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Abstract:
Background: Defects in DNA damage recognition and repair have been associated with a wide 
variety of cancers. We conducted a prospective study to determine whether mutagen sensitivity, as 
determined by an in vitro assay, was associated with the future development of cancer in patients with 
Barrett’s esophagus, which is associated with increased risk of progression to esophageal 
adenocarcinoma.
Methods: We measured sensitivity to bleomycin in peripheral blood lymphocytes in a cohort of 220 
patients with BE. We followed these patients for 1,230 person–years (range, 3 months to 10.1 years; 
median, 6.4 years), using development of cancer and aneuploidy as endpoints. A subset of these 
patients was evaluated for inactivation of tumor suppressor genes CDKN2A/p16 and TP53 (by 
mutation and loss of heterozygosity (LOH)) in their Barrett’s segments at the time of or before the 
bleomycin test, and the patients were stratified by CDKN2A/p16 and TP53 status in an analysis of 
mutagen sensitivity and progression.
Results: Bleomycin-sensitive patients were found to be at significantly greater risk of developing 
aneuploidy (adjusted HR=3.71; 95% CI=1.44–9.53) and non-significantly greater risk of cancer 
(adjusted HR=1.63; 95% CI=0.71–3.75). Among patients with detectable LOH at the TP53 locus (on 
chromosome 17p), increasing bleomycin sensitivity was associated with increased risk of developing 
cancer (trend p<0.001) and aneuploidy (trend p=0.005).
Conclusions: This study supports the hypothesis that sensitivity to mutagens increases the risk of 
neoplastic progression in persons with Barrett’s esophagus, particularly those with 17p LOH 
including TP53.
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Introduction 

The incidence of esophageal adenocarcinoma (EA) has risen rapidly over the past 30 years in the US 

and Western Europe [1–3]. Most cases appear to arise in Barrett’s esophagus (BE), a metaplastic 

epithelium that develops in response to chronic gastroesophageal reflux disease (GERD) [4–7]. While 

persons with BE are at an elevated risk for progressing to EA, estimated at 0.5–1.0% per year [8–10], 

the vast majority of persons with BE will not develop EA within their lifetimes. Thus, discrimination 

between persons at high risk of progression, who would benefit from more intensive prevention and 

surveillance programs, and those at relatively low risk, for whom lower-cost alternatives might be 

appropriate, is of critical importance. A variety of environmental and host factors are thought to play 

a role in the etiology of EA, including acid reflux [4, 5, 11–13], gender, race, obesity [14–18], 

Helicobacter pylori colonization, and cigarette smoking [14, 19, 20]. The mechanisms of action of 

these factors are likely to directly or indirectly involve DNA damage. Increased levels of DNA 

damage have been detected in Barrett’s mucosa [21] and may be associated with progression [22]. 

Impaired ability to repair such damage may therefore play a role in progression to EA, as has been 

suggested in a study of polymorphisms in DNA repair genes in persons with BE [23]. 

The bleomycin mutagen sensitivity assay is an indirect measure of an individual’s constitutive 

ability to repair DNA damage [24, 25] (reviewed in [26] and [27]). The assay measures the number of 

unrepaired bleomycin-induced double-strand chromatid breaks in peripheral blood lymphocytes in 

vitro and is believed to reflect the equilibrium between mutation rate and DNA repair [26]. 

Lymphocytes from individuals with cancer, and in one study, oral pre-malignant lesions, have been 

found to exhibit higher bleomycin sensitivity than healthy controls [28–33]. Bleomycin sensitivity 

may capture both individual susceptibility [27, 34–36] and environmental exposures, such as those to 

tobacco smoke [37] or oral selenium [36], although most studies have found that sensitivity is not 

affected by such exposures [38–40]. Prospective studies of mutagen sensitivity and cancer risk are 

more difficult to conduct because the assay requires viable cells. Previous prospective bleomycin 

sensitivity studies have analyzed cohorts of patients with cancer and used the recurrence of cancer 

[41–43] or mortality [44] as endpoints. 

Progression in BE is associated with the inactivation of tumor suppressor genes, in particular 

CDKN2A/p16 (by mutation and chromosome 9p loss of heterozygosity (LOH)) and TP53 (by 

mutation and 17p LOH) [45, 46]. Inactivation of these genes could allow cells with DNA damage to 

progress through the cell cycle, possibly increasing cancer risk for bleomycin-sensitive individuals. 
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The p16 tumor suppressor gene is lost frequently and early during neoplastic progression in BE. p16 

loss is associated with loss of the wild-type late G1 arrest [47] and entry into cell cycle. TP53 is a 

multi-function protein that mediates cell cycle arrest and apoptosis in response to a variety of 

conditions, including double-strand DNA breaks, hypoxia, and depleted nucleotide pools [48]. 

Likewise, TP53 mutation and 17p LOH occur frequently in EA and have been shown to predict 

progression [49–51]. Inactivation of the tumor suppressor pathways contribute to the extensive 

genetic instability that characterizes the development of EA [46, 52, 53]. This instability can become 

manifest as DNA content abnormalities, such as aneuploidy or tetraploidy, detectable by flow 

cytometry. Flow cytometric abnormalities have been shown to be predictors of EA risk in BE [53–

55]. 

We therefore conducted a prospective study of persons with Barrett’s esophagus to determine 

whether mutagen sensitivity is associated with the subsequent development of cancer and the 

intermediate endpoint of aneuploidy. To determine the effects of bleomycin sensitivity in patients 

with inactivated tumor suppressor genes, we compared the rates of progression in the subsets of 

patients with and without detectable alterations in p16 or TP53 coincident with or prior to the 

bleomycin sensitivity test. Our results indicate that bleomycin-sensitive Barrett’s esophagus patients 

are at significantly increased risk for developing aneuploidy and may be at increased risk of 

developing EA. 

Materials and Methods 

Study Subjects 

Patients were enrolled in the Seattle Barrett’s Esophagus Study, originally approved by the Human 

Subjects Division of the University of Washington in 1983 and renewed annually thereafter with 

reciprocity from the Fred Hutchinson Cancer Research Center (FHCRC) Institutional Review Board 

from 1993 to 2001. Since 2001, the study has been approved by the FHCRC IRB with reciprocity 

from the University of Washington Human Subjects Division. Endoscopic biopsies of Barrett’s 

epithelium, acquired at 2-cm intervals in the esophagus according to a standard protocol [53, 55], 

were evaluated from 220 patients who had BE without cancer at the time of the endoscopy associated 

with the blood draw for the bleomycin assay (the “baseline” endoscopy). Biopsies were evaluated by 

flow cytometry and sorted on the basis of proliferation/DNA content as described previously [56– 
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58]. All patients in this cohort received follow-up endoscopies (Table 1). Biopsies obtained at or 

before baseline from a subset of these patients were evaluated for 9p21 and 17p LOH using 

polymorphic microsatellite markers, as described previously [58, 59]. One hundred eighty-three 

patients were evaluated for 9p LOH, 181 patients for 17p LOH, 178 for p16 mutation, and 180 for 

TP53 mutation. 

Bleomycin Sensitivity Assay 

A 10-ml blood sample was obtained for all patients at the time of the baseline endoscopy. Blood was 

drawn into sodium heparinized tubes, packed on dry ice, and shipped overnight to the laboratory of 

Dr. Xifeng Wu in Houston, Texas. 1 ml of whole blood was cultured in 9 ml of RPMI-I640 tissue 

culture medium (JRM Biosciences, Lenexa, KS) supplemented with 10% fetal calf serum and 0.2 ml 

of phytohemagglutinin (Wellcome Research Laboratories, Research Triangle Park, NC). At 67 hours, 

bleomycin (Nippon Kayaku Co., Ltd., Tokyo, Japan) was added to each culture to a final 

concentration of 0.03 units/mL for 5 hours. During the last hour, cells were treated with 0.04 µg/ml 

colcemid to induce mitotic arrest. Cells were treated with hypotonic 0.07 M KCl solution for 12 

minutes, fixed, washed with freshly prepared Carnoy’s fixative (methanol and acetic acid 3:1) and 

air-dried on wet slides. Prepared slides were coded and stained with Giemsa solution. From stained 

preparations of each sample, 50 metaphases were examined under oil immersion and breaks counted 

and expressed as the average number of breaks per cell. Gaps or attenuated regions were disregarded. 

Patients with an average of over 0.6 double-strand breaks per cell (the median number in our study) 

were deemed to be bleomycin sensitive. We also used 0.8 breaks/cell as a threshold for bleomycin 

sensitivity, as previously defined in [25]. 

Interview and Anthropometric Data 

At the time of or before the baseline endoscopy, all 220 subjects underwent structured interviews 

carried out in person by trained staff as described in [60, 61] to determine the use of tobacco, alcohol, 

and medications. Anthropometric measurements were taken at the time of this interview and follow-

up visits using a standardized protocol. 

Statistical Analysis 

Kaplan-Meier curves were used to plot the cumulative incidence of aneuploidy and cancer. A 
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proportional-hazards model was used to calculate the hazard ratios (HR), 95% confidence 

intervals (CI), and p values. The HRs were adjusted as necessary using patient age (as a 

continuous variable), gender, NSAID use (current/former/never), tobacco (ever/never), and 

waist-to-hip ratio (above/below gender-specific median) using the subset of 219 patients (out 

of 220) for whom we had information on all of these factors. Statistical analyses were carried 

out using the R statistical computing language version 2.3.0 [62]. 

Results 

Patients were followed from 3 months to 10.1 years; patient follow-up is summarized in Table 1. Table 2 

summarizes the characteristics and bleomycin sensitivity assay results for the 220 BE patients in the 

cohort. The mean numbers of bleomycin-induced breaks were slightly but not significantly higher among 

males, persons over 70, those with lower waist-to-hip ratios, and current NSAID users. The Kaplan-Meier 

curves describing cumulative incidence of cancer and aneuploidy stratified by bleomycin sensitivity are 

shown in Figure 1. 

Bleomycin-sensitive (having more than the median of 0.6 breaks per cell) patients had a statistically 

significantly greater risk of developing aneuploidy (adjusted HR=3.71, 95% CI=1.44–9.53, p=0.006) and 

a non-significant 1.63-fold increased risk (95% CI=0.71–3.75) of developing cancer (Table 3). The results 

were similar when the threshold for bleomycin sensitivity was raised from >0.6 to >0.8 or >1.0 (cutoffs 

commonly used in the literature [25], data not shown for the 1.0 cutoff) breaks per cell and when the inter-

quartile (quartiles defined as <0.44 breaks/cell, 0.44 ≤ breaks < 0.6, 0.6 ≤ breaks < 0.87, and ≥0.87 

breaks) hazard ratios of increasing bleomycin sensitivity were compared (Table 3). Bleomycin sensitivity 

was not significantly associated with the future development of cancer when the number of bleomycin-

induced breaks was modeled as a continuous variable (adjusted p=0.23) or as an ordinal variable 

representing the bleomycin break quartiles (adjusted p=0.24, see Table 3 for inter-quartile HRs). 

We stratified the cohort based on the presence or absence of chromosome 9p (p16) LOH, 17p (TP53) 

LOH, p16 mutation, and TP53 mutation in the Barrett’s segment either at or immediately before the 

endoscopy that coincided with the bleomycin sensitivity assay (Table 4). Among patients with detectable 

9p or 17p LOH, bleomycin sensitivity (>0.6 breaks per cell) was associated with a greater risk of 

developing aneuploidy. Among patients with 17p LOH, bleomycin sensitivity approached significance for 

cancer outcome (p=0.053), and we found a significant trend modeling the number of bleomycin-induced 
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breaks as a continuous variable. The HR from such a model comparing the third vs. first quartiles 

(corresponding to 0.44 breaks) was 3.25 (95% CI=1.62–6.53, trend p<0.001) for patients with 17p LOH 

and 1.20 (95% CI=0.51–2.83, trend p=0.68) for patients without 17p LOH. The HR using aneuploidy as 

an endpoint is 35.5 (95% CI=2.92–430, trend p=0.005) for patients with 17p LOH and 1.63 (95% 

CI=0.85–3.11, trend p=0.14) for patients without 17p LOH. Bleomycin sensitivity was not a significant 

predictor of cancer in patients with (or without) 9p LOH, TP53 mutation, or p16 mutation. 

Discussion 

Defects in DNA damage recognition and repair have been associated with a wide variety of cancers [63]. 

BE is characterized by chronic inflammation, cellular damage/repair, and increased proliferation [56, 64–

66]. Chronic inflammation is associated with oxidative damage and increased levels of double-strand 

DNA breaks. Thus, diminished DNA repair in BE could lead to accelerated progression to EA. Here, we 

report that BE patients whose peripheral blood lymphocytes were sensitive to bleomycin-induced double-

strand DNA breaks were at significantly increased risk for subsequent development of aneuploidy, a 

validated intermediate marker of progression to EA [53–55], and, to a lesser extent, EA itself. 

Progression in persons with BE is associated with increasing chromosomal instability [46]. LOH at the 

TP53 locus (17p LOH) generally precedes aneuploidy in persons with BE [57, 67], and patients with 17p 

LOH are at increased risk for progression to EA [49]. Although the bleomycin-sensitive patients in 

aggregate were not significantly more likely to progress to EA in our study, the risk among those with 17p 

LOH at or before baseline was significantly higher. We hypothesize that bleomycin-sensitive individuals 

have higher spontaneous chromosomal mutation rates and/or diminished DNA repair capacity, and in that 

background, the loss of p53 function in the Barrett’s epithelium allows cells to continue to cycle even 

though chromosomal damage may not be fully repaired. G1 arrest in cells with double-strand breaks is 

believed to be p53-dependent [68, 69], and there is strong evidence that alterations in a number of damage 

repair genes are associated with the development of cancer [70]. 

To our knowledge, ours is the first prospective study of bleomycin sensitivity (and perhaps mutagen 

sensitivity in general) and cancer risk before the onset of cancer. Because current technology does not 

allow us to measure the in vivo DNA repair capacity of individuals directly, we used the bleomycin assay 

as an indirect measure of the balance between DNA double-strand break formation and repair. A 

prospective study of mutagen sensitivity in cancer-free patients ensures that mutagen sensitivity is not 
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influenced by the presence of cancer or its treatment. Detecting the association between bleomycin 

sensitivity and cancer risk in patients with 17p LOH was possible because of the frequent and long-term 

follow-up of the patients, the molecular characterization of our cohort using known biomarkers, and the 

relatively large number of cancer outcomes due to the cohort’s increased risk for developing EA. Our use 

of aneuploidy, a known risk factor for developing EA, as an intermediate endpoint strengthened the study. 

However, some of our analyses were hindered by the limited number of cancer outcomes, especially when 

stratifying the cohort on molecular criteria. There may have been insufficient cancer outcomes to 

conclusively determine whether bleomycin sensitivity predicts EA in our cohort in aggregate, although the 

quartile trend in Table 3 is consistent with bleomycin sensitivity being associated with the future 

development of EA. 

This study supports the hypothesis that sensitivity to mutagens can increase the risk of developing 

cancer, particularly among those with inactivated tumor suppressor genes. We also find an association 

between an in vitro mutagen sensitivity assay and the development of aneuploidy in Barrett’s esophagus 

epithelium in vivo. Further studies would be required to determine whether or not mutagen sensitivity 

assays could help risk-stratify patients with BE. 
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n number of events number of person-years medianfollow-up in years (range)
Cancer 220 27 1230 6.4 (0.2–10.1)
Aneuploidy 180 23 982 6.3 (0.2–10.1)

Table 1. Distribution of follow-up by outcome. 
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# persons % bleomycin-induced DNA breaks (mean ± sd) 
Total 220 100.0% 0.69 ± 0.36 
Gender 

Male 183 83.2% 0.70 ± 0.36 
Female 37 16.8% 0.65 ± 0.38 

Age (years) 
26–54 66 30.0% 0.67 ± 0.37 
55–69 97 44.1% 0.68 ± 0.36 
≥70 57 25.9% 0.74 ± 0.37 

Tobacco usea 

Current 24 10.9% 0.63 ± 0.33 
former 123 55.9% 0.70 ± 0.39 
never 73 33.2% 0.70 ± 0.34 

Waist-to-hip ratioa,b 

≤0.900 53 24.1% 0.74 ± 0.39 
0.901–0.951 55 25.0% 0.74 ± 0.40 
0.952–0.998 56 25.5% 0.61 ± 0.28 
≥0.998 55 25.0% 0.68 ± 0.38 

NSAID usea 

Current 78 35.5% 0.72 ± 0.39 
former 49 22.3% 0.66 ± 0.31 
never 93 42.3% 0.68 ± 0.37 

aInterview and anthropometric data taken before baseline for some patients. 
bThe waist-to-hip ratio of one patient was not available. 

Table 2. Average number of bleomycin-induced breaks per patient at the time of the baseline endoscopy by 
selected characteristics (220 patients). 
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Cancer Aneuploidy
# breaks events n crude HR (95% 

CI)
P adjusted HRa p events n crude HR p adjusted HRa p

≤ 0.6 10 110 1.0b 1.0b 7 93 1.0b 1.0b

>0.6 17 10
9

1.60 (0.74–3.51) 0
.24

1.63 (0.71–3.75) 0
.25

16 87 2.44 (1.00–5.93) <0.05 3.71 (1.44–9.53) 0.00
6

≤0.8 16 15
5

1.0b 1.0b 12 12
9

1.0b 1.0b

>0.8 11 64 1.86 (0.85–4.06) 0.12 1.74 (0.74–4.09) 0.20 11 51 2.41 (1.06–5.47) 0.04 4.02 (1.64–9.85) 0.002
<0.44 5 50 1.0b 1.0b 2 43 1.0b 1.0b
≥ 0.44,< 0.6 5 55 1.17 (0.33–4.09) 0.81 1.20 (0.34–4.23) 0.77 4 46 1.98 (0.36–10.8) 0.43 1.90 (0.34–10.54) 0.46
≥ 0.6,< 
0.87

8 59 1.31 (0.43–4.01) 0.64 1.44 (0.45–4.61) 0.54 7 47 3.19 (0.66–15.4) 0.15 4.11 (0.81–20.71) 0.09

≥ 0.87 9 55 2.03 (0.67–6.18) 0.21 1.98 (0.61–6.41) 0.25 10 44 5.33 (1.17–24.3) 0.03 10.72 (2.19–52.52) 0.003

aHRs and 95% CIs adjusted for age, gender, waist-to-hip ratio, cigarette use, and NSAID use
breference group

Table 3. Crude and adjusted HR for cancer (left columns) and aneuploidy (right columns) by bleomycin sensitivity. HR are adjusted for age, gender (M/F), waist-
to-hip ratio (low/high), tobacco use (never/ever), and NSAID use (current/former/never). Waist-to-hip median was calculated with respect to gender. The first row 
of each set of comparisons summarizes the reference groups (patients with ≤0.6, ≤0.8, and in the first quartile of bleomycin breaks (<0.44 breaks per cell)), and 
the subsequent rows summarize the outcomes and hazard ratios with respect to the reference groups. 
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Cancer Aneuploidy
events n crude HR (95% CI) p events n crude HR (95% CI) p 

17p het 
≤ 0.6 3 68 1.0a 3 61 1.0a 
> 0.6 5 80 1.33 (0.32–5.57) 0.70 9 67 2.61 (0.71–9.65) 0.15 

17p LOH 

≤ 0.6 6 19 1.0a 2 10 1.0a 
> 0.6 11 14 2.69 (0.99–7.31) 0.053 5 5 8.79 (1.68–46.1) 0.01 

9p het 

≤ 0.6 3 30 1.0a 1 25 1.0a 
> 0.6 2 37 0.39 (0.07–2.37) 0.31 4 33 2.92 (0.33–26.1) 0.34 

9p LOH 

≤ 0.6 6 58 1.0a 4 47 1.0a 
> 0.6 14 58 2.30 (0.88–5.99) 0.09 11 39 3.64 (1.15–11.5) 0.03 

TP53 wt 
≤ 0.6 4 71 1.0a 5 65 1.0a 

> 0.6 10 84 2.00 (0.63–6.38) 0.24 12 69 2.16 (0.76–6.14) 0.15 
TP53 mut 

≤ 0.6 5 15 1.0a 0 6 1.0a 

> 0.6 6 10 2.18 (0.66–7.18) 0.20 2 3 — — 
p16 wt 

≤ 0.6 7 73 1.0a 6 62 1.0a 
> 0.6 12 76 1.50 (0.59–3.80) 0.40 13 60 2.21 (0.84–5.83) 0.11 

p16 mut 

≤ 0.6 3 13 1.0a 0 10 1.0a 
> 0.6 3 16 1.28 (0.21–7.65) 0.79 2 12 — — 

areference group 

Table 4. Crude HR for bleomycin sensitivity using cancer and aneuploidy endpoints stratified by tumor 
suppressor mutation and LOH status. Bleomycin sensitivity is defined as having >0.6 breaks per cell.
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