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Abstract. The concept of an information immune system (1IS) is introduced, in which undesirable
information is eliminated before it can reach the user. The IIS is inspired by the natural immune systems
that protect us from pathogens. IISs from multiple individuals can be combined to form a group IIS which
filters out information undesirable to any of the members. The relationship between our proposed IIS
architecture and the natural immune system is outlined, and potential applications, including information
filtering, interactive design, and collaborative design, are discussed.
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1. Introduction

Information overload is inevitable in a world that produces over an exabyte (one
billion gigabytes) of information per year [38]. We will produce and consume
increasingly large amounts of information, so we must find innovative ways to
manage it. Although the finding and managing of information are both active
research areas, much of the effort is directed towards active strategies such as
information retrieval. These techniques might help individuals locate desirable
information, but they also accelerate the information glut.

In this paper, we outline the features of an information immune system (11S)," first
described in [10], that could help people deal with the glut of data. The principle
contribution of the paper is the expanded and more complete description of this
conceptual framework, parts of which are illustrated by two working examples. We
draw inspiration from natural immune systems which protect us from a seemingly
limitless number of possible invaders such as bacteria, viruses, and parasites. We
believe that an IIS can be constructed which eliminates undesired information using
methods analogous to those found in nature. Such an IIS would be situated between
an individual and a stream of information, as a mediator. Instead of actively
bringing more pieces of information to our attention, it would quietly censor
unwanted data.

An IIS should be capable of learning what kinds of information a user wants and
discarding the rest. The task of distinguishing what is desirable is a difficult one,
however. We propose adapting a strategy used by our natural immune systems,
which can “remember” a pathogen that infects us so it can eliminate it more quickly
in future encounters. An IIS could do this by storing examples of rejected
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information and then censoring similar data. If the memory of the system is too
specific, however, this approach is likely to be ineffective. Pathogens and
information can mutate over time, and our immune systems must be able to
anticipate these changes. Therefore, both the natural and the information immune
systems must also learn to eliminate related pathogens while taking care not to harm
anything else.

A natural extension of the personal IIS is a group IIS in which the IISs of multiple
individuals are applied simultaneously to filter a stream of information. The only
information to survive this group filtering will be acceptable to every member of the
group—a consensus solution. The problem of satisfying groups of people has received
little attention in the human—computer interaction community to date, and we
believe that the group IIS approach might prove useful. Consensus solutions can be
used in shared environments in which media content must satisfy a group of people,
such as broadcast music or artistic displays in public spaces.

In addition to filtering out undesirable data, an IIS could be used to generate
many instances of desirable patterns. In this application, the IIS would first be
trained to learn a class of undesirable patterns. Next, a system would generate
random instances, using the trained IIS to filter out those which are similar to
previously rejected examples. Under this scenario, a user would be exposed to a
broad range of potentially useful data. For example, a single designer could specify a
set of unacceptable designs, and the IIS would then explore the space of “unrejected”
solutions. This technique could easily be extended to a group IIS to help a group of
users find a set of mutually acceptable solutions.

In the remainder of the paper, we first discuss earlier work that is related to the IIS
architecture. Next, in Section 3, we outline how the IIS architecture is related to the
natural immune system. Section 4 describes several potential applications for
the architecture, including information filtering, interactive design, and collaborative
design; and Section 5 describes two exploratory projects that illustrate a subset of the
overall architecture.

2. Related work

Several areas of research have influenced our conception of an IIS. An IIS must be
able to learn from past encounters, and the issues of learning and memory have long
been addressed by the fields of machine learning and artificial intelligence. The
primary task that we propose for an IIS, information filtering, has been explored
by the field of human-computer interaction. The field of collaborative filtering
is relevant when IISs are used for data that are difficult to categorize algorithmi-
cally. The collaborative filtering systems that make recommendations to groups
instead of individuals perform a function similar to a group IIS. In the arts, evolutio-
nary approaches have been used to generate images and music, and some systems
allow groups of users to generate artworks. The IIS approach has several advantages
over the evolutionary approaches, which we discuss below and illustrate with
examples in Section 5. Finally, our IIS design has been informed by earlier work in
artificial immune systems. These many influences are briefly reviewed below.
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Case-based reasoning is a technique that adapts solutions to past problems to
solve similar current problems [57]. Memory-based reasoning [66] and instance-
based learning [1] are related schemes that use the solution of the most similar previous
problem. Systems using these approaches learn by “remembering” specific past
events rather than creating rules or generalizations. Immune memory uses a form of
instance-based learning; the particular response that was effective in clearing a
pathogen will likely be used in future encounters with related pathogens [8, 40, 56].

Associative memories, often called content-addressable memories, are neurally
inspired architectures in which storage and retrieval are performed using
approximate addresses. Smith outlines the parallels between Kanerva’s sparse
distributed memory [34] and the memory of the natural immune system [63]. The
memory of the natural immune system is not exact, and exposure to a novel
pathogen can elicit the response primed by a related pathogen.

The term “information filtering” refers to a large range of techniques used to
remove data from an incoming stream on the basis of user- or group-specified
preferences [5]. Early approaches used simple rules [41] or signatures (e.g., keywords)
to identify undesirable data to block. These approaches are still popular, and many
commercial products, such as Cyberpatrol [41] for web content, Snort [55] for
network traffic, and the Realtime Blackhole List [53] and Brightmail [9] for e-mail,
come with long lists of rules and signatures, which can be effective at blocking
undesirable data but are vulnerable to malicious sources that can craft information
to bypass them. To thwart these adaptive adversaries and to personalize filtering,
many systems allow users to specify additional rules for accepting and rejecting data.
Unfortunately, the specification of such rules is often difficult and error-prone, and
therefore not used routinely. An IIS could incorporate reliable signatures of
undesirable data as a first line of defense to be supplemented with more adaptive
techniques to provide better and more personalized coverage.

Several research systems simplify the filter specification problem by placing the
burden of generating rules on software rather than on a user or programmer.
Infoscope [21] monitors a user’s behavior to create rules for Usenet newsgroup
filtering. The system suggests these rules to the user, who can accept, modify, or
reject them. Maxims [45], an interface agent for e-mail, also generates filtering rules
based on user behavior, but it suggests actions for the user to take when it is
confident in its predictions. Rule-based learning schemes such as these often require
many examples before they can infer new rules. In contrast, an IIS using an instance-
based learning approach could potentially learn to block a class of data upon seeing
only a single exemplar.

Collaborative filtering uses the preferences of others to help an individual
make choices [24, 42, 54]. A typical example is a system that recommends items to
purchase based on individuals with a similar purchase history. By harnessing the
collective preferences of many individuals, such systems can infer similarity between
items without needing to understand the relationship between them. This approach
is useful when it is difficult for a program to quantify similarities between items,
such as for art or music. An IIS could incorporate collaborative filtering
techniques to determine the similarity between items for its associative memory
capabilities.
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There are a few systems that recommend items to groups instead of individuals.
MusicFX [43] selects music stations that are broadcast to a gym full of people. The
members of the gym must rate all the stations beforehand, and MusicFX plays one
of the stations with the highest average rating. The system thus attempts to maximize
the happiness of the group. One of MusicFX’s shortcomings is that it apparently
cannot scale to a large number of choices. If the users are not able to evaluate all of
the stations, the quality of the system’s choices is likely to be degraded. GroupCast
[44], developed by the same research group, used a conceptually similar scheme to
select content for a public display system. Unfortunately, they found that user
profiles would have been too large for any user with a reasonable amount of patience
to complete. In addition, without extensive profiles it was difficult to find
appropriate intersections of user preferences to put on the GroupCast displays.
Instead, they displayed content that was interesting to one of the users, hoping that
by chance others would have similar interests. Flytrap [13] addresses the profile-
building problem by unobtrusively monitoring each user’s personal MP3 player to
determine the user’s musical preferences. It determines what sorts of music to
broadcast to groups of these users based on their profiles.

PolyLens [48] recommends movies to small groups of people who watch movies
together. This system applies a standard collaborative filtering algorithm to find
recommendations for each of the group members, and then it combines the results to
make a group recommendation. Unlike MusicFX, PolyLens attempts to satisfy all
users without attempting to maximize group satisfaction. PolyLens bases its recom-
mendations on the expected happiness of the least satisfied group member. Therefore,
a movie that is barely acceptable to each of the group members is recommended over
one that one person would hate but everyone else would enjoy greatly.

These group recommendation systems provide insight into the nature of finding
solutions for groups. Notably, it is difficult to make recommendations that satisfy all
members of a large group. Possible approaches to this problem include pleasing the
majority at the expense of a dissenting minority (e.g., MusicFX) or having the
majority make concessions to the minority opinion so that the solution
accommodates everyone (e.g., PolyLens and the group IIS). In Section 5.2 we
discuss a third possibility, partitioning the group into smaller subgroups composed
of individuals with similar interests. Obviously, the choice of strategy depends on the
particular application domain.

Evolutionary art (evoart) typically relies on humans to provide aesthetic feedback
to guide the “evolution” of a work of computer-generated art [6]. In this approach,
the user iteratively refines an image by selecting a subset of favorite images out of a
small set, which are variants or combinations of the user’s favorites from the
previous time step. After many iterations, the quality of the image can improve. This
process of evolving art is sometimes called aesthetic selection. Dawkins was the first
to implement evolutionary art on a computer [17]. His system explores the space of
images called “Biomorphs” in the iterative manner described above.

Nelson used aesthetic selection to evolve musical phrases called “sonomorphs”
[47]. He used an algorithm similar to Dawkins’, but the user interface for selection
had to be modified to accommodate sound. A population of images can be presented
to the user simultaneously, but playing many musical fragments at once is confusing.
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The musical phrases must be played sequentially, and Nelson found that listening to
a population of sonomorphs sequentially “taxes the memory.” To take advantage of
a person’s ability to evaluate many things at once visually, Nelson’s system shows
graphical representations of all members of the current population and only plays
the musical representations on demand. Using an IIS might be a more suitable
approach to exploring sonomorph space because it does not require the user to make
comparisons among members of a population so the graphical representation would
not be necessary.

A limitation of the interactive evolution approach pioneered by Dawkins is that
the final result of many “generations” is a single work of art. Many of his artistic
successors have relied on combining examples of good art to generate novel new
candidates [60, 64, 68]. This gives the user a way to find new and potentially
interesting regions of parameter space. Unfortunately, it is not obvious how to
combine works in a sensible way. Many have tried to create hybrids of several
desirable works using genetic algorithms or genetic programming [60]. The pro-
grammer is then faced with the difficult task of defining operators to mix the
“genotypes” of works in a manner such that the offspring’s “phenotype” exhibits the
desirable traits of its parents. Sometimes, simple averaging of traits works reasonably
well, such as for human faces [3, 23]. In other cases, however, the results are
unpredictable and displeasing [39], suggesting that more complex combination rules
are required. A trained IIS could generate a very large range of aesthetically pleasing
art without the use of a difficult-to-define art combination operator.

Collaborative evoart combines the aesthetic judgment of multiple users to
generate art. In the simplest version, users vote to determine which work from a
randomly generated set will be explored further [46, 61]. Voting is inefficient because
many users’ votes should be tallied before each round of evolution. A more
fundamental problem is that there is no intuitively “fair” voting scheme that best
satisfies the preferences of all the participants, a phenomenon known as Arrow’s
paradox [2].

An alternative approach is to find solutions that combine the judgments of all the
users. One could hybridize the various favorite works of the users, but, as mentioned
earlier, it is difficult to combine works of art. Another way to combine the
preferences of many individuals is to average them. The artists Komar and Melamid
averaged preferences to humorous effect by hiring a polling firm to determine the
characteristics that would define America’s “most wanted” painting [36]. The survey
determined the attributes, such as size, color, and content matter, that the majority
of people would enjoy in a painting. The artists created a painting based on the
results: a tranquil lake scene with a few deer, a hippopotamus, a small group of
people at leisure, and George Washington standing stiffly and incongruously in the
center.

The Komar and Melamid study highlights a fundamental problem of combining
the preferences of a group: it might not even be desirable. As art critic Arthur Danto
asserts:

What is striking about America’s Most Wanted is that 1 cannot imagine anyone
really wanting it as a painting, least of all anyone in the population whose taste it
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is supposed to reflect. No one who wants a painting of wild animals or who wants
a painting of George Washington wants a painting of George Washington and of
wild animals. Komar and Melamid have transformed disjunctions into conjunc-
tions, and the conjunction can be displeasing even if the conjuncts are pleasing,
taken one by one. [15]

An IIS does not create such jarring conjunctions because it will never combine
disjunctions. If a fan of Salvador Dali’s surrealist canvases were to meet a fan of
Norman Rockwell’s sentimental and more realistic style, a painting that combined
the two painters’ tendencies would probably be unsatisfying to both. Perhaps a
better solution would be to introduce both to something completely different, like
the paintings of Paul Klee. Unless both individuals specified that they dislike Klee,
this is the sort of solution an IIS would be capable of proposing.

Immune-inspired algorithms have often been used for anomaly detection. They
draw on the metaphor of the adaptive immune system’s ability to distinguish
between self, or normal data, and nonself, or anomalous data. One of the first such
systems was the negative selection algorithm introduced in [22]. The algorithm
generated candidate random detectors (represented as bit strings). In the training
phase, the candidate detectors were compared to sequences of bytes in a given
computer file (self), and any detectors that matched the self sequences (above a
threshold) were eliminated. The surviving detectors were therefore not similar to any
in the file. In the testing phase, if one of the detector strings ever matched the
contents of the file, then this indicated that the contents had been changed since the
training period. The detector strings were used as negative detectors to detect novel
sequences of bytes, such as those introduced when a virus corrupts or infects a file. The
ARTIS framework is an extension of this work that applies negative selection to
detect anomalies in streams of data rather than in static data sets [27, 28]. The
ARTIS framework was demonstrated on the problem of network anomaly intrusion
detection [4, 27, 28] in which any unusual cluster of TCP connections is flagged as
anomalous.

Many useful sources of information contain unexpected but interesting data,
however, so it might be undesirable for an IIS to reject all novel data. Consequently,
the IIS design is inspired by the immune system’s ability to remember past
encounters with pathogens, rather than on its ability to detect novel foreign
molecules. The anomaly detection ability of ARTIS could complement an IIS for
certain applications (see Section 3.3), but for many applications we imagine using
negative detectors without explicitly censoring them against self, as in negative
selection.

Many computer scientists have developed artificial immune systems based on
idiotypic network theory [33]. The idiotypic systems focus on the dynamics of
interactions among similar antibodies and antigens. Although many do not attempt
to reproduce the behaviors seen in the natural immune system, idiotypic systems
have useful properties that have been applied to search [7], data classification [30],
cluster detection [67], and data mining [18]. The classifications produced by idiotypic
artificial immune systems could potentially be used as metadata to enhance the
discrimination of an IIS.
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3. The immune system as an information filter

We believe that an 1IS can fruitfully borrow several pattern recognition mechanisms
from the natural immune system. Our natural immune system consists of two
components that use different pathogen recognition strategies. The innate immune
system uses a few reliable signatures of foreignness to identify invaders, which
Janeway calls pathogen-associated molecular patterns (PAMP) [31]. An example of a
PAMP is the mannose carbohydrate molecule found on many bacteria and other
pathogens but not in mammals [65]. These signatures have been stable over
evolutionary time and are encoded in the genome of our immune systems. This
strategy is used by many of the signature- and rule- based information filtering
products mentioned in Section 2. These products could serve as a first line of defense,
playing the role of the innate immune system in an IIS. However, not all signatures
of pathogens have been (or even can be) anticipated, and evolution will favor
pathogens that do not carry the signatures recognized by our innate immune
systems. One role of the adaptive immune system, discussed below and outlined
in Table 1, is to discover the signatures of pathogens not covered by the innate
immune system. In the following subsections we describe some issues that an IIS
must face and how one can draw inspiration from the natural immune system to
address them.

3.1.  Negative detectors and shape space

An IIS should be able to remember which pieces of information a user rejected in the
past so it can censor them in the future. However, the strategy of rejecting each item
individually is ineffective when one is faced with an effectively limitless variety of
information. Thus, we need our IIS to generalize beyond each specific piece

Table 1. The immunological analogy made explicit. We list several features from our
natural immune systems and their corresponding features in our proposed
information immune systems

Natural IS Information IS

Self Desirable information

Non-self Undesirable information
Infection User exposed to undesirable data

Costimulation

Naive cells

Active lymphocyte
Memory lymphocyte
Cytolytic activity
Shape space
Cross-reactive radius
Thymic selection
Cell senescence

Rejection of information by user
Implicit (not instantiated)

Detector

Detector

Dliminate data

Parameter space

Detector radius

Protecting known desirable information
Limited detector lifetimes
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of information—explicitly rejecting one item should implicitly reject similar items.
The natural immune system has this ability.

The adaptive immune system maintains a repertoire of lymphocytes that detect
pathogens. Each lymphocyte is specific to a particular antigen, or protein signature,
expressed by pathogens. However, pathogens can mutate in ways that subtly
change their antigenic profiles, so lymphocytes need the ability to recognize close
variants (generalization). A helpful way to visualize the relationship between
lymphocytes and mutating antigens is the conceptual framework of shape space
[50], a high-dimensional space that represents the universe of possible antigens. Every
antigen has a location in shape space, and the small mutations that alter its proteins
can shift its location in shape space. A lymphocyte covers a large area in shape space
so that antigens can not easily evade detection by mutating. The area in
shape space that a lymphocyte covers is called its ball of stimulation because it is
postulated that a lymphocyte can recognize an antigen within a certain radius of its
location in shape space.

Returning to the IIS, which relies on negative detection to censor unwanted
information from the user, it is clear that we will need to use a similarity measure
to implement generalization. As with lymphocytes in shape space, each detector
must be able to cover a region of similar patterns, not just a single point. Therefore,
it is necessary for an IIS to determine the similarity between two pieces of
information, and two similar items would be in close proximity in “information
space.”

3.2.  Costimulation

Because everyone has different informational needs, each IIS should be customized
to its user. Most of today’s information filters require the user to write rules to
customize the filtering, but we believe it more practical to ask users simply to identify
exemplars of undesirable information. Once the user rejects a piece of information,
the IIS would automatically reject similar information in the future.

In the adaptive immune system, other cells, such as antigen presenting cells, are
required to costimulate, or activate, lymphocytes in the presence of a novel pathogen.
The costimulation signal provides confirmation that the pathogen should be
eliminated. This process reduces the chance of immune cells accidentally attacking
the body in an autoimmune response. Once costimulated, the effector cell becomes
active and attempts to eliminate the pathogen, whether by releasing antibodies in the
case of B cells or by killing the infected cells directly in the case of cytotoxic T cells.
Some costimulated cells become long-lived memory cells. In future encounters with
the same pathogen, memory cells have reduced costimulation requirements [19],
allowing them to respond to lower levels of antigen.

In an IIS, the user could provide confirmation signals to the system, an idea
introduced in [27] and known in immunology as a second signal. The idle cells
waiting for costimulation are implicit—only detectors corresponding to active or
memory cells would be instantiated by the IIS. When the user rejects a piece of
information, a detector specific to that item would be generated. These detectors
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would filter out similar data in the future. The user’s only responsibility would be to
inform the IIS when undesirable data are being presented (Figure 1).

3.3. The addition of negative selection

When the user has rejected a sufficient amount of information, the space not covered
by detectors will approximate the space of useful information (Figure 2).

Source
of data

Y

Information .
Immune System —>rejected by IIS

rejected by user

Y

User judgment

v

good data

Figure 1. The role of the user in an IIS. The user inspects items from a stream of data, flagging undesirable
exemplars. The IIS uses the negative exemplars to generate detectors which subsequently filter out similar

data items.

Figure 2. Coverage in the model without negative selection, represented in a 2-dimensional shape space.
The shaded regions represent information that is useful. The circles represent the extent of active detector
coverage (the ball of stimulation). The Xs without circles represent detectors that will not receive
costimulation because they are within a region of acceptable solutions.
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Unfortunately, useful information that is too similar to unwanted information runs
the risk of being censored by an IIS negative detector (in Figure 2, see the shaded
regions that fall within a ball of stimulation). Therefore, we suggest incorporating a
technique that the adaptive immune system uses to prevent the immune system from
attacking the body’s own cells.

The adaptive immune system uses thymic selection to eliminate T cells that might
harm the body. Before T cells can enter the repertoire, they are exposed to a large
sample of the body’s own proteins. Those that bind too tightly to one of the body’s
proteins are eliminated in a process known as negative selection. Therefore, the
T cells that survive are not likely to recognize a self protein.

A similar strategy could be employed by an IIS to protect certain types of
information that are known to be useful. These types could be declared “off-limits”
to the IIS and would be allowed to bypass the IIS to reach the user. This would be
especially useful when the characteristics of certain desirable information are known
a priori. For example, the IISs of a company’s employees might not be allowed to
eliminate official company e-mail. When a user costimulates a data item whose
detector would cover some desirable information, the system could ignore the
costimulation signal because there should be no “implicit” detectors in this region.
No information from the “good” regions of information space would ever be
censored by the detectors (Figure 3). Alternatively, the IIS could simply ensure that
negative detectors will never cover these regions. It could, for example, reduce the
generality, or size, of detectors that intersect desirable regions enough to eliminate
the intersection. Unfortunately, negative selection does not necessarily protect useful

Figure 3. Coverage in the model using negative selection. The dotted circles represent the extent of
detectors that are eliminated by negative selection. The solid circles are regions covered by active detectors.
Note that none of the useful information protected by negative selection (the shaded regions) can be
covered by detectors.
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information that is not specified in advance, but we believe that it is impossible to
filter information without the risk of eliminating some useful information [26].

3.4. The role of senescence

Users might choose to filter out some types of information for only a short period of
time. For example, if a radio station plays a song too frequently or if a news story
receives too much coverage, a listener may tire of it. These individuals might actually
enjoy hearing the song or listening to new developments in the news story at a later
date, so the detectors would be counterproductive after their “natural” lifetimes.
Active immune cells are known to have short lifetimes, and memory cells are
believed to be routinely eliminated through competition for limited resources [59].
These features would be desirable in the algorithm for two reasons. The first is to
provide “rolling coverage” of self. If the fitness function (e.g., the user’s tastes) change
over time, one could have the lifetime of the active immune cells be finite to reflect
the dynamic nature of the user’s judgment. The second reason is space efficiency. It is
not feasible to store an unbounded number of detectors. One could “age out” old
detectors to make room for new ones. Alternatively, the user could manually create
memory detectors to cover patterns that he or she never wants to see again.

3.5.  The effect of history

The order in which an IIS is exposed to information will have impact on its
effectiveness. Such phenomena have been observed in the natural immune system,
particularly in the case of influenza. Immunologists have discovered that the
response to a strain of flu can be dominated by cells that were generated in response
to an earlier exposure to a different strain [16, 20]. These memory cells are probably
most effective against the strain that generated them, but they can respond to related
pathogens as well. In shape space, these cross-reacting memory cells cover areas that
include these similar pathogens and can thus eliminate them. This phenomenon is
known as original antigenic sin, and many vaccines take advantage of the effect. For
example, if one is exposed to the relatively harmless cowpox bacteria, one is
protected against the related but deadly smallpox [32]. Unfortunately, prior exposure
to antigens can also work against us [62]. For example, a flu vaccine works by
eliciting a mild response to a particular strain’s antigens so that an individual will be
able to mount an effective secondary response when exposed to it in the future.
However, the memory cells generated by a vaccine from a previous year could attack
and eliminate subsequent vaccines before they can establish protective immunity. If
the first vaccine does not provide protection against the strains corresponding to
these later vaccinations, the individual is vulnerable to them (Figure 4). If this same
individual had not received the first vaccine, the subsequent vaccines would have
been effective.

We could “vaccinate” an IIS by exposing it to undesirable information without
necessarily exposing the user. This would allow an administrator to pre-tune the IIS
so that it blocks certain kinds of information from a user. For example, a user



322 CHAO AND FORREST

Figure 4. The effect of history. The dots labeled “A” and “B” and “C” represent solutions the user does
not like. The circles are the extents of their negative detectors, or “balls of stimulation,” in shape space. If
solution A is rejected by the user first, the detector that forms around it would reject B before it could be
presented. However, C could be presented because it does not fall within the scope of the detector for A.
However, if B had been presented first, the coverage would be different. Neither A nor C would be seen
after B because its detector would cover all three solutions.

community might prohibit certain kinds of e-mail or web traffic, such as
pornography or virus-infected e-mail. The community could vaccinate the IISs of
its members with exemplars from the banned categories, and they would not be
exposed to these kinds of information. Because the order in which an individual is
exposed to undesirable information can affect the coverage of the individual’s IIS,
the vaccination strategy would need to be planned with care.

4. Applications

The most obvious use of an IIS of the sort described here is information filtering. An
IIS could serve as a personalized interface agent that learns a user’s preferences for
sources of information or for a range of options that is too large or dynamic for a
user to evaluate. Because it requires feedback only when the user is exposed to
something he or she does not want and it learns without using separate training and
testing phases, an IIS could be an unobtrusive addition to many user interfaces. The
IIS should gradually become more effective as the user provides feedback over time.
In contrast, a scheme that keeps track of what the user wants would require separate
training and testing phases in which the user first specifies his or her desires then tests
the system to determine the system’s performance, which might require another
explicit training cycle to improve performance. This scheme would also be less likely
to explore regions of solution space unknown to the user. An IIS could complement
active strategies, such as information retrieval, that search for potentially useful
information.

It is straightforward to combine multiple IISs to form a group IIS. If one thinks of
each IIS as a sieve that filters undesirable information, then the data that pass
through the “sieves” of multiple users are those likely to satisfy all of them (Figure 5).
We call these data consensus solutions. A group IIS would be useful when the group
is exposed to shared information. For example, if a group of people want to listen to
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Unsorted information ——> X X

—<— Information immune systems

Filtered by one user ———> v v

o

Group-filtered information ———

o

Figure 5. An information immune system as a sieve. The IIS stands between a stream of information and
a user, blocking a significant portion of it. Only the information that can pass through the “sieve” actually
reaches the user. When the IISs of multiple users are applied in serial, the information that passes all IISs
are consensus solutions.

music together, they would want to play music that none of the individuals dislikes.
It is not clear how well a group IIS would work with a large group of users, and this
is likely to depend on the particular application domain. Consensus finding will
become more important with the increasing number of intelligent environments
which automatically respond to users’ needs. For example, in smart home
technology, the music, artwork, temperature, and lighting are adjusted to
accommodate a building’s occupants. Most research on intelligent environments
emphasizes the preferences of a single individual [25, 29, 35, 69], but for many
environments it will be important to satisfy multiple occupants simultaneously.

Designers and artists could use an IIS for inspiration [11]. If a random source of
design solutions or works of art were fed to an IIS, only those designs that were
dissimilar from examples rejected in the past would pass through. This could be a
useful strategy for design problems in which one is interested in exploring a large
range of possible solutions. The solutions that are not rejected could later be refined
or optimized using other techniques, such as evolutionary design.

In the case of collaborative design projects, a group IIS could be used to produce
consensus solutions to satisfy the entire design team. Although the consensus
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solutions are not necessarily optimal, they do avoid the problem of combining
(hybridizing) multiple solutions, which arises if one tries to combine the favored
solutions of each group member (as discussed in Section 2). By using only the known
unacceptable solutions, an IIS assumes that unexplored regions of parameter space
are acceptable until proven otherwise, thus expanding the potential solution space by
giving new regions the benefit of the doubt. If instead one used only the known
acceptable solutions and assumed that the rest of parameter space contained
unacceptable solutions, intersections of these solutions for multiple users would be
hard to find, if they exist at all (as was found with GroupCast [44]). The group IIS
could facilitate “brainstorming” sessions in which a wide range of novel solutions are
explored by groups.

5. 1IS implementations

We describe two exploratory projects that implement some of the IIS concepts
described above, namely negative detectors, costimulation, and group filtering. Both
are “aesthetic” information immune systems that shield users from undesirable art.
However, they illustrate different capabilities. The first project, which generates
simple figures for users to evaluate aesthetically, illustrates the collaborative design
potential of IIS-based systems. The second, which chooses music to play to a group,
is an information filtering application that could be incorporated into an intelligent
environment.

5.1. A Biomorph information immune system

We have used the concepts discussed earlier to design a simple IIS that generates
computer art, and we reported the results in [11]. We summarize the results here. The
IIS characterizes several users’ preferences for a particular family of computer-
generated images known as Biomorphs [17]. Biomorphs are recursively drawn
figures defined by nine parameters. In our experiment, each user was shown a set of
randomly generated Biomorphs and instructed to flag those that he or she did not
like. For each user, an IIS was created based on the parameters of the rejected
Biomorphs (see Figure 6). The IIS filtered out new images that had parameters

Figure 6. Similar Biomorph parameters result in similar-looking images. The framed Biomorphs are each
followed by six variants that have similar parameters, which we believe to look qualitatively similar. If a user
were to reject one of the framed Biomorphs, the six variants would also be censored by the Biomorph IIS.
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similar to those rejected in the past, and they formed a rough estimate of the parts of
Biomorph parameter space that each user wanted to avoid.

We tested whether an IIS could filter a stream of randomly generated Biomorphs
to produce an edited stream of acceptable images, based on the subjective judgments
of each user. Most users preferred the Biomorph images filtered by their own IISs to
the unfiltered ones. We also investigated group IISs which combined the IISs of
several users. We were interested in the effect that adding other IISs has on the
performance of a single IIS. These effects were measured by asking the users to
evaluate three sets of randomly generated Biomorphs: those filtered using no IIS,
those filtered with their own IIS, and those filtered by a group IIS composed of the
IISs of several users. We tested a subset of three users and a group IIS composed of
only these three users’ IISs. The images produced by this group’s IIS were perceived
to be better than unfiltered, and each user found these images to be no worse than
those produced using their own IISs, indicating that consensus solutions are
possible. This suggests that the IIS approach can accommodate a few users’
preferences simultaneously by combining their IISs. The group IIS composed of the
IISs of all seven users was not successful, however, producing Biomorphs that were
not liked any better than the unfiltered stream.

We propose two explanations for the failure of the Biomorph group IIS to scale
beyond three users. First, it is simply more difficult to please a larger number of
people. People might have conflicting preferences, making it impossible to find
solutions that accommodate a large number of them. Second, the Biomorph
aesthetic preference profiles were inaccurate. We used coarse-grained detectors for
the IISs in order to reduce the training time for each user, so the resulting profiles
were rough. In addition, the users did not appear to have strong or consistent
Biomorph preferences. If a user does not have clear and consistent preferences, then
it is difficult to construct a reliable profile. More accurate profiles might have
allowed the group IIS to satisfy a larger number of individuals.

5.2.  Adaptive Radio

Our second IIS application, called Adaptive Radio, is a jukebox that broadcasts
songs to a group of listeners who share an office. Users can indicate to the system
when they do not like the currently playing song, and the system will record this data
to form a musical preference profile for each person. Adaptive Radio avoids playing
songs similar to those that have been rejected by any of the users who are currently
listening, resulting in a song playlist that should please all users listening to the
broadcast. Thus, if there is only one listener, the system will play music that this
person will like. As more people arrive, the selection of music will narrow to
accommodate the listening preferences of the new users. Because we don’t currently
have a reliable automated method to determine the similarity between songs,
similarity between songs was assessed by the developers in advance. The Adaptive
Radio prototype is still under development, but the basic functionality is in place and
we are currently using it informally in our research group.
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We believe that the Adaptive Radio project will better illustrate the scaling
properties of group IISs than the Biomorph project because we expect to obtain
more accurate user preference profiles. People generally have clearer musical
preferences than Biomorph preferences, so the Adaptive Radio user profiles should
be more accurate and consistent. People are also more likely to invest time building
their musical preference profiles, so the detectors can be finer-grained. We are
optimistic that the finer preference profiles will allow the Adaptive Radio system to
support a larger number of users than MusicFX [43]. Users of the MusicFX system
could only choose from ninety-two music stations, while Adaptive Radio listeners
are able to rate hundreds of songs individually.

Adaptive Radio is a demonstration of IIS principles in a human-computer
interaction context. Although we have not conducted formal user studies, we have
made informal observations of its use in our office. The users quickly became
comfortable with the user interface, which allows them to reject songs with little
conscious effort. Registering disapproval became a nearly automatic reaction to
undesirable songs, as evidenced by the “channel-surfing” behavior during which a
user would quickly reject several consecutive songs without interrupting his or her
work. We believe that people find it more natural to reject songs than to provide
positive feedback to a music selection system. When Adaptive Radio is playing
desirable music, the listener should not need to think about the system. When
undesirable music intrudes upon a listener’s consciousness, he or she can quickly
register disapproval.

Users who had seemingly different musical tastes discovered that they enjoyed the
music of their coworkers. These serendipitous newfound musical preferences would
be difficult to discover using a MusicFX-like approach that preferentially plays what
the listeners already know they like. Other users with little obvious overlap in
musical tastes have noticed that Adaptive Radio only plays Simon and Garfunkel
songs when they are in the room together. We soon realized that fast or loud songs
are prone to rejection by people trying to work. The songs that are least likely to be
rejected are slow, quiet, and familiar. It appeared that Adaptive Radio was quickly
censoring all interesting songs and leaving only “elevator music.” Although the term
“elevator music” is usually used pejoratively, Paul Simon would not object to this
characterization of his music, claiming that “it’s nice to have any song that you write
played in an elevator” [58].

Our passive musical preferences can be quite different from our active ones. While
we might enjoy dynamic and challenging music in a concert setting, at work we
might prefer something more soothing. Background music can subconsciously
elevate our moods and increase productivity, and music that calls attention to itself
could be detrimental. In a workplace with broadcast music, everyone must be
accommodated, even if compromising seems unsatisfactory to the majority. A
Muzak executive describes what can happen when employees try to choose their own
music:

In an office for a garment factory outside of Atlanta, the workers got tired of the
Muzak and used a radio for their background music. If they turned on rock, 25
percent of the people in the workplace didn’t like it. So they got a committee
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together and took a vote. They played the classical station, and only 10 percent of
the people ended up liking it. So they tried a country station, and 60 percent didn’t
like it. They had another meeting. They decided on one day for each format:
country one day, classical the next, disco for maybe half a day. But the 10 percent
who liked whatever was playing got tired of people glaring at them. Finally the
office manager called us and asked if they could have the Muzak back. It proved
what I was doing was working. Muzak proved the least of all possible evils. [37]

The advantage that Adaptive Radio has over the often-ridiculed fare of the Muzak
corporation is that it can cater specifically to the occupants of a room. The users are
likely to appreciate the fact that they have control over the music being broadcast
[43]. If they happen to share musical tastes, the variety of acceptable music can be
large; if not, the range is likely to be small and possibly less than satisfactory. As one
Muzak programmer explains, “There are literally 90 million people listening to
Muzak per day. It’s a real challenge to put something together that’s going to please
everyone ... Since we have so many people listening at once, we are forced to
amalgamate” [37].

Even if Adaptive Radio does not scale to accommodate large numbers of diverse
listeners, we believe that people could be automatically partitioned into smaller
subgroups that would have good consensus solutions. Adaptive Radio could be used
to create non-intuitive groupings of individuals, which would be useful if there are
only a limited number of broadcast channels to accommodate a large number of
listeners. Normally, radio stations specialize in genres of music, and listeners must
choose among them based on these predetermined categories of music. If Adaptive
Radio were to partition the listeners automatically based on their preferences and
cater to each group’s collective preferences, it could generate novel playlists that
cross established genre boundaries. For example, one could use a greedy algorithm
to assign users to groups in such a way that maximizes the overlap of musical dislikes
within the groups. The broadcaster could then choose music for each group that
would reflect the preferences that the listeners in each have in common.

6. Conclusions

Information immune systems provide a way for individuals to filter out undesirable
information and to explore parameter spaces. A successful IIS would reduce infor-
mation load and make existing strategies for finding and processing information
more effective. The 1IS approach could easily be applied to groups of users, and it
represents a novel approach to combining different sets of preferences.

IISs, however, should be fielded with caution. As filtering strategies become more
sophisticated, the producers of unwanted information will themselves adapt, creating
a kind of information arms race. We see this already in the adaptation of magazine
advertisements designed to resemble content articles and “junk mail” packaged in
official-looking envelopes. Even more insidious techniques embed advertising in con-
tent in which people are interested. Advertisements can be wrapped around e-mail
before the user can receive it [12], corporate logos and products can be digitally
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edited into films and television programs [71], and some shows integrate their
sponsors’ products into the plotlines [49]. Even in the absence of adaptive
adversaries, information filtering technology will drive a selective process that
minimizes the differences between desirable and undesirable information. As our
filters gain efficacy, undesirable information will evolve to evade them. The filters
must constantly co-evolve or else they will rapidly lose effectiveness. When we deploy
IISs, we must be prepared to live in a dynamic information ecosystem in which our
defenses must adapt as quickly as the abilities of unwanted information to penetrate
them [70].

We must also examine the nature of consensus solutions. Consensus solutions
might encompass a wide variety of acceptable candidate solutions, but they do not
necessarily include the best solutions. A group IIS could be an aid to human
creativity, or even be a source of creativity itself, by finding novel and innovative
solutions that would not have been discovered otherwise. On the other hand, it could
find bland and inoffensive solutions that are barely acceptable to anyone. We have
not yet determined which scenario is more likely, and we believe that this will largely
depend on the particular application.
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