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Role of models in epidemiology

Mathematical models can help epi-
demiologists:
• How fast will an epidemic

spread?
• How severe will an epidemic be?
• How effective would an interven-

tion strategy be?
• Testing hypotheses about dis-

ease transmission.

Abrams, Copeland, Tauxe, Date, Belay, Mody, Mintz.
Real-time modelling used for outbreak management
during a cholera epidemic, Haiti, 2010–2011. Epi-
demiol Infect 141(6):1276–85. 2013.
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Kinds of models

Statistical
Discover correlations and patterns
(e.g., regressions, time series analy-
ses)

Reyburn, Kim, Emch, Khatib, von Seidlein, Ali. Cli-
mate variability and the outbreaks of cholera in Zanz-
ibar, East Africa: a time series analysis. Am J Trop
Med Hyg 84(6):862–9. 2011.

Mechanistic
Simulate processes, dynamics
(e.g., differential equations, agent-
based models)
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Mechanistic (or “mathe-
matical”) models can be
used to test interventions.
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How does vaccination reduce transmission?

• Individual-level benefit:
Vaccination reduces the chance of
infection. (VE)

• Population-level benefit:
Vaccination reduces the number
of people a person can infect.
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Transmissibility and R0

R0 = 2.0

• R0 is the number of people that a
typical infected person infects in a
fully susceptible population.

• R0 must be greater than 1.0 for an
outbreak to occur.

• Epidemics initially grow exponen-
tially.

pathogen R0 or R
Influenza 1.1–1.5

SARS 2.7
Smallpox 3

Rubella 6–7
Measles 7.7
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How does vaccination reduce transmission?

• If infected people infect less than 1
other on average, outbreaks should
not occur.
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How many people do we need to vaccinate?

R0=2.0 pathogen R or R0

Influenza 1.1–1.5
SARS 2.7

Smallpox 3
Rubella 6–7

Measles 7.7

(assuming a perfect vaccine)
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How many people do we need to vaccinate?

50% for R0=2.0 pathogen R or R0

Influenza 1.1–1.5
SARS 2.7

Smallpox 3
Rubella 6–7

Measles 7.7

Vaccinating 50% for R0=2.0 results in an effective R0 of 1.0
(assuming a perfect vaccine).
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How many people do we need to vaccinate?

R0=3.0 pathogen R or R0

Influenza 1.1–1.5
SARS 2.7

Smallpox 3
Rubella 6–7

Measles 7.7

(assuming a perfect vaccine)

9 / 41



How many people do we need to vaccinate?

67% for R0=3.0 pathogen R or R0

Influenza 1.1–1.5
SARS 2.7

Smallpox 3
Rubella 6–7

Measles 7.7

(assuming a perfect vaccine)
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How many people do we need to vaccinate?

R0=8.0 pathogen R or R0

Influenza 1.1–1.5
SARS 2.7

Smallpox 3
Rubella 6–7

Measles 7.7

(assuming a perfect vaccine)
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How many people do we need to vaccinate?

87.5% for R0=8.0 pathogen R or R0

Influenza 1.1–1.5
SARS 2.7

Smallpox 3
Rubella 6–7

Measles 7.7

(assuming a perfect vaccine)
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Critical vaccination fraction
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• The critical vaccination fraction is the proportion of the population
that needs to be vaccinated to prevent outbreaks.

• Basically, vaccinate enough to drive R0 below 1.
• The critical vaccination fraction depends on R0 and the vaccine

efficacy, VE:
1−1/R0

VE
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Unanswered questions

• What if we don’t vaccinate enough people to prevent outbreaks?
• How many people will an epidemic infect?
• How fast will an epidemic spread?
• What if we vaccinate during an outbreak?

Dynamic modeling can help answer these questions.
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Modeling infectious disease transmission

dS
dt

= −βSI

dI
dt

= βSI − γI

dR
dt

= γI
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Creating compartments for a mathematical model

Susceptible RecoveredInfected

S I R

Math models consider a small number of essential disease
states (“compartments”).
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Putting people in the compartments

Susceptible RecoveredInfected

S I R
15 3 1

How many people are in each disease state (“compartment”)?
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Transitioning between compartments

S I R

I γβ

15 3 1

• Susceptible population is exposed to pathogen and become
Infected.

• Infected people Recover and become immune to infection.
• Add rates of transition between compartments (disease states):

• βI: Force of infection is proportional to the number of Infected
people.

• γ: Recovery rate is the inverse of the serial interval.
For influenza, the serial interval is about 3.4 days, so γ = 1/3.4.
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Classic SIR model

S I R

I γβ

dS
dt

= −βSI

dI
dt

= βSI − γI

dR
dt

= γI William Kermack Anderson McKendrick
1898–1970 1876–1943

Ordinary differential equations (ODEs) are used to model the
flow of people between compartments.
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Modeling an influenza epidemic

• We can solve the SIR equations for how many Infected people
there will be at any time.

• Starting with a population of 1000 people: 999 Susceptible and 1
Infected. . .
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dI/dt=0.096

dS
dt

= −βSI

dI
dt

= βSI − γI

dR
dt

= γI
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Modeling an influenza epidemic

• We can solve the SIR equations for how many Infected people
there will be at any time.

• Starting with a population of 1000 people: 999 Susceptible and 1
Infected. . .
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dS
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= −βSI

dI
dt

= βSI − γI

dR
dt

= γI
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Modeling an influenza epidemic

• We can solve the SIR equations for how many Infected people
there will be at any time.

• Starting with a population of 1000 people: 999 Susceptible and 1
Infected. . .
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Modeling an influenza epidemic

• We can solve the SIR equations for how many Infected people
there will be at any time.

• Starting with a population of 1000 people: 999 Susceptible and 1
Infected. . .
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Modeling an influenza epidemic

• We can solve the SIR equations for how many Infected people
there will be at any time.

• Starting with a population of 1000 people: 999 Susceptible and 1
Infected. . .
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Why does the epidemic peak then decline?

Time in days
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• dI
dt = βSI − γI

• In the beginning, the population is
fully susceptible and S is large.

• The epidemic grows exponentially.
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What happens as the outbreak progresses?
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• dI
dt = βSI − γI

• As people are infected then re-
cover, the pool of susceptible peo-
ple shrinks.

• Growth slows as susceptibles are
consumed.

• The epidemic declines when the in-
fected population becomes smaller
and smaller.
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When does the epidemic stop?

R0 = 2.0,
“effective” R = 1.0

• When a infected person can not in-
fect more than one other, the epi-
demic will shrink.

• The epidemic stops before all Sus-
ceptibles are infected.

• The epidemic can not resume un-
less immunity wanes or more sus-
ceptibles are added (e.g., birth or
immigration).
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Both mass vaccination and large epidemics deplete susceptible
individuals

• Vaccination reduces the suscepti-
ble population.
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R0 for different pathogens

Time in days
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pathogen R0 or R serial interval
Influenza 1.1–1.5 3.4 days

SARS 2.7 6 days
Measles 7.7 14 days

• If we know R0 for a pathogen, we can set β in an SIR model using:
β = R0γ/N

• If part of the population is not susceptible, then we might use the
term “R” instead of R0.

• The epidemic peak time is determined by both transmissibility (β)
and the serial interval (1/γ).
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“Indirect protection” or “Herd immunity”

• There is both direct and indirect
protection from vaccination.

• Vaccinated people are less likely
to become infected and less likely
to infect others. Therefore, vac-
cines can protect vaccinated and
unvaccinated people.

• If some people are vaccinated, epi-
demics may be smaller.

• If enough people are vaccinated,
epidemics should not spread and
there is “herd immunity”.
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Evidence of indirect protection from mass cholera vaccination

Vaccination coverage
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• If a vaccine is 65%
effective, then one
should avert at least
65% of cases.

• The observed
reduction in a
large-scale trial was
greater.

• Indirect protection
can be important for
cost-effectiveness
studies.

Mathematical modeling was used to understand the relationship
between coverage and incidence.
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Other benefits from mass cholera vaccination

Ill
ne

ss
 p

re
va

le
nc

e 
(%

)

Fig 4D

Time (days)
0 30 60 90 120 150 180

0

1

2

3

Baseline
Prevaccination, 30% coverage
Prevaccination, 50% coverage
Prevaccination, 70% coverage

Yang, Sugimoto, Halloran, Basta, Chao, Matrajt, Potter, Kenah, and Longini. The transmis-
sibility and control of pandemic influenza A (H1N1) virus. Science 326:729-733. 2009.

• Mass vaccination
can reduce and
delay the epidemic
peak.

• The size of the peak
may be important
for hospital capacity
planning.

• Delaying the peak
might give officials
time to implement
other interventions.

Mathematical modeling can be used to predict how mass
vaccination (or other interventions) could slow down an
epidemic.
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Some practical applications of SIR models

Abrams, Copeland, Tauxe, Date, Belay, Mody, Mintz. Real-time
modelling used for outbreak management during a cholera epi-
demic, Haiti, 2010–2011. Epidemiol Infect 141(6):1276–85. 2013.
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Chao, Matrajt, Basta, Sugimoto, Dean, Bagwell, Oiulfs-
tad, Halloran, and Longini Jr. Planning for the control of
pandemic influenza H1N1 in Los Angeles County and the
United States. Am J Epidemiol. 173(10):1121–30. 2011.

• Epidemic peak timing and height (e.g., for emerging diseases)
• Final attack rate
• Predicting effectiveness of mass vaccination

• Understanding “indirect protection”, “herd immunity”, or
“population” immunity

• Computing the vaccination coverage needed to prevent
outbreaks
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Related models
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I
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SIRS model when immunity is not lifelong
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• When Recovered people can become Susceptible again, the
epidemic can persist.
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Ross–Macdonald model for vectorborne disease
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• An early (and still used) malaria model.
• Two populations: People and Mosquitoes.
• Infected Mosquitoes bite Susceptible humans.
• Infected humans are bitten by Susceptible

Mosquitoes.
• Because both infection rates depend on the bit-

ing rate, transmissibility is a function of the bit-
ing rate squared.

Ronald Ross
1857–1932
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Waterborne disease model

S I

I

R
W

W Water (environment)

Decay

• People are infected by contaminated Water.
• Infected people contaminate Water.
• The pathogen in the Water declines over time.
• If the decay rate of pathogen in the Water is slow (i.e., the water

remains contaminated for a long time), the epidemic can be
prolonged.

37 / 41



More complex models (malaria)

Dietz, Molineaux, Thomas. A malaria model tested in the African savannah. Bull World Health Organ 50(3–4):347–57. 1974.

• System of 7 difference equations.
• States: Negatives (no parasites), have liver parasites, have blood

parasites
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More complex models (typhoid)

Cvjetanović, Grab, Uemura. Epidemiological model of typhoid fever and its use in the planning and evaluation of antityphoid immunization
and sanitation programmes. Bull World Health Organ 45(1):53-75. 1971.

• System of 10 difference equations.
• States: Susceptible, exposed (asymptomatic or symptomatic),

infectious (latent, sick, or carrier), resistant, dead
• Each compartment needs an equation.
• Each relationship between compartments needs a parameter.
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Summary and conclusions

• Mathematical modeling is a quantitative tool based on our
understanding of disease transmission.

• Simple mathematical models can be useful and general, and more
complex models can be developed when needed.

• Mathematical modeling can be used to predict the speed and size
of an outbreak.

• Modeling can be used to test hypotheses about disease
transmission.

• For vaccines, models have been used to:
• Predict the effectiveness of mass vaccination.
• Predict the effectiveness of vaccinating different subpopulations

(e.g., children).
• Quantify the benefits of “indirect protection”, “herd immunity”, or

“population” immunity.
• Establishing thresholds for vaccine coverage to eliminate a

disease.
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Thank you!

Boukan Kare, Haiti.
Photo by D. Chao

The 15th Annual IVI International Advanced
Course on Vaccinology
May 11–15, 2015
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