that could be incorporated into GHC, providing a path towards a
verified Haskell compiler.

8.3 Related Work
Chlipala implements a compiler from a STLC to a simple instruction
machine in [4]. In many ways it is more sophisticated than our
work: it converts to CPS, performs closure conversion, and proves
a similar compiler correctness theorem to the one we’ve proved
here. The primary difference is that we’ve defined a call-by-need
compiler, which forces us to reason about updating thunks in the
heap, a challenge not faced by call-by-value implementations.

Breitner formalizes Launchbury’s natural semantics and proves an
optimization is sound with respect to the semantics [3, 9]. By relating
his formalization with ours, these projects could be combined to
prove a more sophisticated lazy compiler correct: one with non-
trivial optimizations applied.

CakeML [8] is a verified compiler for a large subset of the Stan-
dard ML language formalized in HOL4 [14]. Like Chlipala’s work,
this is a call-by-value language, though they prove correctness down
to an x86 machine model, and are working with a much larger real-
world source language. They also make divergence arguments along

https://github.com/stelleg/cem_pearl
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the lines of [12], strengthening their correctness theorem in the pres-
ence of nontermination. It’s also worth noting that like [10], they are
also formalizing a front end to the compiler.

As part of the DeepSpec project, Weirich et al. have been working
on formalizing Haskell’s core semantics [15, 17]. We believe there
is opportunity to use this effort in combination with the DeepSpec
project to implement and verify a full-featured Haskell compiler.

9 CONCLUSION
We have presented the first verified compiler of a non-strict lambda
calculus. In addition to proving that our call-by-need semantics
is preserved through compilation, we have proved that Curien’s
calculus of closures is implemented by our call-by-name semantics.
We argue that this provides compelling evidence that our compiler
is a true verified compiler of call-by-need.

We hope that this work can serve as a foundation for future work
on real-world verified compilers. While it is clearly a toy compiler,
we have reason to believe that performance is acceptable and can
be further improved [16]. In combination with efforts to formalize
semantics of real-world languages like Haskell, we hope that this
work can help us move towards fully verified non-strict programs.
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