Mathematical modelling of infectious disease transmission

Dennis Chao

Vaccine and Infectious Disease Division Fred Hutchinson Cancer Research Center

11 May 2015

Role of models in epidemiology

Mathematical models can help epidemiologists:

- How fast will an epidemic spread?
- How severe will an epidemic be?
- How effective would an intervention strategy be?
- Testing hypotheses about disease transmission.

Abrams, Copeland, Tauxe, Date, Belay, Mody, Mintz. Real-time modelling used for outbreak management during a cholera epidemic, Haiti, 2010–2011. Epidemiol Infect 141(6):1276–85. 2013.

Kinds of models

Statistical

Discover correlations and patterns (e.g., regressions, time series analyses)

Reyburn, Kim, Emch, Khatib, von Seidlein, Ali. Climate variability and the outbreaks of cholera in Zanzibar, East Africa: a time series analysis. *Am J Trop Med Hyg* 84(6):862–9. 2011.

Mechanistic

Simulate processes, dynamics (e.g., differential equations, agentbased models)

Mechanistic (or "mathematical") models can be used to test interventions.

How does vaccination reduce transmission?

- Individual-level benefit: Vaccination reduces the chance of infection. (VE)
- Population-level benefit: Vaccination reduces the number of people a person can infect.

Transmissibility and R₀

- R₀ is the number of people that a typical infected person infects in a fully susceptible population.
- R₀ must be greater than 1.0 for an outbreak to occur.
- Epidemics initially grow *exponentially*.

pathogen	R_0 or R
Influenza	1.1–1.5
SARS	2.7
Smallpox	3
Rubella	6–7
Measles	7.7

How does vaccination reduce transmission?

• If infected people infect less than 1 other on average, outbreaks should not occur.

pathogen	$R \text{ or } R_0$
Influenza	1.1–1.5
SARS	2.7
Smallpox	3
Rubella	6–7
Measles	7.7

pathogen	$R \text{ or } R_0$
Influenza	1.1–1.5
SARS	2.7
Smallpox	3
Rubella	6–7
Measles	7.7

Vaccinating 50% for R_0 =2.0 results in an *effective* R_0 of 1.0 (assuming a perfect vaccine).

pathogen	$R \text{ or } R_0$
Influenza	1.1–1.5
SARS	2.7
Smallpox	3
Rubella	6–7
Measles	7.7

pathogen	$R \text{ or } R_0$
Influenza	1.1–1.5
SARS	2.7
Smallpox	3
Rubella	6–7
Measles	7.7

(assuming a perfect vaccine)

pathogen	$R \text{ or } R_0$
Influenza	1.1–1.5
SARS	2.7
Smallpox	3
Rubella	6–7
Measles	7.7

(assuming a perfect vaccine)

Critical vaccination fraction

- The *critical vaccination fraction* is the proportion of the population that needs to be vaccinated to prevent outbreaks.
- Basically, vaccinate enough to drive R₀ below 1.
- The critical vaccination fraction depends on R₀ and the vaccine efficacy, VE: $\frac{1-1/R_0}{VE}$

Unanswered questions

- What if we don't vaccinate enough people to prevent outbreaks?
- · How many people will an epidemic infect?
- How fast will an epidemic spread?
- What if we vaccinate during an outbreak?

Dynamic modeling can help answer these questions.

Modeling infectious disease transmission

Creating compartments for a mathematical model

Math models consider a small number of essential disease states ("compartments").

Putting people in the compartments

How many people are in each disease state ("compartment")?

Transitioning between compartments

- **Susceptible** population is exposed to pathogen and become **Infected**.
- Infected people Recover and become immune to infection.
- Add rates of transition between compartments (disease states):
 - βI : Force of infection is proportional to the number of Infected people.
 - γ : Recovery rate is the inverse of the serial interval. For influenza, the serial interval is about 3.4 days, so $\gamma = 1/3.4$.

Classic SIR model

$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dt} = \beta SI - \gamma I$$
$$\frac{dR}{dt} = \gamma I$$

William Kermack 1898–1970 Anderson McKendrick 1876–1943

Ordinary differential equations (ODEs) are used to model the flow of people between compartments.

- We can solve the SIR equations for how many Infected people there will be at any time.
- Starting with a population of 1000 people: 999 Susceptible and 1 Infected...

- We can solve the SIR equations for how many Infected people there will be at any time.
- Starting with a population of 1000 people: 999 Susceptible and 1 Infected...

- We can solve the SIR equations for how many Infected people there will be at any time.
- Starting with a population of 1000 people: 999 Susceptible and 1 Infected...

- We can solve the SIR equations for how many Infected people there will be at any time.
- Starting with a population of 1000 people: 999 Susceptible and 1 Infected...

- We can solve the SIR equations for how many Infected people there will be at any time.
- Starting with a population of 1000 people: 999 Susceptible and 1 Infected...

Why does the epidemic peak then decline?

•
$$\frac{dI}{dt} = \beta SI - \gamma I$$

- In the beginning, the population is fully susceptible and *S* is large.
- The epidemic grows exponentially.

What happens as the outbreak progresses?

•
$$\frac{dI}{dt} = \beta SI - \gamma I$$

- As people are infected then recover, the pool of susceptible people shrinks.
- Growth slows as susceptibles are consumed.
- The epidemic declines when the infected population becomes smaller and smaller.

When does the epidemic stop?

- When a infected person can not infect more than one other, the epidemic will shrink.
- The epidemic stops before all Susceptibles are infected.
- The epidemic can not resume unless immunity wanes or more susceptibles are added (e.g., birth or immigration).

Both mass vaccination and large epidemics deplete susceptible individuals

• Vaccination reduces the susceptible population.

R₀ for different pathogens

- If we know R_0 for a pathogen, we can set β in an SIR model using: $\beta={\rm R_0}\gamma/{\it N}$
- If part of the population is not susceptible, then we might use the term "R" instead of R₀.
- The epidemic peak time is determined by both transmissibility (β) and the serial interval (1/ γ).

"Indirect protection" or "Herd immunity"

- There is both **direct** and **indirect** protection from vaccination.
- Vaccinated people are less likely to become infected and less likely to infect others. Therefore, vaccines can protect vaccinated and unvaccinated people.
- If some people are vaccinated, epidemics may be smaller.
- If enough people are vaccinated, epidemics should not spread and there is "herd immunity".

Evidence of indirect protection from mass cholera vaccination

- If a vaccine is 65% effective, then one should avert at least 65% of cases.
- The observed reduction in a large-scale trial was greater.
- Indirect protection can be important for cost-effectiveness studies.

Mathematical modeling was used to understand the relationship between coverage and incidence.

Other benefits from mass cholera vaccination

- Mass vaccination can reduce and delay the epidemic peak.
- The size of the peak may be important for hospital capacity planning.
- Delaying the peak might give officials time to implement other interventions.

Yang, Sugimoto, Halloran, Basta, Chao, Matrajt, Potter, Kenah, and Longini. The transmissibility and control of pandemic influenza A (H1N1) virus. *Science* 326:729-733. 2009.

Mathematical modeling can be used to predict how mass vaccination (or other interventions) could slow down an epidemic.

Some practical applications of SIR models

Abrams, Copeland, Tauxe, Date, Belay, Mody, Mintz. Real-time modelling used for outbreak management during a cholera epidemic, Haiti, 2010–2011. Epidemiol Infect 141(6):1276–85. 2013.

Chao, Matrajt, Basta, Sugimoto, Dean, Bagwell, Oiulfstad, Halloran, and Longini Jr. Planning for the control of pandemic influenza H1N1 in Los Angeles County and the United States. Am J Epidemiol. 173(10):1121–30. 2011.

- Epidemic peak timing and height (e.g., for emerging diseases)
- Final attack rate
- Predicting effectiveness of mass vaccination
 - Understanding "indirect protection", "herd immunity", or "population" immunity
 - Computing the vaccination coverage needed to prevent outbreaks

Related models

♦ Decay

Waterborne

SIRS model when immunity is not lifelong

• When Recovered people can become Susceptible again, the epidemic can persist.

Ross-Macdonald model for vectorborne disease

- An early (and still used) malaria model.
- Two populations: People and Mosquitoes.
- Infected Mosquitoes bite Susceptible humans.
- Infected humans are bitten by Susceptible Mosquitoes.
- Because both infection rates depend on the biting rate, transmissibility is a function of the biting rate squared.

Ronald Ross 1857–1932

Waterborne disease model

- People are infected by contaminated Water.
- Infected people contaminate Water.
- The pathogen in the Water declines over time.
- If the decay rate of pathogen in the Water is slow (i.e., the water remains contaminated for a long time), the epidemic can be prolonged.

More complex models (malaria)

Dietz, Molineaux, Thomas. A malaria model tested in the African savannah. Bull World Health Organ 50(3-4):347-57. 1974.

- System of 7 difference equations.
- States: Negatives (no parasites), have liver parasites, have blood parasites

More complex models (typhoid)

Cvjetanović, Grab, Uemura. Epidemiological model of typhoid fever and its use in the planning and evaluation of antityphoid immunization and sanitation programmes. *Bull World Health Organ* 45(1):53-75. 1971.

- System of 10 difference equations.
- States: Susceptible, exposed (asymptomatic or symptomatic), infectious (latent, sick, or carrier), resistant, dead
- Each compartment needs an equation.
- Each relationship between compartments needs a parameter.

Summary and conclusions

- Mathematical modeling is a quantitative tool based on our understanding of disease transmission.
- Simple mathematical models can be useful and general, and more complex models can be developed when needed.
- Mathematical modeling can be used to predict the speed and size of an outbreak.
- Modeling can be used to test hypotheses about disease transmission.
- For vaccines, models have been used to:
 - Predict the effectiveness of mass vaccination.
 - Predict the effectiveness of vaccinating different subpopulations (e.g., children).
 - Quantify the benefits of "indirect protection", "herd immunity", or "population" immunity.
 - Establishing thresholds for vaccine coverage to eliminate a disease.

Thank you!

Boukan Kare, Haiti. Photo by D. Chao

The 15th Annual IVI International Advanced Course on Vaccinology May 11–15, 2015