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Abstract

This work describes a computer model of the immune systeespanse to infection,
specifically the cytotoxic T lymphocyte (CTL) response. CTlaypan important role in
the control of infectious agents, and they are essentiapooents of our defense against
HIV, cancer, and other diseases of great public interesmunologists are interested in
manipulating and enhancing the CTL response to these dseakether by vaccination
or drug therapy, but the process can be difficult and ad hoc.ormbination of animal
experimentation, limited human testing, and simple matteral models have been the

primary sources of guidance in the efforts to address thissasks.

Computer models provide an alternative strategy for expipimmune system ther-
apies. Recently developed laboratory techniques that lewealed and quantified many
aspects of CTL behavior provide an unprecedented oppoyttondevelop detailed mod-
els. The model used in this work integrates many of these nadinfys into a coherent
system that simulates an immune response to viral infeclibis model reproduces many
of the phenomena seen in CTL responses but not captured byno#tleematical or com-

puter models and can be used to explore vaccination stegtegi

Vi



The value of modeling goes beyond simply making predictidhallows one to per-
form experiments difficult, or even impossible, to performthe laboratory. For example,
in a computer model one can replicate experiments exacityhoose to allow stochastic
fluctuations to influence the outcome. In biological systemohieving this level of control
is impossible. Model-building can also be used as a vehal@ypothesis testing by for-
mulating one’s assumptions about a system’s behavior aglalmbthe model’s behavior
does not match real-world experimental results, the ingssumptions can be changed

and a new model built. The model presented here is the resaleries of such choices.

Vil
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Chapter 1
Introduction [

My father always said if you translate a proverb from one laaqggiinto an-
other, you pass for a poet. The same for science. Work gtwdthin one area,
and it's diminishing returns, hard to make progress. Bunhgkate a concept
from its field for use where it is unknown, and it is always fresth powerful.
In buying outside, you are doing intellectual arbitrage.eTdate limiting step
in this is your willingness to continuously translate, todestrange languages
to be yours, to live in between, to be everywhere and nowhere.

—Luca Turin, as quoted imhe Emperor of Scetty Chandler Burr

It is easy for us to take our immune systems for granted. Tisenlly rid our bod-
ies of infectious agents quietly and reliably. The immunsteym only calls attention to
itself when these pathogens are not effectively contradied illness strikes. High-profile
epidemics, such as AIDS and hepatitis C, have forced thegtdlearn more about im-
munity, and technical jargon like “viral load” and “T cell got” are entering common

usage.

T cells play a major role in our body’s defense against th@sses. In particular, one
kind of T cell, the cytotoxic T lymphocyte (CTL), mounts atkacagainst cells infected

with viruses and other intracellular pathogens. However,GTL response is sometimes
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deficient (as in the case of AIDS) or even harmful (which cauitan autoimmune disor-
ders such as diabetes and arthritis). Studying CTLs will adeaur understanding of the

pathology of these diseases and give us insight into pafdrgatment strategies.

Our knowledge of T cells is advancing rapidly. Less than 5ry@go, immunologists

used coarse surgical methods to gather the first evidende @xistence and function of
T cells {MiIIeJ, 1961 ., 1966). In the past decaumv technologies, such
as CFSE labeling (Lyons and Parish, 1994), MHC tetramersm@itet al., 1996), and

two-photon imaging‘ (Miller et al., 2002), have given scistst the unprecedented ability

Claman et al

to observe T cells in vivo. | summarize current understag@nCTLs in the first half of
Chapter 2. Despite the wealth of data now available, we dteststiggling to understand
how CTLs behave during an immune response. More sophisfica¢¢hods are needed to

organize and integrate this information.

This work documents my attempt to understand and model ther€gpionse to infec-
tion. Modeling provides a framework in which to express thlationships among things
in the world. By necessity, we simplify the real world to si@@ the phenomena that
interest us. Thus, the process of model formulation in@hat only deciding which data
are correct, but also selecting which are essential toaaglithe phenomena of interest
and which are not. Once a model is developed, it can be useztfiarm experiments that

would be too difficult or even impossible to perform on thedlfesystem.

Immunological modeling is a relatively new field, and them®t half of Chapter 2
describes the models most closely related to mine. The elwimodeling approach in-
fluences the kinds of knowledge one can incorporate and shitsehat can be produced.
Most immunological models are mathematical—systems oagopus that can be solved.
Mathematical models are usually extremely simple in ordelod tractable. Simplicity
can make their results more robust and general, but it canfalse the scientist to omit
essential properties of the system. For example, much dhthminological data gained

using the latest laboratory techniques is difficult to ipmate into these models. | have
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constructed a computer model to study CTLs. Computer modelbea great deal more
complex than mathematical models, and can therefore iraiuore of these recent find-
ings. A handful of other computer models have been used inuinmogy, but none have

focused on CTL responses.

| define the behavior of CTLs and viruses in my model in Chaptein3his model,

viruses infect healthy cells, and infected cells produceenwirus. CTLs respond to the
infection by reproducing rapidly and eliminating infecteglls. The model integrates the
findings from dozens of laboratory experiments into a sicgleerent description of CTL
responses. Adding detail to CTL behavior in a model can be octatipnally expensive,
but | use a stage-structured modeling approach that effigziezpresents the actions of
hundreds of billions of immune cells. With this model, one t&gin to make predictions
about how CTLs will behave in different circumstances. Thenimological data used to
construct the model are subject to interpretation, andrakaéternative assumptions are
briefly listed in Appendix B.

Chapter 4 describes the rules the model uses to determin&é¢ngth of interactions
between CTLs and antigens in the model. Most cells presentnalszof their internal
proteins on their surfaces, and CTLs have receptors to skase proteins. This mecha-
nism allows CTLs to detect if a cell contains abnormal praesuch as those produced
by viruses and intracellular bacteria. An individual CTléseptors are specific to a small
subset of proteins, and the body creates millions of diffe€eTLs so it can detect a wide
variety. The strength of the bond between a CTL's receptodsaaminfected cell’s sur-
face proteins determines how quickly the CTL can eliminageittiected cell. Accurate
molecular simulations of the binding process are too corgeembed in a larger model
of T cell behavior, so | use a simpler, abstract represemtatf this interaction. | am not
as concerned with the mechanics of CTL—antigen interactgnasith the fact that these
interactions can have a range of strengths. Including atrgpe®f CTLs with different

binding characteristics allows the model to produce a greariety of immunological



Chapter 1. Introduction

phenomena. A typical CTL response to antigen is composed os5@dat have various
affinities to the antigen, and the composition of the respaa affect the ability of the

immune system to eliminate the infection.

In Chapter 5, | use the model to provide possible explanafmmEhenomena observed
in the laboratory and to make predictions that could be eetifiy experimentalists. | ex-
plored two facets of CTL behavior: detection and responseoriBdhe immune system
can resolve an infection, it must first be able to detect itteDgon is difficult because
CTLs must distinguish between uninfected cells and thodsednizag viruses. The model
includes a simplified representation of the process thaintineune system uses to create
a set of CTLs that is both accurate and efficient at making tistendtion, and | used the
model to quantify the efficiency of this process. After théhogen is detected, CTLs can
eliminate infected cells. | describe several experimemtdeimonstrate that the model’'s
results agree with well-characterized CTL behavior, intiingathat the model’s represen-

tation of the CTL response is plausible.

The basic CTL model defined in Chapter 3 replicates responsesiahn the immune
response clears an infection quickly. In situations in Whtadoes not (e.g., chronic dis-
eases such as AIDS), the model assumptions are not valid dyliremics of prolonged
immune responses are not well-characterized, so in Chaptexi&nd the model based
on one of many competing theories. A common feature of pg#dnnfections is the pre-
mature reduction of the CTL response, knownmamune exhaustion test the effects of

adding exhaustion, as well as the CTL response to a mutatihggen.
Finally, I make a few concluding remarks in Chapter 7.

| have made efforts to make this work accessible to readdesnilnar with immunol-
ogy or computer science. Chapter 2 summarizes the immunaoleggssary to understand
the model, and | have included a short glossary of immuno&derms (which starts on

page 122). For the readers who are familiar with T cell bigJdghave compared my
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results to those from laboratory experiments and have pexpadditional experiments
that could be performed to validate my results. At the end€lwpters 346 are short

summaries to make this work easier for all audiences tovollo

Enjoy.



Chapter 2
Background and related work []

Scientists often have a naive faith that if only they couktaolver enough
facts about a problem, these facts would somehow arrangestieas in a
compelling and true solution.

—Theodosius Dobzhanskylankind Evolving

A good physicist is a man with original ideas. A good enginsex person
who makes a design that works with as few original ideas as dessib

—Freeman Dysormdventures in Experimental Physics

This chapter summarizes the biological and modeling baxkgt that informs my
own work. Section 2.1 outlines the T cell biology necessaryiderstand my model.
Because other immune cell types are not explicitly represeimt my model, their inter-
actions with T cells will be only briefly outlined. Section?2reviews related models of
the adaptive immune system. These models can be roughlpegonto mathematical
and computer models. My model borrows a few techniques froar pomputer models,

but for efficiency, | use a stochastic stage-structuredagydr to modeling. This technique
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effector T cells

secondary effector T cells

A O
immature T cell naive T cell @ /G)i

selection

antigenic
stimulation

antigenic
stimulation

programmed response
programmed response

Figure 2.1: A simplified T cell life cycle. Immature T cellseasubjected to thymic se-
lection, and those that survive becoméwvescells. Nave cells, when exposed to antigen,
become effector cells, which rapidly proliferate and etiate infected cells in a primary
response. At the end of the response, long-lived memoryg oetthain. When exposed to
the same antigen, these memory cells participate in a sacpnesponse in which they
replicate and eliminate infected cells. Some of these skgreffectors then revert to
memory cells.

allows the model to represent billions of discrete cellsfievathousand bytes of computer

memory.

2.1 T cell biology

Cytotoxic T cells (CTLs) are essential for the control of virgkctions. The life cycle of
CTLs is summarized in Figure 2.1. Na T cells, or cells that have not yet been exposed
to antigen, circulate through the body looking for antigeasenting cells (APCs) that
express indications that the body is infected by virus. Qheg receive stimulation from
APCs and from another class of T cells known as helper T celles®&gin their response
to the infection. These stimulated CTLs, known as effectlis ceirculate throughout the
body to eliminate cells that are infected by the virus. Ihisit unique ability to distinguish

between infected and uninfected cells that allows themitoiehte cells that harbor virus.
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2.1.1 T cell receptors and repertoire

T cells have the unique ability to non-invasively view a ‘setiontents, allowing them
to detect intra-cellular pathogens, because most cellsepteportions of their internal
proteins on their cell surfaces. Presentation takes pldwnva cell processes a sample
of its internal proteins into short peptide fragments tloaif complexes with cell surface

proteins called major histocompatibility (MHC) class | mulées. There are hundreds of

MHC class | alleles in humans (Marsh et L’;\L, 2002), and arviddal can express as many
as six of them. Each MHC type binds a particular set of peptat®l is thus capable of
presenting a different set of peptides than other MHCs. Whenlalfids to peptide—
MHC complexes, it can initiate a series of actions that leadthe destruction of the

infected cell.

One of the primary factors that determines whether a T cetidto a cell is thaffinity
of its T cell receptor (TCR) for the peptide—MHC complexes. icacell expresses thou-
sands of copies of identical receptors that bind to theinatg peptide—MHC complexes
with high affinity. Thus, both the target cell peptides ane garticular MHC type that
presents the peptide play a role in determining affinity. Séteof all TCR specificities in a
o 19&9) and®id mice kPannetier etal.,

1993), comprise the T cell repertoir@vidity, or the sum of the binding interactions be-

body, on the order of 10n humans‘ (Arstila et al

tween the receptors of a CTL and the surface of a target cedlyrdenes whether a CTL
recognizes the target. The number of copies of a partic@ptigie displayed by a target
cell (its expression density) affects the avidity of theemaiction. Due to thymic selection,
described below, it is unlikely that a T cell will react to aninfected cell—infected cells
express foreign (e.g., virally encoded) peptides that niiaduen subject to T cell responses.

The antigenic peptides that stimulate T cells are knowepg®pes

T cell receptors are generated with seemingly random spiieifi, so many potentially

harmful self-reactive ones are created. Most are screeaedanly in their maturation
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process in the thymus, where they are exposed to a largedrtiag body’s own peptides

presented on MHC molecules. Duripgsitive selectionT cells that have an extremely
: 19&%0). It
is believed that this process eliminates T cells that haed goor avidity to MHC that

weak avidity to self peptides bound to MHC are eIiminaJed ¢Biaan et al.

they would not bind to any peptide—-MHC paifsegative selectioeliminates those that
bind too tightly to MHC—self peptidesL (Kappler et al., 1b8éhsuring that potentially

self-reactive T cells are eliminated. This process migkatz “holes” in the repertoire
that would allow antigenic epitopes that are sufficienttyitar to self peptides to escape

immune system detection. About 1-3% of pre-selection Bgelks both these “tests” and

leave the thymus to join the peripheral repertoire aseaa cells ‘(Shortman et aJI., 1490).

2.1.2 T cell response

A naive T cell remains quiescent until it receives antigenienatation from its cog-
nate peptide-MHC complex. Larger antigen doses stimulatgeater fraction of
nave cells (perhaps by recruiting more low-affinity T cell)tlprobably do not af-
fect the degree to which the individual cells are stimulz{ﬂédech and Ahmgch, 20%1).

In other words, stimulation of individual cells might be FFalr nothing.” After stim-

ulation, nédve cells appear to be committed topgogrammed responsthat causes
them to divide and acquire effector functions even in theeabs of continuing anti-
genic stimulation (Kaech and Ahmed, 2001; van Stipdonk.e8l01). For the first 24
iem, 1988;a6d Hodgkin, 2000;
Veiga-Fernandes et aJI., 2(%0; van Stipdonk e{ al., EOOJt)afner this initial phase, they
can rapidly undergo a fixed number of divisions (up to 8 or m@keech and Ahmed,
2001) once every 5 to 8 hours (Murali-Krishna et al., 1998tt@ed Hodgkin, 2000;

hours, they do not replicate (Oehen and Brduscha-R

van Stipdonk et al., 2001). After a few divisions, they acgueffector functions, such
as cytotoxicity‘(Opferman et a\., 1949; Auphan-Anezin eJ%&DOJB). Effector CTLs Kill

target cells either by releasing perforins that createhwiehe target cell's membrane



Chapter 2. Background and related work

or by triggering apoptosis (i.e., cell suicide) in the targell. Even during this period
of rapid expansion, the cells have a high death rate, redueh population growth. Af-

ter initial expansion, the death rate dominates CTL kineditgd the population declines

rapidly (Badovinac et al., 2002).

Effector cells can become impaired by over-stimulation hyigen. High doses or

repetitive stimulation can causetivation-induced cell deatim T cells kShi etal., 19&9;

Hildeman et al., 2002). The death of over-stimulated cedisses the overall CTL re-

sponse to diminish or disappear within a few days, a phenomé&nown asexhaus-

tion &Moskophidis etal., 19$3). Chronic infection has been fotmmdause a progressive

loss of function in effector CTL, starting with the inability produce certain cytokines and

ending in T cell death (Fuller and Zajac, 2003; Wherry et @003. The memory cells

created in the presence of antigen might also be impaired (fWbeal., 2002), which in-

dicates that the impairment could be an intrinsic propeftye cell that does not change

when antigen is removed.

2.1.3 T cell memory

After the activation and proliferation in response to aneation, most of the T

cells activated in the response die, but a small subpopulgpersists agnemory

cells (Murali-Krishna et al., 1999). Memory cells are able to mbanquicker and

more aggressive response in future encounters with the samesely related patho-

gens ‘(Dutton et all, 1958). Thisecondary responsean clear an infection before sig-
nificant damage is inflicted upon the body. Immunological mgnforms the basis of
vaccination, in which an organism is exposed to viral amgg@ order to build immune

memory to the virus.

All effector T cells involved in a response to antigen appeanave the same prob-

ability of converting to memory cells cells (Sourdive et dl998; Busch et al., 1998a;

10
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Blattman et aJI.. 2000). The clonal composition of respondifigctors in a primary in-

fection is thus “mirrored” in the resulting memory poputati However, this repertoire

can be altered in the secondary response to ant‘igen (Bouakp2000). Some mem-
ory cell clones are preferentially recruited into the selag response, resulting in their

increased representation in memory.

It takes 2 or 3 weeks for a CTL to turn into a memory cell after ithéal infec-

tion (Kaech et al., 2002). Therefore, memory cells are rkatlyi to join the immune re-

sponse that initially generated them. CTLs can die or fornectefe memory cells in the

presence of persistent infecticin (Masopust e{ al., Eoozt)eré’fore, if the immune sys-
tem can not eliminate antigen quickly, the formation of immalogical memory can be

impaired.

Upon antigenic stimulation, memory cells begin to probfer almost immediately

and develop cytotoxicity within a few hours (Bachmann etH#99; Barber et al., 2003;

Byers etal., 2003). They probably have the same sensitiatyaritigen as nge
003), althougtesstudies found their stim-

ulation requirements to be Iowgr (Pihlgren et ‘al., 1996) eillneplication rates are ap-

N

cells kBachmann et a\., 1939; Kersh et al.,

proximately the same as recently activateivaacells. Memory cell-derived effectors

die at a slower rate than effectors created in the primaporese (Veiga-Fernandes et al.,
2000;

Grayson et Q 20%2), giving them a faster accunuriatite and possibly allowing
a larger portion of them to revert to memory. Presumably tieter time to acquire ef-
fector functions, the larger starting populations, andr tfaester accumulation rates allow

memory cells to clear infected cells much faster thaivanaells.

Homeostatic mechanisms appear to regulate the size of theorggoool, which re-

mains approximately constant in size throughout an orgasidifetime (Rocha et al.,

1989). New memory cells from heterologous infections appealisplace the memory

cells from responses to prior infectior%s (Selin et‘al., ];{MﬁNaIIy etal., 2001). In the

absence of immune system challenges, memory cells turrstaxgly (Tough and Sprent,

11
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1994; Dutton et al., 1998; Murali-Krishna et al.,

1999).

2.1.4 Lymphocytic choriomeningitis virus: A model pathogen

Much of what we know about CTL responses in vivo comes fromistudf lympho-

cytic choriomeningitis virus (LCMV) infections in mice (Arstrong and Lillie, 1934,

Traub, 1935). LCMV stimulates a well-characterized CTL-magell immune response,

and infection is generally asymptomatic and eliminatedckjyi by the immune re-

sponse (Lehmann-Grube, 1988). However, high doses oficé@MVV strains can cause

chronic infection, resulting in immune exhaustion (Moshiis et al., 1993). Because its

major epitopes have been identified, the responses of paisfie to each epitope can be
studied ‘(Butz and Beng, 1&98). It is assumed that the CTL ragpionhumans is anal-

ogous to that seen in this animal model. Using LCMV in inbredus®lines as a model
system allows researchers to observe CTL behavior in grdatail than would be pos-
sible in humans. The computer model described in Chaptersl 3l as calibrated using
mouse data for this reason, but the model can be recalibugied human data when it

becomes available.

2.2 Related work

Most immunological models can be classified into two catiegordifferential equation
models and agent-based models. Differential equation lmd@&e a long history of suc-
cess in immunology and other fields, but they have many shitgys, listed in Sec-
tion[2.2.1. Agent-based modeling is a relatively new apghpand its strengths comple-
ment mathematical models. Only a handful of agent-basecaodthe adaptive immune
system exist, and representatives are described in S&fidh Agent-based modeling is

computationally expensive, especially if one wants to sateubillions of immune cells,

12



Chapter 2. Background and related work

so | chose to use an efficient stochastic stage-structupgdagh to modeling, outlined in
Section 2.2.3.

2.2.1 Differential equation models

Differential equation models have long been used for imneystem and viral infection

modeling (Bell, 1970; Dibrov et al., 1977fiRrylova et al., 1992; Perelson and Weisbuch,
; n

1992; Ho et al., 195%; Nowak and Banghegm, 1$96; Bocharov, J.B@Balso , 2002). In

most of these models, populations of antigens and immuitearel represented as contin-

uous variables, and systems of ordinary differential équat(ODESs) define their behav-
iors over time. Analytical techniques allow modelers tomefiegimes of system behavior
and their associated parameters and initial conditions.ekample, one can determine

the model parameters for which an infection is effectivdgaced by the immune sys-

tem (Bocharov, 1998). The solutions capture the averagevimehaf large populations

of perfectly mixed, identical individuals. Many techniguihat could make these mod-

els more faithful to biological reality, such as adding tidedays or age-structured partial

differential equations (Antia et al., 2003), complicatdvegy the models analytically or

numerically.

There are many simple differential equation models of thelresponse to antigen,
several of which are reviewed in Nowak and May (2000) and IBene(2002). These

models are generally single-purpose models, by which | nifegirthey are purpose-built

to match a small set of experimental data. Two differentéalagion T cell models are

particularly closely related to my work. One, by Bocharo\s &tlarge set of T cell and

virus data gathered from mice challenged with LCMV (Boch 8). The second,

by Antia et al., is a model of the antigen-independent, ogm@mmed, T cell response to
antigen ‘(Antia et all, 20&)3).

Bocharov (1998) describes an ODE model of the murine CTL respom LCMV.

13



Chapter 2. Background and related work

In this model, there are 3 main variables: a virus populateoprecursor CTL popula-
tion (including both nave and memory cells), and a non-replicating effector CTLytap
tion. The presence of virus induces precursor CTLs to pralieeand convert to effector
CTLs, which clear virus. The effector population declineg di their lytic interactions
with virus, activation-induced cell death (AICD) from expos to high viral loads, and
their own limited life span. The model was calibrated usirgezimental data from low-,
moderate-, and high-dose infections of LCMV-D in C57BL/6 middater version of the

model included compartments representing different agarm mouse (Bocharov et al.,
2003).

As with most differential equation models, these modelsstateless. In other words,
the system has no memory and its behavior is determined/dntets current state. How-
ever, some immunological phenomena require the use of statethese can be captured
in these models by using delay differential equations. Kam®le, it is assumed that
prolonged high levels of antigen induce anergy in T cells.er€fore, the attrition due
to anergy in the precursor T cell population is the produdhefcurrent population, the
current viral load, and the viral load at tinhe- T, wheret is the current time and is a
constant. Thus, precursor T cell levels will decline whepased to virus over time inter-
val 1, but not when the interval is less thanAlthough the mathematical representation of
this term is simple, the assumptions that it entails are Betause the term depends only
on the viral load at two time points, the viral load before etvieen these points has no

effect. The “real-world” interpretation of delay differga terms is not obvious.

To my knowledge, the models describeJi in Antia et‘ al. (£O®6ﬁhe first to include
the programmed response of T cells. This inclusion is siggnifi because it allows T
cells to have state. Without state, T cell growth would betyrantigen-dependent, only
proliferating in the presence of antigen. The addition afes@llows T cells to continue

proliferating when the antigen load diminishes. In efféog, T cell response has “momen-

tum,” which makes it robust to fluctuations in antigen loadtia et al. (2003) describes

14



Chapter 2. Background and related work

two implementations of the same model, one as a partialrdifteal equation and one as a
set of ordinary differential equations. The results of the are qualitatively similar. The
models are at an early stage of development. In their dismuysthe authors enumerate
many extensions to their model that would make it more realidlany of these exten-

sions are already implemented in my model, including a enepll cycle model based on

Smith and Martin‘ (19%3), explicit processes for cell deisand death rather than a single

net population growth process, and a one-day time lag befosd!’s first division.

2.2.2 Agent-based models

Agent-based simulation is a promising technique madelfeasiith the advent of greater
computer power. These simulations monitor the actions afgelnumber of simple enti-
ties, or agents, in order to observe their aggregate behawach agent consists of state
variables and a set of rules that governs its behavior, ardtagan interact either di-
rectly with each other or indirectly through the environme®ecause all individuals in a
population are explicitly represented, they can have unigatories and behaviors. The

combined behavior of these agents is observed in a simnlatio

Agent-based modeling has many features suited to modéiengrtmune response. It

is adept at incorporating stochastic events, which apmebetcrucial in regulating im-
( ;

mune function (Germain, 2001). A single chance event, ssdhaserendipitous recog-

nition of a cancer antigen by a single cell in the immune systean determine the fate
£|. L)

of an organism‘ (Ochsenbein eJ , 2001). The addition adlsamess to a model allows

one to explore the distribution of possible outcomes, gsémms and Perelso% (2&)00),
as opposed to only the single most likely one addressed by mathematical models.

This is especially valuable when studying immune respqraesven genetically identi-

cal individuals can exhibit different responses to the santegen ‘(Lin and WeIML 1958;

Bousso et al., 1998). Because small numbers of cells are idotvthe beginning of an
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Q)
%)

immune response (Ehl etal., 1998; Bousso et al., 1999), asdigcrete model might be

more suitable in this context than a continuous one. Theiegiagent-based models of the

adaptive immune system, such as IMMSXM (Celada and Seid®2, Beiden and Celada,

1992; Kleinstein and Seiden, 2000), the B cell model of Sreithl. (Smith et al., 1999),

and the self-nonself discrimination model of Langman and rCJ;rDohn etal. J 20&)2

., 2003), take advantage of these featuregh@&nadvantage of agent-based
models is that by explicitly representing individual cetlsey are in many ways closer to
the modeled system. In contrast to population-level modsent-based model param-
eters correspond to actual properties of the cells, and utgubof these models can be
processed so that they can be observed at any level, froravekdf the individual cell to

the whole organism.

An early immunological model described in Farmer et‘al é)%presents idiotypic

network (Jerne, 1974) interactions among B cells. The astbatline the similarities be-

tween idiotypic networks and the classifier systems of hhallgHolland, 1986). The work

introduces the use of binary strings to represent epitopdseceptors. A string match
rule determines whether a receptor binds to an epitope lmste: distance between their
associated strings. If their strings are complementaryiearly complementary, the re-
ceptor binds the epitope. Many other immunological modetduding mine (Chapter/4),

have adopted similar string representations of epitopdseceptors.

The most mature agent-based model of the immune system Imlgso IMM-
SIM (Celada and Seiden, 1992; Seiden and C¢

ized” or “hyper” cellular automata model of the immune systéut within the individual

(D

ada, 1992). Iscided as a “general-

“sites” it behaves like a typical spatially implicit agelpésed system. Each site is popu-
lated with various kinds of entities, such as T cells, B ¢allgtigens, and antibodies. At
each time step, each has a chance either to perform an agth@se actions include in-
teracting stochastically with other occupants of the saiteeasd migrating to other sites.

Thus, each site behaves like a well-mixed portion of an aggas immune system. Each
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entity is associated with a bit-string, representing itepors (if it is an immune cell)
or epitopes (if it is an antigen). The likelihood of interiacis is determined by a string
match rule that quantifies the similarity between a recegmaran epitope. The IMMSIM
group has published several papers that propose explasdtipimmunological observa-
tions kMorpurgo et aM 19945; Stewart eJ Lal., 1497; Kohlmlebood)).

My model addresses only a subset of the immunological phenanthat IMMSIM
does. While IMMSIM simulates a system with antigen presentiells, B cells, helper T
cells, and cytotoxic T cells, my model only attempts to capthe dynamics of cytotoxic
T cells. | also choose not to include spatial effects becthee is insufficient laboratory
data to calibrate the distribution and movements of T céllsughout an organism. The
smaller scope of my model allows the simulation to be run nmohe quickly, and thus
more often, so the distribution of thousands of outcomesbeastudied. Even more im-
portantly, by limiting my model to CTL response, it can be meeasily calibrated with
empirical data. Many of the components of IMMSIM can not beusately calibrated
because the model includes such a large variety of cellsteidihteractions. There are
many behaviors that are not yet quantified in biologicalayst, so IMMSIM must use ar-
bitrary values. Although one can use models such as IMMSIMa&e estimates of these
unknown quantities (e.g., by running parameters sweepdvaomde Carlo simulations),

the task becomes infeasible when there are too many unknaameters.

While qualitative models might expose novel mechanismsddwaexplain certain phe-
nomena, | believe that more useful predictions can be madmi®fully calibrating the
model with real-world data. For example, my model uses asteakized T cell repertoire,
while IMMSIM simulates an artificially small repertoire. @litative models give little in-
dication of the frequency or magnitude of events. Quantganodeling is essential in
studying the immune system. Small differences in the gtyaatia pathogen exposed to
the immune system can mean the difference between immutensyslerance and a vig-

orous immune response. Slight changes in growth rates eatlgaffect the outcome of
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an immune response, as previous immune system simulatiwmesdostulated that there is
a “race” between a rapidly reproducing pathogen and the immnasponsé (Smith et al.,
1999;

with significant consequences (Germain, 2001).

Kohler et alJ, 2000). Seemingly minor and improbalknés can trigger a cascade

Derek Smith implemented a spatially implicit B cell modelr fetudying in-

fluenza (Smith et al., 1999). In his model, all B cell receptand antigenic epitopes are

represented by strings. Binding affinity is determined byHlaenming distance (defined
in Section A.1) between receptor and epitope strings. A hifnity match will cause
a B cell to replicate with a high mutation rate (somatic hypeatation). These B cells
release antibodies, which neutralize the antigen. An itambrcontribution of Smith’s

work is the use of “lazy evaluation” to allow the model to acenodate a realistic-sized

repertoire‘(Smith et M 19%8). The principle of lazy ewdion is to perform only the
computations that are needed by the final result. Smith nibigidthe only B cells that
are recruited into a response are those that bind suffigievdll to the antigen, and
the remaining B cells are quiescent. In the model, thesesgerg cells do not need
to be instantiated. Therefore, rather than create a sifonlatith all 10" — 10° B cell
clones with distinct receptors, one only needs to includelf — 10° that could actu-
ally respond to the antigen. The receptors of these respgrills are generated by
creating random strings uniformly distributed close to #@petope. In the past, mod-
elers would either need substantial computing resourcesntalate a realistic number
of cells kDetours and Perel%n. 2&)00: Bernaschi and Caﬁ%‘lmoh) or use artificially

small repertoires (Kleinstein and Seid‘en. 2000).

| adapted Smith’s lazy evaluation technique to create dmyGTLs that can respond
to the antigens in the simulation. CTLs, unlike B cells, argjsct to thymic selection and
bind to MHC in addition to the antigen. These issues are sidiygthe models of Detours,
described below. | take an additional step to reduce the atatipnal cost of immunolog-

ical simulation. Although the lazy evaluation techniquduees the number of clones, it
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does not greatly reduce the number of cells involved in tepaase. Although the number
of clones responding to an antigen is small, the number &f sehot. A handful of clones

can generate millions of responding T cells. To make his Eitimn manageable, Smith

makes each “agent” in his simulation represent 10 cellsf§hb97). Because the T cell
response can be initiated by 25-50 célls (EhI Q al., 1998daaularity of 10 cells might

be too coarse—it could be important to allow cells to respoadd/idually, not as groups.
Section 2.2.3 describes the stage-structured modelihgitpee that allows me to achieve

this fine granularity efficiently.

In contrast to Smith’s dynamic model of B cell responses,c¥it Detours’ model

investigates the static properties of théveaTl cell repertoire without including response

to antigen (Detours et al., 1999). This model uses stringspcesent both the antigenic
peptides and the portion of the MHC molecules that come iotdtact with the TCR.
These two strings are concatenated then compared to thgsstepresenting the TCRs
to determine their affinity. Detours greatly increased tbmputational efficiency of his

model by extending Smith’s lazy generation technique te tdlymic selection into ac-

count ‘(Detours etal., 2051). In Smith’s original algorithihwas assumed that B cell
receptor strings are distributed randomly across the msavef strings. Including thymic
selection would violate this assumption in two ways. Thet fgsthat T cell receptors
must bind to MHC as well as peptide, so TCRs have a non-randonitatio MHC. The
second is that the T cell receptors must also have an intéateedffinity to self pep-
tides because of positive and negative selection. ThusT el receptors that respond
to an epitope are not uniformly distributed—they are infleesh by both the MHC and
self peptide strings. Detours’ complex algorithm takeséheffects into account and can
efficiently generate a TCR repertoire for a particular MHC+jglepstring. His implemen-
tation is specific to his “xor” string matching rule (definedSection A.2), in which the
affinity between two strings is the sum of the bitwise xor ditidigits. The parameters
of the model are calibrated using real-world dgta (DetoUeet} 2000) in order to allow

for the quantitative exploration of certain T cell reperégproperties, such as alloreactiv-
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ity (Detours and Perelson, 1999, 2000).

| have implemented his efficient T cell repertoire generaéityorithm and generalized
his algorithm to two other string matching rules: Hammingl &anhattan (described
in Appendix A). For the alternative match rules, | use an atgm that is less efficient
but also less complex than Detours’ original xor implemgata My implementation is
described in Section 4.2.

The disadvantage of using other match rules is that the paeasmused by the

Detours et al. (2001) algorithm must be modified. The pararseire not easy to com-

pute, and it is difficult to validate them except by compai@nariety of average statistics
of the outputs from lazy and eager versions of the model. &isethe danger that the lazy
repertoire differs from the fully evaluated one in impoithat subtle ways that are not de-
tected by the chosen statistical measures. Thereforegldesided to choose a simpler but
less computationally efficient approach. Because the peetsan TCR repertoire is ran-
dom and uniform over the universe of TCRs, it can be generatdg ia exactly the same
manner as the B cell repertoire in Smith’s work. The distartmetween each TCR from
the pre-selection repertoire and all of the MHC—self peptid@plexes can be computed
to determine which cells survive to join theima repertoire. This approach can generate
up to 100 times more TCRs than will actually join théveapool, but it is conceptually

simpler than Detours’ scheme and is thus less subject ta erro

2.2.3 Stochastic stage-structured modeling

For computational efficiency, | use a stochastic stagesstrad approach to modeling

the cytotoxic T cell population (Chao et al., 2003). Stageestired models have been
, 1930) but
have rarely been applied to immune systems (e.g., Klemsiail Singh (2001)). In stage-

used to model populations in ecolo&y (Lefkovitch, 1965; eJ$I1966\ Manly!

structured models, an individual’s or cell’s life cycle isided into stages, such as devel-
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opmental maturity or differentiation states. All indivials in a given stage are assumed
to be identical. The transition probabilities between etagre specified, and at each time
step, these probabilities are used to determine how maryedhtividuals in each stage
transition to another stage. Stochasticity can be addéetmbdel if needed, and the num-
ber of individuals that transition between two stages imeetstep can be determined by
drawing from a random distribution. Analytical techniqinese been developed for study-
ing these models, but when there are interacting popukaiiery., T cells and antigens),
it is often easier to simply run the model on a computer migdttpnes and observe the

distribution of outcomes. My modeling approach is desctilmemore detail in Chapter 3.

By using discrete rather than continuous population vaembihd by explicitly spec-
ifying the actions and transitions of cells as probabditper individual cell, my model
enforces the realistic behavior of individual cells withdlie computational cost of rep-
resenting each cell explicitly. The model attempts to strakbalance between the un-
realistically small number of populations used by the atiedy approaches described in
Section 2.2.11 and and the unwieldy one-agent-per-cellemphtations of the agent-based
models described in Section 2.2.2. Because | do not inter@\e sy system analytically,
the model can accommodate multiple cell states. Howevengie the model more effi-
cient than an equivalent agent-based model, the numberssilge cell states is reduced
to a manageable number (described in section|3.2.4).
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The model[]

Science is what we understand well enough to explain to a compArteis
everything else we do.

—Donald Knuth, from the Foreword #&=B by Marko Petkovsek,
Herbert Wilf, and Doron Zeilberger

When | model | pretty much go blank. You can’t think too much doesn’t
work.

—Paulina Porizkova

In this chapter, | describe my model of CTL response to inbectiThe model has two
main subcomponents. One is a difference equation virustiofe model (Section 3.1).
In this model, virus infects healthy target cells, and tHedted cells produce more virus.
The other component is a stochastic stage-structured Tifeatycle model (Section 3.2).
After T cells in the model are first stimulated by infectedlgelhey progress through a
series of stages of differentiation, in which they probfir, eliminate infected cells, then
convert to memory cells. Including the T cell life cycle risun a more realistic portrayal

of the dynamics of an immune response.
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-————— -

Infected
cells (1)

death

Figure 3.1: The virus infection model in the absence of an imenresponse. Viruy/{
infects target cellsT), which become infected cell$)( Infected cells produce virus. A

constant source replenishes the target cell population.

3.1 Virus dynamics

| adopt a standard model of viral infection previously useddscribe human immunodefi-

1995

ciency virus (HIV) and hepatitis C virus (HCV) dynamics (WE'BQ,

: Perelson et al.,

‘1996; Neumann et Q 19‘98). In the absence of an immunemsspthe

infection is described by the following:

T = A=5T-PTV,
| = BTV-9l,
V = m—cV

23
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whereT is the number of uninfected (or “target”) cellsis the number of infected cells,
V is the number of virus particled,is the rate of uninfected cell productionjs the rate
of virus production by infected cell§,is the infectivity parametedr is the death rate for
target cellsp, is the death rate for infected cells, ant the clearance rate for free virus.
The system is represented schematically in Figure 3.1.c@jlgj after infection the viral

load and the number of infected cells increase exponent@dbk, and then decline.

In my implementation, | use a difference equation versiorihef system of ODEs
described by equations 3.1-3.3:

AT = (A=3&T—BTV)AL, (3.4)
Al = (BTV-§l)At, (3.5)
AV = (1l —cV)At (3.6)

whereAt = 10 minutes. In order to include stochasticity, the termsjmagions 3.4-3.6 are
randomly drawn from the appropriate distributions at eatie tstep, an approach similar
to that taken iJw Kleinstein and Sith (2&)01). | assume thavdriables are constant over

the short intervalit and are updated at the end of each time step. | also randommhupe

the order in which the different infectious agents are updatsing a Fisher-Yates shuf-

fle (Fisher and Yat¢

D

s, 1938). The shuffling should eliminatetdas caused by the order
in which these agents are updatedmsﬁ(w?@, the auibieis that not all possible
permutations can be created using such algorithms unlessatidom seed is extremely
large. | believe that this potential problem does not naliite affect the behavior of my
model’s implementation. For the production of uninfectetlscand the virus production
rate, | assume that they are governed by Poisson processeksdeaw from the Poisson

distribution with their expected values as the mean (\&t,andrd At, respectively).

To stochastically determine the number of cells out of a paimn of identical cells
that perform a certain action, such as dying, | draw randdnasn the binomial distri-

bution. In order to do this, | must convert continuous ratee probabilities that events
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occur during a time step. If a process occurs at rateen the probability that it first oc-
curs at timet is defined by the exponential distributian(r) = re~". The probability that

it occurs at or before timeis 1—e~". Thus, rates can be converted to probabilities that
the processes occur in a time step1— e "2, If there aren cells each with a probability

p of performing an action, then drawing from the binomigln, p) is a computationally
efficient way to determine the number of cells that perfore dletion. For example, |
compute the number of uninfected cellshat are infected in each time step by converting
their infection ratef3V, to the probability that they will become infected in a tinteps

1—e PVA and randomly drawing a value from(T,1— e BVAY),

To validate my implementation of the infection dynamicdetiénce equation model,

| compared its results to an alternate version using GikesDirect Method (Gillespie,
1977), which is an exact stochastic simulation technigaé éRplicitly generates all dis-
crete events rather than computing how many reactions ac@ugiven time step. Gille-
spie developed two algorithms for exact stochastic sinaradf chemical reactions, the
Direct Method and the First Reaction Method. Gibson and ESAQOIE) )) contains a good

explanation of both. | use the Direct Method because it issnsomputationally efficient.

To convert the virus infection model to a Direct Method siatidn, the difference

equations are expressed as a set of parallel reactions:

A oTr11Vv (3.7)
T3 T-11V (3.8)
™V & T-11+1V (3.9)
2 Ti-1v (3.10)
I 5 TI,V+1 (3.11)
vV S TIV-1 (3.12)

Each of these reactions represents the conversion of dactarms on the left of the
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arrow) to products (terms on the right). The products aréevriin terms of how a reaction
affects each of the three state variables, andV. For exampleT — 1 indicates that the
number of target cells is decremented by 1 indicates that the number of virus are
incremented by 1, and indicates that the number of infected cells is not affectgd b
the reaction. Reactions occur at rates proportional to tbdymt of the quantities of the
inputs times the reaction rate constant, which is writteerdlie arrow of each reaction.
For example, reaction 3.9 proceeds at (2f&/, and each “reaction event” eliminates one
target cellT and produces one infected cellvhile the virus leveM remains constant.
Reaction 3.7 does not depend on the presence of any inputs rateiis\ and it increases

the number of target cellB by one.

The Direct Method simulation is initialized by setting therdet cell, infected cell,
and virus levels to the desired levels and setting the tirapseld to 0. One advances the
state of the simulation by choosing one of the six reactionsctur, changing the state
of the system according to the reaction chosen, and incriemgeglapsed simulation time.
For each iteration, a reaction is chosen randomly with doiti@s proportional to their
reaction rates. Thus, the fastest reaction is most likelpeaselected, but the slowest
reaction can be chosen. Note that these reaction rates agomstant—most of them
depend on the current numbers of target cells, infected,catld virus—so they need to
be computed each time before a reaction is chosen. Once tooremcchosen, the state
of the system (i.e.T, |, andV) is updated to reflect the effects of the chosen reaction.
The simulation time must then be advanced. One would expattie time increment
would depend on the speed of the reaction chosen, but it dideJ he time increment is
simply drawn randomly from an exponential distributioniwihe sum of all six reaction
rates as its parametee:(A + &1 T + BTV + 1 4+ 1 +cV). This time is added to the total
time elapsed. At this point, the effects on the system ofgearing one reaction have been
computed. Subsequent reactions can be chosen in the sammennigpically until the

simulation time reaches the desired value.
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Figure 3.2: Comparison of the average outputs from the eiffee equation model and
the Gillespie Direct method version. The averages (solashdd, and dot-dash lines)
and standard deviations (indicated by the fine dotted lin€400 runs of the difference

equation model and the averages from the Gillespie versygmijols with no lines) are

plotted. The standard deviations from the Gillespie versice omitted for clarity. The

variance for the number of target cells (T) is high becausome cases the virus would
not infect any cells at all and the number of target cells iasdhconstant (and high).

| compared the outputs of the Direct Method simulation wite tifference equation
version. The means and variances of the final outcomes aggpéarbe the same for
various initial conditions (Figure 3.2), but | was also cemed about the distribution
of outcomes, not just the low-order moments. To compare ttelalitions, | ran both
versions 100 times then took the histograms of the final tazgk, infected cell, and
virus levels. [ initialized both systems with a small numbéwiruses (50) so that the
variance would be higher and the distribution of outcomesber. The other parameters
corresponded to a typical acute virus infectiofy:= 1P, Io = 0, Vo = 50, A = 50000,
O =0.01,=2x10"7, & =0.7, m= 100, andc = 2.3. | recorded the system state at
the beginnings of days 2 and 5. The results from my simulaimhthe Gillespie model

seemed to have the same distributions at both time poirgsi(&i3.3).
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Figure 3.3: Comparison of the distribution of outputs of tliéedence equation model

and the Gillespie Direct Method version. The histograms(@)show the distribution of

target cell, infected cell, and virus populations at theil@igg of day 2, while histograms
(d)—(f) are for the beginning of day 5. The filled gray histmas represent the Direct
Method outputs, while the open histogram bars are the difieg equation outputs. The
averages from these runs are shown in Figure 3.2.
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The running time for a nig@e implementation of the Gillespie Direct Method is at leas
three orders of magnitude longer than the difference eguaiodel | use. In my model,
it is assumed all probabilities (such as the probability theell becomes infected) can be
treated as constant during a time step. Using this assumpiie effects of the actions of a
population of identical cells during one time step can bemat@d in one operation. Using
larger time steps (such as 30 minutes) decreased runniegatimproduced a noticeably
different distribution of outcomes than the Gillespie vens so | chose a 10-minute time

step for the simulation runs.

3.2 The T cell life cycle

CTL dynamics are represented in a stochastic stage-steactnodel of T cell activation,
proliferation, and differentiation. Infected cells frommetinfection dynamics model (de-
scribed in Section 3.1) stimulateima T cells and are killed by effector T cells (depicted
in Figure 3.4). The degree of T cell stimulation and infeatetl clearance are determined

by receptor binding rules.

3.2.1 Receptor binding

CTLs detect antigens when their TCRs bind sufficiently well to GH#épitope complexes
on the surfaces of the infected cells (Section 2.1.1). Imibeel, each antigen is associ-
ated with one or more epitopes, and each epitope is assbevittean MHC type. A cell
infected by this antigen expresses these epitopes, whielalro the immune system that
the cell contains pathogens. Each CTL in the model is assabveith a single TCR speci-
ficity (implying that each CTL expresses one kind of TCR), whiaeh detect a particular
epitope. The strength of the binding interaction betweenGfiL's TCRs and the MHC—
epitope complexes is defined to be the binding affinity. A TCR high affinity for its
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Figure 3.4: The process of infection and the life cycle of CirLthe model. Target cells
are infected by virus, and these infected cells generate mious and interact with T

cells. Nave cells, when stimulated by antigen proliferate and bexeffector cells. The

probability of a n&ve cell being stimulated by antigen depends on the stristadce be-

tween the TCR and the antigen-MHC complex. Most effectorshiieabout 5% of these
proliferating effector cells become memory cells. The mgnuells can be stimulated to
become effectors in a secondary response (not shown).

cognate epitope, lower affinity for related epitopes, andffinity for unrelated epitopes.
The model assigns affinity values for each combination of TG® epitope. The model
assigns each TCR a dissociation constant for each MHC—epitopplex, and affinity is

inversely proportional to the dissociation constant. Ttoelel's representation of TCRs,

MHC—-peptide complexes, and the affinities between them averitbed in Chapter 4.

A CTL successfully detects an infected cell when it has a higthty for the cell. The
avidity that a CTL in the model has for an infected cell expiregs single epitope is the

product of its TCR'’s affinity for the epitope multiplied by a fravalue,e, representing
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the epitope’s surface expression density. Thus, a highigffinteraction can result in
low avidity if the epitope’s density is low. | assume that@lls infected with the same
pathogen have the same epitope densities, making themuallggntigenic. If an infected
cell expresses multiple epitopes, a CTL's avidity for it i sum of its avidities for the

various epitopes.

3.2.2 Effector recruitment from the naive and memory cell pools

Infected cells stimulate e and memory cells, causing them to differentiate into ef-
fectors. Because a relatively small number oifveacells are recruited into an immune
response, | assume that they do not compete with each ottatfgen, allowing the stim-
ulation of each niae clone to be computed independently. Antigenic stinotetiakes the
form of a saturating functio% (De Boer et gl., 2&)1; Davenpoal{, 2002):

Y
Stimulation= 1—' (3.13)
wherekK; is the amount of antigenrequired to generate half-maximal stimulation for the
T cell, g is epitope density on cells infected by antigeandl; is the number of infected
cells expressing antigann the system. This expression is in agreement with the ebser
vation that CTL recruitment is proportional to epitope dgngWherry et ax. 1999), but

the response magnitude does not increase after a threshditydis reached (Vijh et al.,

1998). | assume that na T cells are recruited into the immune response at a raye of
multiplied by the stimulation, wherg= 1 day ! is the maximum recruitment rate of T

cells.

Naive T cells specific to a particular antigen are in the samgestatil they are stim-
ulated. My model accommodates T cells of different antigegcsicities by instantiating
separate stage-based models for each, but for the purplodissussion | will assume that

there is only one T cell specificity. If there are multiple Tiobones, their execution order
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is permuted using a Fisher-Yates shuffle (Fisher and Yaﬁﬁ)las is done for multiple

infectious agents. As iiee cells are stimulated, they must wajt hours, representing
the developmental time before aiva cell begins its programmed response. To imple-
ment this delay, the cells are promoted through a seriesp$tages, with all cells in a
stage moving to the next stage at each 10-minute time step.cdlts in these stages do
not interact with infected cells, but when they emerge afiesimulation hours, they be-
come effectors and start responding to infected cells arididg. In my model, | assume

T cells take a minimum of 5 hours to divide, and that the firsell divisions take place
24 hours after antigenic stimulation (Oehen and Brduscha'JIJ?l99M Gett and Hodgkin,
‘2000; Veiga-Fernandes et LI., 2%0; van Stipdonkut al1RB0 | chosan = 19 hours.

Memory cells are recruited in the same manner ageneells except that | assume it

takes only one hounf, = 1 hour) for a stimulated memory cell to begin its programmed

response, reflecting the rapid response of memory cellsttiogans (Bachmann et al.,
‘1999; Barber et al., 201)3).

3.2.3 Clearance of infected cells

Because the CTL responses to different antigenic epitopdseatame pathogen do not
appear to interfere with each othgr (Vijh el m999), | elothe immune response to
multiple epitopes as the sum of independent responses todivedual epitopes. There-
fore, I need only define the clearance of infected cells esging a single epitope by many
T cell clones. | assume that effector T cells of clgné;, bind to infected cell$ in re-
versible reactions (at ratd8 for binding andk? for dissociation) to form complexes;,
and that effectors bound in these complexes clear the adeaxtlls at raté’:
K e
Ej+1=C - Ej (3.14)

K
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Directly translating the above expression to a differdmtaiation:
Cj = KEji — (K +K5)C; (3.15)

Whereéj andi are unbound effectors and infected cells, respectivelyn@ing variables

to total cells and conserving the number of infected cefissugggested in Borghans ei al.
(199%), gives

Ci =K(Ej-C) |—ch (K +KE)C; (3.16)

where ' Cy is the number of complexes of all effector cells of all spetiis with .

Assuming quasi-steady state:

0=K(Ejl —Cjl —E,chqtcjzck)—(k%kj?)cj (3.17)

Following De Boer and Perelso‘n (1995), | approximate thetmwitto equation 3.17 by

assuming th€;C terms are small enough to be omitted:

Ejl —Ej >kCx
-~ 1
< I +K; (3.18)

Kdpke
whereKj = L5,
i

Following the derivation from the Appendix L)f De Boer and FPsye k1995), the so-

lution to equation 3.18 when there are multiple T cell cloises

IE;
Cj~ 1 (3.19)
Kj+ 1+ >kExrr,
Therefore, the clearance rateladue to effectors of all specificities is:
IE;
~SKCj~§ -k ) (3.20)
g I+K;
2 ; KJ + I + ZK |+K|J(
For a system with only one T cell clone, E:
L=
N——— 3.21
K+I1+E ( )
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Expression 3.21 yields a dose-response relationship beteféector cell numbers and

the infected cell clearance rate that saturatek‘latis the number of effector cells in-

creases, which agrees with experimental findiLgs (Lehn@mbe{ 198‘8). It also includes
a term for inter-clonal competition among the effector £édir infected cells expressing

a single epitope. It appears that high- and low-avidity CT&elyheir targets at similar

rates‘(Derby et al., 2001), so | détto be the same for all T cell clones in my model. In
LCMV responses, the value k&f was found to be 12 day (Barchet et al., 2000). Smaller

populations of T cells might have higher per capita killiagess, but I assume that most of
an infection is resolved while the effector cell populatistarge. In my model, increased
avidity K affects the ability to detect and bind to infected cells at tmncentrations off.
Multiple T cell clones clear infected cells at the rate dist by equation 3.20, in which
T cells compete for access to infected cells based on thelitiag to them. High-avidity

clones are more effective at clearing infected cells thandwidity clones.

| assume that effector cell mediated clearance of infecé#ld s a Poisson process.
From equation 3.21, one can determine the expected numbeeofed cells to be cleared
in a time intervalAt to belAt. | compute the number of infected cells that are cleared
during At by randomly drawing from the Poisson distributiwrQI'At) at each time step.
This term is subtracted from the right side of equation 3ift¢tude the effect of cytotoxic

T cell clearance on the infected cell population.

3.2.4 T cell replication

I implement the programmed divisions of newly activateeetir cells by keeping track
of the number of times a cell divides. When avgacell is first stimulated, it joins the
cohort of effector cells that have not yet divided. When itroguces, it is moved with

its daughter to the next division cohort. | adopt the traosiprobability cell cycle model

described by Smith and Martin (1973), which has two phaseg phase with a variable
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residence time and a B phase that takes a fixed length of tinm@verse. Cells start
in phaseA, in which the cells do not divide. At each time step, a cell hasonstant
probability of entering phasB, during which it divides in a fixed amount of time. At
the end of theB phase, both the parent cell and the new daughter cell erae piinase.
This two-phase model enforces a minimum time to cell divisi/ithout the fixed length
B phase, some cells could divide an arbitrarily large numlbé¢inees in a time interval,

which is a characteristic of continuous models of cell retdion.

To implement the Smith-Martin cell cycle model, each dmrscohort is subdivided
into anA phase and a set &phase sub-cohorts (Figure 3.5). To mimic the fixed length of
time it takes a cell to traverse the B phase | allocate®pbase sub-cohort per time step
that the cells remain iB phase, and move cells from one sub-cohort to the next at each
simulation time step (Figure 3.5). | use 10-minute time stasp to model cells remaining
in the B phase fon hours, | use 6B phase sub-cohorts per division cohort. At each time
step, cells in theA phase of each division cohort transition to tBehase with a fixed

probability.

| assume that the average cell cycle time of an effector Tisdélhours and that the

minimum time to division is about 5 hours (van Stipdonk egémob. Therefore the du-

ration of theB phase is 5 hours and the average duration ofAlphase is 1 hour. To
simulate a 5 houB phase using 10-minute simulation time steps, | use 30 shbft

To mimic the one hour average residence inAhghase, | assume the rate at which cells
in A phase transition t@® phase is 1 hout!. | convert this rate to the probability that
A phase cells will transition t@ phase in a time step in the manner described in Sec-
tion/3.1 and draw from the binomial distribution to detersnimow many cells performed

the transition. Because T cells with different specificiseem to expand at the same rate

in vivo &Busch et al., 1998b), all cells in the model share thma cell cycle parameters.
When a death rate & = 0.6 day * is included ‘(Veiga—Fernandes eJ gl., ZLOO), the cell
population grows at a rate of 0.092 hotir or about 9-fold per day. T cells divide for
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Figure 3.5: Implementation of the Smith and Martin two-ghasell cycle

model (Smith and Martin, 1973). Each box represents thes dalla given stage,
and the arrows represent possible transitions betweersstddpte that cells i\ phase

can either remain i\ phase or transition t8 phase, whileB phase cells progress at a
fixed rate until they reach phase. In this figure, each B sub-stage is one hour, and in the
model implementation each sub-stage is 10 minutes.

about 5 days (Lehmann-Grube, 1988), which implies that glsindve T cell can gen-
erate 60,000 effector cells, which agrees with experiméf@igh and Selin, 2002). If one
assumes that a T cell cannot divide more than 100 times, tloeitd to be up to 3100 sub-
populations of effector cells per T cell clone, or 100 A phasbkpopulations and 3000 B
phase subpopulations. These 3100 subpopulations efficrepresent the approximately
600,000 cells (i.e., 10 e cells per clone (Casrouge et al., 2000) and 60,000 effecto

from each nave cell) that can originate from a single clone in an immussgpoNnse.

After their programmed divisions, the cells stop dividirgaflovinac et al., 2002). |
assume that during the entire lifetime of the activated T, ety are subject to the same
high death ratég. Thus, cell populations that have stopped dividing areesilip rapid

population decline.
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3.2.5 Memory

Some of the effector cells that proliferate during an immresponse become long-lived

memory cells. In the model, effector cells have a 2% per daycé of becoming mem-
ory cells after 5 cell divisionsL (Oehen and Brduscha-R emBJJm)ferman et al[, 19%9),

which results in a final memory pool that is about 5% of the peakonse (De Boer et al.,
2001). The model assumes that all effector cells have an egoizability of converting
to memory. Like néave cells, memory cells become effector cells upon antigstimula-
tion. | assume that memory cells have the same sensitivigntigen as ria@e cells, but

they enter cell cycle only one hour after antigenic stimatat Memory-derived effector

cells have a lower death rate thariveaderived effectors (Grayson eJ gl., 2002), and | set

this rate to bédg,, = 0.4 day?! AVeiga—Fernandes et ul 2000). Because memory-derived
effectors have the same proliferation rate asvexerived effectors, this lower death rate

allows them to experience higher net population growth.

3.3 Summary

A virus infection model and a CTL model interact to form a sgsthat can simulate the
CTL response to infection. The virus dynamics are adapted &standard ODE model of
infection. The CTL model captures the behavior of individligkells, but it uses a compu-
tationally efficient stage-structured approach.iweaCTLs are recruited into the immune
response by infected cells at a rate proportional to thé&imigf to the antigen. Once re-
cruited, they become effector cells, which rapidly prokifie and eliminate infected cells.
After the response, some of these effector cells becomelieedy memory cells while the
rest die. Memory cells are dormant until they are stimuldtgthfected cells, after which
they become effector cells. Many of the parameters useckimibdel are summarized in
Table 3.1.
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attribute value
time step {t) 10 minutes
nave cell clone size 10 cells
maximum T cell recruitment rate) 1 day !
delay before a stimulated ive cell becomes an effectar,) 19 hour$
delay before a stimulated memory cell becomes an effetigr (1 hour
nave-derived active CTL death rat8g) 0.6 day 8
memory-derived active CTL death ra() 0.4 day 18
time in B phase for CTL 5 hours
average CTL cell cycle time 6 hours
infected cell clearance rat&®] 12 day 1T

* Casrouge et al. (2000)

t Oehen and Brduscha-Riem  (1998); Gett and Hodlgkin ﬁZOOO);
Veiga-Fernandes et al. (2d0b); van Stipdonk et al. (2001)

* Bachmann et al. (1999); Barber et al. (2003)

§ \eiga-Fernandes et al. (2000)

van Stipdonk et al. (2001)

T Barchet et al. (2000)

Table 3.1: A summary of model parameters.
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Chapter 4
Representing the CTL repertoire L]

What is real is not the external form, but the essence of fhing is impos-

sible for anyone to express anything essentially real byaitnig its exterior
surface.

—Constantin Brancusi

I’'m afraid that if you look at a thing long enough, it loses aflits meaning.

—Andy Warhol

This chapter describes the model’'s abstract represemt@tiblCR—peptide interactions
that define the affinities of CTLs for infected cells. The CTL rabdescribed in Chap-
ter/3 uses these affinity values to govern the behavior o$.celiCRs and peptides are
represented as digit strings in the model, and the strerigpibevactions between them are
determined by the similarity between their strings, as @effioy a distance metric. Strings
are defined in Section 4.1. The purpose of the model is not toienieceptor—ligand
binding, but to have a representation that supports a tieatismber of CTL clones with

different affinities to antigen. Section 4.2 is a high-lestescription of the procedure used
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to generate the fiee CTL repertoire. This procedure is applied to create thliferent
versions of the model, each with a different definition ofrgjrdistance. Comparing the
behavior of the three implementations in Chapters 5/and 6imdicate how robust the
results are to assumptions about antigenic distance. Tle thetrics are defined and cali-
brated in Appendix A. In the model, an antigen’s epitopesatgect to random mutation,
and this operation is defined in Section|4.3. The CTL modelrits=t in Chapter 3 re-
quires affinity, not string distance, be defined, so the o for converting distance to
affinity is in Section 4.4.

4.1 Strings and distances

Strings of digits represent the binding surfaces of reasptand ligands in
the model, an abstraction used by several immunological etsodin the
past (Farmer etal.,, 1986; Celada and Seiden, 1992, Detoasz di999; Smith et al.,
‘1999;‘ Bernaschi and Castiglio#e, 2001). The digits can takevalue between 0 and

k— 1 inclusive, wherd is the alphabet size. A random string, which one can thinksat a

sequence of amino acids, is generated for each self peptithe isimulation. It has been

suggested that £0- 10° self peptides are involved in thymic selection (Bevan, 1997;
Miuller and Bonhoeffér, ZOM; Bandeira and FeLro, 2003), so thdemoreates 10,000

random “self peptide” strings for each of the three MHC alein the model. When a

new antigen type is created in the model, random peptidegstiare created to represent
its epitopes. These strings represent the novel peptidéa ttell infected with the antigen
expresses. Thus, all cells infected by this antigen arecagsd with the same set of
one or more epitope strings. Uninfected cells do not expeegspeptides in the model

because it is assumed that CTLs do not interact with healtlts. ce

The organism represented by the model has three MHC alBé&zsiuse | assume that

each distinct peptide in the “real” immune system is presgtly a single MHC allele,
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Infected cell

Figure 4.1: The digit string representation of TCR bindingcET cell receptor, peptide,
and MHC type is represented by a digit string. Peptide sériagg concatenated with
a string associated with one of the MHC types to form a singldQvpeptide complex
string. Affinity is proportional to the similarity of the TCRrég to the MHC—peptide
complex string.

each peptide string in the model is associated with exacityad the three MHC alleles.
Because a TCR binds to both the peptide and parts of the MHC, dable alleles is
associated with a random digit string to represent the @godf MHC visible to the TCR.
A peptide string is concatenated with its associated MHQiagto form a single MHC—

peptide complex string that interacts with TCRs (Figure 4.1).

Each CTL in the simulation is assigned a randomly generatedSt@#&y, which is the
same length as the MHC—peptide complex strings (Figure Z1g.similarity between a
TCR string to an MHC—peptide complex string determines thaigffthat the CTL has
for an infected cell expressing that peptide. Each CTL isagslto express many copies
of the same TCR, so a single TCR string is sufficient to repres€iilés specificity for

antigen.
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Antigenic distancewhich has an inverse relationship with affinity, is a measftow
reactive an immune cell is to an antigen. If a CTL has a highigffior an epitope, then
it is antigenically close to it. In the model, a distance naeis used to formally define
the distance between a CTL and an MHC—peptide complex stringamze is inversely
proportional to similarity. If the metric determines a TCRirg§ and an MHC—peptide
complex string to be close (similar), then they have a hiffjinty interaction in the model.
The distance metric can be defined in many ways, and the cbbiwetric might affect the
CTL model's behavior. Therefore, | implement three différegrsions of the CTL model,
each using a different definition of distance. These metiesdefined in Appendix A.
For all three metrics, the distance between two stringssistim of the distances between
their corresponding digits. This constraint agrees withdhservation that amino acid side
chains of peptides seem to make independent contributiohe tbinding energy with the
.,19&8)

TCR (Hemmer et al

4.2 Generating the ndve T cell repertoire

Thymic selection shapes the distribution of TCRs in the immsgstem, and the
CTL model uses an analogous process to generate iige M@TL repertoire (de-
scribed in Section 4.2.1). A murine or humarivearepertoire consists of $0- 10’

clones (Pannetier et al., 1993; Arstila et al., 1999; Caz@ai@l., 2000), which would be

computationally expensive to simulate. Because the purpbt®ee model is to observe
the response to a set of antigens, only the tiny fraction Chias ¢an respond to these
antigens need to be instantiated. The procedure for gemgiaily the responding CTLs
is described in Section 4.2.2. | have implemented versidiiseoCTL model using three
different distance metrics: Hamming, xor, and modified Mattdn distance. These met-
rics are defined and calibrated for the CTL model in Appendiaid a summary of this

calibration is presented in Table 4.2.
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4.2.1 Thymic selection

In the immune system, the fate of CTLs during thymic selectiepends on their affinity
for MHC—self peptide complexes. The model subjects randa¥splection TCR strings
to an analogous process. Random strings are generated éseapthe TCRs of the pre-
selection CTL repertoire. The distance between each of thesselection strings and
all of the MHC-self peptide strings is computed. A positiveesgon process eliminates
CTLs with TCR strings that are too far from (dissimilar to) alH@—self peptide com-

plexes, and a negative selection process eliminates thilBeT®@Rs that are too close
(similar) to any MHC-self complex. Only CTLs with TCR stringsathare an intermedi-

ate distance from MHC—self peptide complexes survive to fivenave repertoire. The

Mouse Human| Hamming | xor L)
# of self peptides 100 —10°* 30,000 30,000 30,000
# of MHC types 3 4 3 3 3
universe of TCRs (or # 10157 | 1.47x 10%® | 1.18x 107 | 1.13x 10%
of possible TCR strings
# of pre-selection clones < 10° 103 8x 10’ 25x10° 25x10°
# of ndve clones 106 -10"* | 10’8 | 317x10° | 202x10F | 1.95x10C°
foreign peptide response10~°—10° 8.39x 1076 | 1.27x10°° | 1.43x10°°
frequency
thymic selection win-| 1-3% 3.96% 0.807% 0.778%
dow size
% killed in negative se1 50-66% 46% 61% 70%
lection
# of clones per epitope | 10-20 26.6 25.7 27.9

* Bevan (1997): Miller and Bonhoeffer (2003); Bandeira and Faro (2003)
t Davis and Bjorkman (1988)

* Pannetier et al. (1993); Casrouge et al. (2000)

§ Arstila et al. (1999)

Blattman et al. (2062)

Table 4.1: A summary of the values used to calibrate theréiffiedistance metrics. Bi-
ologically plausible values from studies of mice and humargslisted for comparison
with the model’'s parameters.

43



Chapter 4. Representing the CTL repertoire

model computes positive and negative selection distarreshblds to eliminate most of
the random pre-selection CTLs, leaving only a small set ofigung naive clones (Fig-
ure 4.2).

For a particular TCR string, | designate the nearest (mostasinMHC—self peptide
complex string as its “selecting” peptide. The distanceveen a CTL's TCR string and
its selecting peptide determines whether or not the CTL gesvithymic selection. If
the selecting peptide is too close, then the CTL is elimin&edegative selection; if it
is too far, then it is eliminated by positive selection. Newlecting self peptides, which
are farther from the TCR than the selecting peptide, do nettifs chance of surviving

selection.

The model’s definition of the “intermediate distance” frorifshat ensures survival

of pre-selection CTLs is derived from mouse data. In mice %4-68 pre-selection T cells

survive thymic selection (Shortman et al., 1990), and abaethalf to two-thirds of cells

that survive positive selection are eliminated by nega®fection. Therefore the model
uses positive and negative selection thresholds such-#3&b bf pre-selection CTLs have
selecting peptides at distances between these two thdssteid about 1-2 times more
pre-selection CTLs (i.e., 1-6%) have selecting peptidesatecloser than the negative

selection threshold.

The positive and negative selection thresholds are foummduke distribution of ex-

pected distances between a random TCR string and its s@lgetptide. The distribution

was computed for each distance metric using the algorithserdeed in Detours et al.

1999). The expected fraction of pre-selection CTLs elingdaby negative selection is
calculated by summing the distribution for all distancesrfrzero to the negative selection
threshold (Figure 4/2). The expected fraction of CTLs elabéd by positive selection is
the summation of the distribution for all distances from plesitive selection threshold to
infinity. The CTLs that are between these two thresholds atfesiffiwindow” of distances

that survive thymic selection in the model. Various combores of positive and negative
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<———positive selection threshold

negative selection threshold

positive selection
eliminates low-affinity clones

fraction of pre-selection TCRs

negative selection
eliminates high-affinity clone:

©

selection window of 1-3% of clones

Distance between TCRs and their selecting MHC-self peptides

Figure 4.2: The thymic selection window computation. Thpested distribution of dis-

tances between a random pre-selection TCR and the nearest $¢H@eptide complex

is plotted. Positive selection eliminates the CTLs with TCRd Hre to the “right” of the

positive selection threshold, while negative selectiomiglates those to the “left” of the
negative selection threshold. Those that are between théhtwsholds survive selection
and become rige cells.

selection thresholds were tested to find a combination titegfg the constraints derived

from mouse data (Figure 4.2).

4.2.2 Lazy evaluation and the cross-reactive cutoff

Mice and humans have an estimated 200" naive CTL cIones‘(Pannetier et‘aLI., 1$93;
1999; Casrouge et‘ ELI., ZBOO), which exist tiicgpate a seemingly infinite

variety of pathogens. Most of these cells never have the ryopity to participate in a

Arstila et al

response to antigen during the organism’s lifetime. A respao a single epitope usu-
ally involves only tens of CTL clones, and a single organisnhvé exposed to a limited

number of antigens. Thus, only a tiny fraction ofiveCTLs will ever play a significant
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role in clearing infections from an organism. In a simulative are interested only in
this fraction. In fact, a “newborn” simulated organism wuot need any rige CTLs

until it is exposed to antigen. Immediately before each syp®to antigen, the simulation
can instantiate the cells that can respond to that partianiggen if they were not already

created in a prior exposure to antigen. In this manner, didyGTLs that play an active
role in the simulation are explicitly created. This procexiwas formalized iL; Smith et Lal.

1998), in which the author adapts computer science’s qurmdazy evaluatiorto de-

termine which cells actually need to be instantiated. Bytangaonly the cells that are

necessary, the simulation is orders of magnitude more effici

Most CTLs are too antigenically distant from any given epdp have any affinity
for it, so only the tiny fraction of CTLs that have affinity foné antigen’s epitopes are
instantiated in a “lazy” simulation. Theross-reactive cutofis the antigenic distance
from an epitope beyond which immune cells, such as B or T ,dedige negligible affinity
for the epitope. Thus, when a simulation introduces a nevgamt only the nave CTLs
that are closer than the cross-reactive cutoff of the ansgepitopes are created. In the
model, the cross-reactive cutoff for MHC—foreign peptidenptexes is set to be equal
to thymic selection’s negative selection threshold for MId€lf-peptide complexes. This
is based on the assumption that the purpose of negativetisalég to rid the body of
self-reactive CTLs, so the cells that could react to MHC—sefitjgle complexes in the
body (i.e., those within the cross-reactive cutoff of thesmplexes) are exactly those that

are removed by negative selection (i.e., those within tlgate selection threshold). If

only 10°° of the repertoire responds to an epito‘pe (Stockinger‘gl%&); Zinkernagel,
1996), then using lazy evaluation can reduce the numbeiisfareated in a simulated re-

sponse to an epitope by 5 orders of magnitude. In the paskelersdised artificially small

repertoires‘ (Kleinstein and SeiJi n, 2000) or required tamtisl computing resources to

simulate a realistic-sized repertoiLe (Detours and 000). In my model, all of the

active cells of a realistic-sized repertoire are repressknt
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Figure 4.3: Lazy evaluation of CTLs. The pre-selection rapey for a single epitope
is depicted in Figure a). The represents an MHC—epitope complex, and filled circles
represent pre-selection CTLs. The distance between thepepand a CTL in the figure

is proportional to their antigenic distance. The pre-dedecrepertoire is generated by
creating CTLs at each distance from 0 to the cross-reactidiagdrom the MHC—epitope

complex. Figure b) depicts the repertoire after thymicceda against a single MHC—self
peptide complex. Thymic selection eliminates those thatnathin the negative selection
thresholds of any MHC—self peptide complex and those that@tistde the positive selec-
tion thresholds of all MHC—self peptide complexes. The CTlat tto not survive thymic

selection are drawn as empty dashed circles. The survivhg (illed circles) mature to

become néave CTLs.

The first step in instantiating the CTLs that can respond taticpéar epitope is to cre-
ate a pre-selection repertoire for the epitope. Using laajuation, only the pre-selection
repertoire that is within the cross-reactive cutoff of théi®l-epitope complex is gen-
erated. These CTLs form a “sphere” of strings surroundingMREC—epitope complex
with a radius equal to the cross-reactive cutoff (Figur@}.3hese CTLs can be created

by generating random strings that are at distance 0 fromdh®lex, then at distance 1,

and so on until the cross-reactive cutoff distance is retzhcﬁeé Smith et Jil‘ (1998) for a

detailed description.

The number of CTLs that should be generated at each distabesesl on the number
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one would expect to find at each distance if all of the clondb@pre-selection repertoire
were explicitly generated. For example, if the simulaticest MHC—peptide complex
strings of length 10 and an alphabet of size 20, then the nuaflpssible strings is 26,

or about 183. Of these strings, only one is exactly the same as the corap#ing. If
the simulated organism has a pre-selection repertoireo$iz€® CTLs, then the expected
number of clones at distance 0 from the complex &/10'2 = 10-°. The expected num-
ber of clones for distances greater than 0 depends on theylartdistance metric chosen,
and the calculations for each distance metric are desciibégpendix A. The actual
number of clones at each distance is chosen by drawing amandmber from the bino-

mial distribution with the expected value as the mean.

Once the number of pre-selection TCR strings at a given distrom an MHC-
epitope complex is determined, random TCR strings are geketsing the algorithms
described in Appendix A. If the repertoire for one or moresotlHC—epitope complexes
was generated before, then care must be taken so that tivegeaiselection CTLs do not
“overlap” with them. When a new pre-selection TCR string fallthin the cross-reactive
cutoffs of a previously encountered epitope, that TCR isielited. These TCRs are in
the region of TCR space that is stimulated by the current MH@se@ complex and a
previous one. Therefore, the TCRs in this region are createldayygeneration upon
exposure to the first complex, and the second complex carulstienthose previously

generated TCRs rather than create extra ones in this regi@enecbisy the other complex.

After the pre-selection cells are generated, they are stdgeto a thymic selection
process against all MHC—self peptide complexes. The distahetween each clone and
each MHC—self peptide complex is computed, and those clbia¢site too close to one of
the self complexes or too far from all of them are eliminatéigre 4.3b). The remaining

clones enter the fige repertoire.
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4.3 Mutation

Genetic mutation is one of the many mechanisms that viruges évolved to evade the
immune response. When antigens replicate in the body, maotatan change or even
eliminate the epitopes that cells infected by this antiggoress. Over the course of an
infection, random mutations can accumulate in an antigeréage, generating multiple
competing variant strains in a single host. The CTL model @am@nts antigenic mutation
so these effects can be studied.

| assume that mutation makes random changes to the virahgenten it replicates,
so the mutation rate in the CTL model is expressed as a prayaifimutation per replica-
tion event. A mutation changes an antigen’s epitopes bingeadtsingle randomly chosen
portion of an antigen’s epitope string to a random value.tkexor and modified Manhat-
tan distance versions, a mutation changes only a randonolyechsingle digit. Because
the Hamming distance version of the model uses much longepepstrings (see Ap-
pendix A.1), strings are divided into groups of 8 digits, @ahutation sets all 8 digits of

one randomly chosen group to random values.

In the CTL model, the number of mutations that occur dependl@rirus dynamics.

Recall the equations that govern virus dynamics from Se&itin

AT = (A=3&T—BTV)AL, (4.1)
Al = (BTV-—§l)At, (4.2)
AV = (1l —cV)At (4.3)

If one assumes that mutations occur when viruses replicdaténva host cell, then the
number of new mutant viruses that arise per time step is ptiopal to the virus produc-
tion rate,d At from Equation 4.3. However, most of these new viruses wal (@hecV

term) without infecting cells, so there is no need for thewation to generate all of the

mutants. It is more efficient to create the mutants as cedisrdected because only the
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viruses that successfully infect a cell affect the host. Latk infected at ratBT VAL,
so the number of new mutant cells generated in a time ste@grdirom the binomial
B (BTVAt, p), wherep is the mutation rate. The epitopes expressed by the origimta
gen are changed for each of these new mutants. Thus, eactian@teent creates a single

infected cell expressing what is likely to be a unique epgtop

Because a newly mutated antigen strain has an altered epgope of the CTLs
that had responded to the original antigen will not respand.t Figure! 4.4 shows the
distribution of the number of CTLs that can respond to oneopgitand the number of
those that can recognize the mutated epitope. For the sesdivn in this figure, mutation
was performed by setting the first digit(s) of the epitopéngtto O, so the peptide was
unchanged if the digit was originally 0. For both the xor adnetrics, about half of the
mutations changed the epitope enough that none of the CTL&ddaresponded to the
original epitope recognized the new epitope. In the Hammiagric version, mutation

never allowed the epitope to evade all of the clones that ésylonded to the original.

4.4 Converting distance to affinity

The CTL model described in Chapter 3 requires that the affiretyvben a TCR and an
MHC—peptide complex be defined. Affinity, which is the stréngt the interaction be-
tween a TCR and an MHC—peptide complex, determines the rateiel wuiescent CTLs
are recruited into a response (Section 3.2.2) and how sapighrticular clone clears in-
fected cells (Sectian 3.2.3). The strength of interactlmetsveen TCRs and MHC—peptide

complexes is proportional to their string distances in tloeleh.

In the immune system, TCRs have sensitivities for antigendéuatdiffer by orders of
magnitude. Therefore, the affinity decreases exponentiath respect to string distance

in the model. Affinities are defined for each of the three \@rsiof the mode by computing
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Figure 4.4. The repertoire overlap between mutated emtopECRs were generated
around a foreign peptide—self MHC complex. The distributad the number of TCRs
is indicated by the solid line. The epitope was mutated, hedlistribution of the number
of TCRs from the original epitope that could respond to the nee is indicated by the
dashed line. The peptide was mutated by eight digits forahélamming results and by
one digit for the (b) xor and (c)j results. Results shown are the distribution of 1000

trials.

a dissociation constarit,, based on distance:

Kor = 5,000+ 15,000x (Pxor—119/3 (4.4)
Ky = 5,000+5,000x e**(PH—31) (4.5)
Kiy = 5,000+ 10,000x 2*(Prv—19 (4.6)

51



Chapter 4. Representing the CTL repertoire

where Dy Is the xor distanceDy is the Hamming distance, aridy  is the modified
Manhattan distance. Affinity is inversely proportional teetdissociation constant (see
Section 3.2.2). The constants in Equations|4.4—4.6 werserhso that each epitope has
a few high-affinity clones in the iie repertoire K in the range of 5000- 10000) and
that the low-affinity clones have a dissociation constaat th between 10— 10’. The
distribution of néve clone distances from and affinities for an MHC—epitope glemis
shown in Figure 4.5. The affinity distributions for the diff@t distance metrics could not

be made equal, but they are qualitatively similar.

4.5 Summary

The CTL model uses digit strings to represent TCRs and MHC—pepbdplexes. The
affinity that a CTL has for an MHC—peptide complex is propordbto the similarity of
the digit strings corresponding to the CTL's TCR and the complehere similarity is
defined by a string distance metric. Three versions of theat@&ach using a different
distance metric (Hamming, xor, and modified Manhattan dist® are calibrated to match
known thymic selection characteristics in mice. The modgblements a process that
represents thymic selection to produce &/aaCTL repertoire. The model represents an
organism with 16— 10" CTL clones, but most of these clones do not need to be explicitl
generated in a simulation. By creating only the TCRs that cgroresbto the epitopes used
in a particular simulation, the simulation realizes an emmus savings in computation
and memory, sometimes by as much as a factor 8f Zh epitope mutation operation
is defined to allow the model to simulate the evolution of pgns in a host. Finally,

formulas for converting string distances to the affinitywesd are given.
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Figure 4.5: The distances of TCRs from an MHC—foreign peptideptex. CTL clones
for a foreign peptide were generated using lazy evaluafidre distribution of distances
between the clones and the foreign peptide-self MHC comiplpbotted for (a) Hamming
distance, (b) xor distance, and (c) modified Manhattan nicgta The plots represent av-
erage results from 100 runs. In (d), the results in (a)—(e)canverted to affinities using
Equations 4.4—4.6. The histogram plots the number of clarissa given affinity for the
complex. Each bin of the histogram is larger than the prexgehin by a factor of 10. The
solid bars represent Hamming distance, the diagonal bpregent xor distance, and the
cross-hatched bars represent modified Manhattan distance.
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Results[]

If you know exactly what you're going to do, what'’s the good iimgat?

—Pablo Picasso

The definition of insanity is doing the same thing over and axd expecting
different results.

—Benjamin Franklin

The CTL model reproduces phenomena seen in cell culture atabanatory mice.
The effects that thymic selection has on the modeliwa&TL repertoire are described
in Section 5.1. Sectian 5.2 illustrates the basic dynamide@acute CTL response us-
ing only one or two clones per epitope. A realistic number lohes is introduced in
Section 5.3, which describes the clonal composition of aasps. Most of the results
presented in Sections 5.2 and 5.3 were first publishéd in Cthelo éoo%), Chao et gl.
20044a), and Chao et al. (2004b).
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5.1 Consequences of thymic selection

Thymic selection transforms a random CTL repertoire into tha can detect foreign
peptides while ignoring self peptides. The model's implatagon of thymic selection
performs an analogous function on a set of random TCR striangs,its effects can be
observed by comparing the repertoire before and aftertsmhed=ven though the model
creates three MHC alleles and mice and humans generallggxpnore than one, | dis-

cuss many of the results as if there were only one MHC typesuras that MHC restric-

tion &Zinkernagel and DohertL/, 1474) is strong enough th@ta can only interact with
peptides presented on the MHC type that presented its sgjguéptide in the thymus.

This assumption simplifies the following discussion withlmss of generality.

5.1.1 CTL repertoire coverage of foreign peptides

The number of foreign peptides that a CTL repertoire can ngizegin the model is a
function of the number of clones. | deficeverageas the percentage of foreign peptides
that are detected by at least one CTL clone. Figure 5.1 pletseflationship between the
number of née clones and coverage, which initially increases withrtbmber of clones
then quickly saturates. To determine the foreign peptidei@age of a CTL repertoire,

| generated 10,000 random “foreign” peptide strings andhteml the fraction that was
detected by the model's CTL repertoire, which is randomlyegated. Because | was
measuring the coverage of a whole repertoire, the CTLs weapbcély generated and
subjected to thymic selection against 30,000 self peptided lazy evaluation was not

used.

The probability that a foreign peptide is “covered” by atdeane clone can be esti-
mated using the foreign peptide response frequdneyhich is calculated for each of the

distance metrics used by the CTL model in Appendix A. If a gL covers a fraction
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Figure 5.1: Foreign peptide coverage by CTLs. 10,000 randweign peptide strings
were generated and each was associated with one of three fd€. tin (a), the fraction
of these MHC—foreign peptide complexes detected by at lewsCT L of a set oh clones

is plotted against the size of the repertoire for Hammis)g Xor (¢), andL] (+) distance
versions of the model. In (b), the fractiot covered is plotted. The lines indicate the
expected values using Equation 5.1.

f of all possible foreign peptides, then the fraction of spacecovered is - f. The
probability that a foreign peptide is not covered by a set distinct CTLs is(1— f)".

Thus, the foreign peptide coveragg of n clones is:
An=1—(1—f)" (5.1)

This prediction fits results from the model for all distancetrits (Figure 5.1). This
indicates that coverage can be estimated accurately usipghe foreign peptide response
frequency, without considering the other properties ofdistance metrics. This result
also implies that the CTLs that survive selection cover trecemf foreign peptides with
the same efficiency as one would expect of the same numbendbmaly generated pre-

selection CTLs.

An effective CTL response requires multiple clones per @afcso coverage of an
antigen’s epitopes by a single clone does not guaranteedsance by the immune sys-
tem. To estimate the probability that a foreign peptide i'eced by multiple clones, | first

determine the probability that a foreign peptide is covdrgaxactlym clones out of a
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repertoire of sizen:
Anm= fT(1—£)""1C(n,m) (5.2)

whereC(n,m) is the number of distinct combinations mfobjects that can be drawn from

a set ofn and is equal tw It has been observed that 10-20 clones respond to an

immunodominant LCMV epitope in mice (Blattman et al., 2008)| will assume that an

effective response requires at least 10 clones per epildpeprobability that an epitope is
covered by 10 or more clones is equal to 1 minus the probgatilit the epitope is covered

by fewer than 10 clones:

S Ani=1- S Anii (5.3)
2,

This function is plotted and compared to results from the ehad Figure/5.2. The
probability that a foreign peptide is detected by enougiven&TL clones to mount an

effective response reaches 99% when the number venzones is between $aand

107, which happens to be the number of CTL clones in a mouse (Feneeal., 1993;

Casrouge et aJ., 2050).

5.1.2 CTL affinity for MHC is correlated with affinity for self pep-

tides

In the model, thymic selection eliminates CTLs solely on thsi$ of their affinities for
MHC-self peptide complexes. Before selection, TCR stringsaaréom, so a TCR’s affin-
ity for MHC is independent of its affinity for self peptideshyimic selection introduces a
dependence between a surviving CTL's affinity for MHC and ftm ey for peptide. After
selection, affinity for MHC has an inverse relationship vathinity for self peptides (Fig-
ure 5.3). Because thymic selection allows only CTLs with a veiyow range of affinities

for their closest MHC—self peptide complexes to survive,stiaviving CTL has a certain
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Figure 5.2: Foreign peptide coverage by at least 10 CTLs.0DO;@dom foreign peptide
strings were generated and each was associated with oneeefNMHC types. In (a), the
fraction of these MHC—foreign peptide complexes detecteathgast ten CTLs of the
model’s nédve repertoire is plotted against the size of the reperfoiraor (¢) andL (+)
distance versions of the model. In (b), the fractiwot covered is plotted. The size of
the repertoire that could be created by the model was linlifethe computer's memory
capacity, so there are no empirical results for large numbgclones. The lines indicate
the expected values using Equation 5.3.

affinity for its selecting peptide, then its affinity for MHCust fall within a very narrow

range for it to have survived selection.

The MHC-binding portion of a TCR determines its peptide bigdiegeneracy, which
is a measure of the number of different peptides with whicingle TCR can bind. Be-
cause TCRs bind to peptide presented by MHC, those having Higityafor MHC can
bind to a much larger set of peptides, and thus have a higlgenéeacy, than those that
bind poorly to MHC. Therefore, peptide binding degeneraayafinity for MHC are cor-
related. The affinity of a thymically selected CTL for self pdp and its peptide binding
degeneracy are so closely linked that the standard expiasaor the roles of negative

and positive selection are reconsidered in the followirgises.
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Figure 5.3: Thymic selection introduces a dependency EwWweHC and self-peptide
affinity in CTLs. For 100 random foreign peptides presentebiC, realistic-sized pre-
and post-thymic selection repertoires were generated) lsay evaluation. The antigenic
distance between each TCR'’s peptide-binding region and lgsts®y self peptide is on
the x-axis, and the distance between each TCR’s MHC-bindingmeand the presenting
MHC is on the y-axis. Three distance rules were tested: (aHiag, (b) xor, and (c)
modified Manhattan distances. The pre-selection TCRs aregepted by lights, and
the post-selection TCRs by black.
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5.1.3 Negative selection increases peptide binding specificity

Immunologists assume that negative selection eliminatdss@ith high affinity for self
peptides. In the model, negative selection eliminates CTitls ligh affinity for MHC—
self peptide complexes, so both CTLs with high affinity forf gelptidesand those with
high affinity for MHC are removed. Figure 5.4 compares thegmiection CTL reper-
toire with the repertoire that survives negative selecti@Qomparing the distribution of
distances between TCRs and MHC before and after negativdisaléeithout subjecting
them to positive selection), one can see that negativetsmiadecreases the average affin-
ity for MHC. By eliminating TCRs with high affinity for MHC, negatvselection only

allows those with higher specificity for their cognate pees to survive. This agrees with

the suggestion that negative selection increases thefispigdhat TCRs have to foreign
aJI 2(1

peptides (Huseby et al., &)3; Slitka et‘al.,ﬁOOS).

TCRs can be generated in vitro so that they are not subject toithgelection. In

‘Holler etal. ‘(2003), TCRs were selected in vitro to have higmiaf for a particular set

of MHC—foreign peptide complexes. In the experiment, it was that cells expressing

these TCRs tended to react to self peptides (Holler et al.,)2@3e would expect these

CTLs to have high affinity for both the foreign peptide and itegenting MHC. The

consequence of having high affinity for MHC would be highlgdeerate peptide binding,
allowing them to react to self peptides also. PresumabBsdicells would have been
eliminated by negative selection because of their highigfffor MHC, not because they

have high affinity for a self peptide.

5.1.4 Positive selection maximizes peptide binding degeneracy

It is widely believed that the purpose of positive seleci®to eliminate CTLs with such
low affinity for MHC that they would not be likely to bind to fergn peptides presented
by MHC. Some have even suggested that self peptides are jasid*:s” for foreign
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Figure 5.4: Effects of negative selection on TCR distanceoteifin peptides. A pre-
selection TCR repertoire was lazily generated for a singteifm peptide presented by
MHC. This repertoire was then subjected to negative but nettige selection. The
distributions of antigenic distances from the MHC—foreigpfide complex to TCRs from
the pre- and post-selection repertoires are plotted. Th&beuof TCRs at each distance
from the MHC—foreign peptide are indicated &for the pre-selection repertoire amdior
the post-selection repertoire. The number of TCRs whoseqeepinding region are at
each distance from the foreign peptide are indicatedldgr the pre-selection repertoire
and @ for post-selection. The number of TCRs whose MHC-binding regie at each
distance from the MHC that presented the foreign peptidenaieated byA and the dark
shaded region for the pre-selection repertoire, arehd the light shaded region for the
post-selection distribution. Three distance measures w&d: (a) Hamming, (b) xor, and
(c) modified Manhattan. The results shown are the averages X000 different trials for
each distance metric.
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peptides during positive selection (Goldrath and Bevan919%elieve that self peptides

play an essential but overlooked role in positive selectidithough positive selection in
the model tends to eliminate CTLs with low affinity for MHC, sommiethese CTLs can
be “rescued” by having high affinity for a self peptide. Copety, CTLs with moderate
affinity for MHC can be “damned” by having low affinity for alke peptides. There-
fore, positive selection does not simply purge the repextof CTLs with low affinity
for MHC—it removes CTLs that have “sub-optimal” affinity for MHgiven the CTL's

affinity for its selecting peptide.

This hypothesis can be tested using engineered thymicteeleznvironments with

only one positively selecting peptide.‘ In Kraj et Lll. (Zb(ﬂh)a specificities of two of CTLs

positively selected on a single MHC—peptide complex wereadtarized. One CTL was
very specific to a peptide similar to the selecting peptidee dther CTL was specific to
a peptide that was unrelated to the selecting peptide, amaldita high peptide binding
degeneracy. | postulate that the first CTL had a high affinityttie selecting peptide and
a low affinity for MHC, and the second had low affinity for the idp and high affinity
for MHC. More studies will be needed to determine the relatiop between the affinities
that CTLs have for self peptide and for MHC.

5.1.5 Epitopes and self peptides

Although the CTLs in the model have “maximal” peptide binddepeneracies, the CTLs
that are close to self peptides have lower peptide bindiggueracies. Epitopes that are
close to self peptides would be covered by these highly 8p&eTLs. In the model, the
average binding degeneracy of CTLs that have affinity for atope is correlated with the
epitope’s distance from the nearest self peptide for twbethree distance metrics tested
(Figure! 5.5). For the Hamming distance version (Figure )5 & binding degeneracy is

not affected by the distance between the epitope and seifdesp This divergence from
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Figure 5.5: CTL to MHC distance vs. distance between an epitoyl its closest self pep-
tide. 10,000 random epitopes were generated, and the cestdoetween these epitopes
and their nearest self peptides were measured. A new CTLtogewas created for each
of these epitopes, and the average and standard deviatibbe distances from their TCRs
to the MHC presenting the epitopes is plotted against thegiselecting peptide dis-
tance. The TCR—-MHC distance determines a CTL’s foreign pepégponse frequency,
and the corresponding frequency for each distance is gisglan the y-axis on the right
of each plot. The results shown are from simulations usimgethlistance metrics: (a)
Hamming, (b) xor, and (c) modified Manhattan distances.

the other distance metrics (xor and modified Manhattan)dcbela property of Hamming
distance or it might simply be the choice of Hamming distapaeameters used by the

model.

The peptide binding degeneracy of CTLs could affect thetgmfithe immune system

to eliminate a mutating pathogen. Pathogens can escapethene system’s response
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when their epitopes mutate. These modified epitopes mighba@aecognized by the
CTLs that respond to infected cells expressing the origipabpe, so the immune system
would need to mount a new response against the mutant. A CTLhigh peptide binding
degeneracy might be able to recognize both an epitope avarigsts, which would make
it difficult for a new mutant to survive. Thus, even a quicklytating pathogen would
generate few surviving variants so its “effective” mutatrate would be low. A CTL that
is too specific could be easier to escape through mutatiomost CTLs responding to
an epitope that is similar to a self peptide are highly spedifien the antigen’s variants
would have a greater chance of surviving the immune respoBseause their mutated
progeny would be the most viable, such antigens would havbitfhest “effective” muta-
tion rates. If the effective mutation rate increases as fit®ges become more similar to
self peptides, then the immune system drives the pathogexptess epitopes that mimic
self. Once an epitope is sufficiently similar to a self peptithe immune system would be

unable to detect it because negative selection eliminatés @D close to self.

5.1.6 Nave repertoire generation efficiency

The generation of the inge CTL repertoire is an expensive process, both in the body
and in the model. If over 95% of randomly generated CTLs argeuiduring thymic
selection, then for each CTL that joins theiverepertoire, over 19 are eliminated in
the thymus. | measured the efficiency of CTL generation in tlogleh On average 30
CTL clones respond to each epitope, so one would expect thelrtmdenerate 2030
=600 pre-selection CTL clones per epitope. In practice, ablyut 10 pre-selection CTL
clones are generated to produce eadkienalone (in Table 5.1, divide the number of CTL
clones generated by the number surviving selection), antz®@0 pre-selection clones per

epitope.

This efficiency in the model appears to be a consequencerg lesy evaluation (Sec-
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Hamming xor L7
number of pre-selection clongs 8x 107 25x10° 25x 10°
thymic selection window 34 140-149 19

number of CTL clones generatgd222.8+ 14.9 | 230.9+ 15.0| 359.9+ 18.4
clones killed in positive selection 31.3+5.9| 40.0+ 13.6| 53.9+17.4
clones killed in negative selectign164.9+ 13.1| 168.1+ 19.4| 278.0+ 24.2

clones surviving selection 26.6+5.1 23.1+55 279+ 6.4

Table 5.1: The efficiency of T cell repertoire generationhie model. A pre-selection
repertoire was generated around a single MHC—foreign peptidhplex using lazy eval-
uation. This repertoire was subjected to positive and megaelection to produce hae
CTL clones. The average and standard deviation for 100G tfaal each of the three
distance metrics are shown.

tion/4.2.2). The model uses lazy evaluation so that it do¢geoerate the pre-selection
CTLs that are outside the cross-reactive cutoff of an MHC-epgittomplex, reducing the
computational and memory requirements of the simulatiosdweral orders of magnitude.

However, lazy evaluation introduces an unexpected additiefficiency gain.

In the “real” immune system, it is believed that positiveesgibn eliminates more pre-
selection clones than negative selection: about 95% byiyp®selection and5% by neg-
ative selection (Section 4.2.1). In the model, these pitoppws are reversed—about 75% of
pre-selection clones specific to a single MHC—epitope coxgale eliminated by negative
selection, and only about 15% are eliminated by positivectigln (Table 5.1). If the role
of positive selection is to rid the body of pre-selection CThat are unlikely to respond to
any MHC-epitope complexes, then lazy evaluation makesdhisless important because
it already ensures that all pre-selection CTLs generatedi#inen the cross-reactive radius
of an MHC—epitope complex. If the model generated all preetaln clones, and not just
the ones that could respond to an epitope, then positivetagievould eliminate a higher
proportion of cells. This hypothesis could be tested in #ieldly measuring the number of
pre-selection clones that respond to a particular MHC—ppitbmplex, then comparing

this to the number that are eliminated by positive and negatelection. | believe that
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negative selection would eliminate more pre-selectionedathan positive selection.

Although the cells purged by positive selection would haseerbcapable of responding
to antigen, there is a tradeoff between the cost of maimtgittiese cells and the possi-
ble benefit of having them during an immune response. For rmesvgelection cells, the
probability of their responding to an antigen during an arga’s lifetime is dispropor-
tionately small, and positive selection preferentiallynehates them. Although positive
selection eliminates about 95% of all pre-selection CTL&iakody, the model indicates
that positive selection reduces the number that could respman epitope only by about
60% (in Table 5.1, divide the number of clones killed in p@sitselection by the sum of

the number killed in positive selection and the number ofieBsurviving selection).

5.1.7 Isthe TCR repertoire optimized to detect foreign peptides?

There is a striking similarity between the model's CTL reped and Reduced Coulomb
Energy (RCE) networkls (Reilly et all., 1382). RCE networks are tseldssify inputs into

various categories. During a training phase, they are eptuwsexamples from each of the
desired categories. Every training example is assignedial f@asis function detector. A
detector is a hypersphere that covers a set of input valoesio each example, and any
input that falls within a detector is considered to be of thme category as the example
associated with the detector. The radius (size) of eacltetis adjusted so that it covers
as much of input space as possible without covering a trgiexample from a different
category. Thus, RCE networks attempt to cover as much of iqgaatesas possible without

misclassifying inputs.

The model’'s CTL repertoire behaves like an RCE network. CTLsat®@lbasis func-
tion detectors that cover portions of peptide space clags#s “foreign.” The regions that
are not covered by CTLs are implicitly considered “self.” ikadial basis function detec-

tors, CTLs can cover different-sized portions of space baseitheir peptide binding de-
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generacies. Unlike standard RCE networks, the CTL repert®itrained using examples
from only one category—pre-selection CTLs are exposed fgsegtides in the thymus.

Therefore, rather than tuning detectors like an RCE netwbk GTL model creates an
excess of random detectors and eliminates those that amptiotal (Figure 5.6). These

pre-selection CTLs must be screened to eliminate those #tatdself peptides, a task
accomplished by negative selection. Positive selectioniehtes CTLs that do not cover
enough peptides. Like the RCE network detectors, CTL coverageld be as broad as
possible without covering a self peptide. The farther ttetadice between the CTL and
its selecting self peptide, the more degenerate its pepiitkng should be. Although the
generation of CTLs is quite different than the RCE network trejrapproach, the set of

detectors that is generated by these processes have noifarties.

| believe that foreign peptide coverage is improved by usim@ller detectors close to
self and larger detectors that are far from self. Using tiffé-sized detectors gives the
immune system the ability to increase the fineness of forpaptide coverage near self
peptides, regions in which it must be highly discriminatiagd have coarser coverage
farther from self peptides. Thus, the wide range of peptiddibg degeneracies observed

in the lab could be a key component of antigen detection.

5.2 Basic dynamics of the CTL response

The following experiments illustrate the basic propertéshe model using only one or
two CTL clones. Although CTL responses normally involve maloyes (and this case is
covered in Section 5.3), it is easier to analyze the behafiasingle large population of T
cells sharing the same specificity. The virus infection peeters used in these experiments
are in Table 5.2.
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Figure 5.6: Thymic selection optimizes foreign peptidearage. Figure (a) is a represen-
tation of the pre-selection CTL repertoire. Self peptidesdanoted as s, and the CTLs
are represented as circles, with the areas covered by eatdrepresenting the peptides
that the CTLs can bind. The distances betweenxbBend the centers of the circles are
proportional to the antigenic distances between the selfiges and the peptide-binding
portions of the TCRs. In (b), CTLs that are eliminated duringitpasselection are indi-
cated with dashed lines. CTLs that are eliminated by negaélextion are indicated with
dashed lines in (c). The CTLs that survive thymic selecti@siown in (d).

5.2.1 Primary and secondary immune responses

| simulated the primary and secondary responses to an atfetgion (Figure 5.7). For
this trial, 1 was interested in testing the overall dynanoshe T cell response in the

model rather than attempting to match the results to a pdatitaboratory experiment. |
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attribute value
susceptible cell populatior 10° cells
susceptible cell production rat&)(| 10° cells/day
susceptible cell death ratér() 0.1day?!

virus infection rate §) 2x10°7

virus production ratery) 100 day?
virus clearance rate) 2.3 day?
infected cell death ratey) 0.8 day !

Table 5.2: A summary of infection parameters used in Se&ian

simulated the injection of 500 viral units into a mouse witkiagle high-affinity T cell
clone of 50 cells. The primary response began after appiteiynone day. It peaked at
day 9 then declined and formed a stable memory pool. At day28dentical injection
was administered, and the secondary response was fastargedthan the primary (Fig-
ure 5.7). The secondary response began almost immedidietysacondary exposure to
the virus, and the lower death rate of memory-derived affsataused the T cell popula-
tion to increase more rapidly. The secondary response edsterl a larger pool of stable
memory cells. Therefore, the simulated mouse’s immune mgicauld be “boosted” by

multiple exposures to the same antigen, making future resgsoto it even more effective.

5.2.2 The programmed response

One of the implications of the programmed T cell responssdidieed in Section 3.2.4) is
that the immune response is initiated by antigen but itsamutis antigen-independent.

If this is true, then removing antigen after the start of gpoese should not affect its

dynamics. This was tested in mice infectedlbymonocytogene@viercado et al., 2000;

Badovinac et al., 2002). Antibiotics were administered tmglate the infection 24 hours
after inoculation, which quickly removed all antigen. Theag of the T cell response

occurred at the same time in the antibiotic-treated miceiambn-treated control mice.
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Figure 5.7: Primary and secondary CTL responses to viratiitie. The primary expo-
sure to the virus«) is on day 0 and the secondary exposure at day 28. The number of
cells (a) specific to this virus includes e, effector, and memory cells.

The elimination of the infectious agent caused only a snealliction in the magnitude
of the response. Therefore, the elimination of antigen didgneatly affect the timing or

magnitude of the T cell response.

The model gives qualitatively similar results in a systemg& CMV parameters (Fig-
ure!5.8). Since antibiotic effects are not immediate andatalirectly remove bacteria in
mice infected withL. monocytogenes chose to eliminate all LCMV at 36 hours post-
infection instead of 24. Eliminating antigen caused thekpa@al load of the response to
occur one day earlier and decrease only slightly in magaituthe reduced response in

the model was due to the shortened recruitment time veneells.

Incorporating the programmed response might be essemtiabtieling the efficacy of
vaccinations. Vaccines often use attenuated strains bbgahs that have diminished or
no reproductive capacity and are rapidly cleared from tlstesy. Since the purpose of

vaccination is to induce a large response in order to buidgel pool of specific memory
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Figure 5.8: T cell response to an infection interrupted legtiment. The starting dose of
the antigen¢) was 10,000 virus particles. The antigen was removed frensyistem after
36 hours. The T cell responsg)is not significantly affected by the removal of antigen.
For simplicity, only a single T cell specificity and a singletigenic epitope were used.
The antigen and T cell levels of the control case, in whichathiggen is not removed, are
plotted for comparison (dashed lines).

cells, then alarge dose of an attenuated virus might bete#ezven if the virus level drops
rapidly. If the T cell response were totally antigen-departdshort periods of antigenic

stimulation would not stimulate an adequate response.

5.2.3 Ndve population size effects

The size of the initial niae cell population can affect the outcome of an infectione-P

sumably, increasing the number ofivacells can result in an earlier and larger response

to infection. This hypothesis was tested experimentallynine (Ehl et al., 1998). The

number of n&e cells in mice was experimentally increased before iidadn order to
determine how the number of respondingveacells affects the T cell response to an

acute infection. It was estimated that about S0reaells respond to LCMV in a normal
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Figure 5.9: The effect of increasing the number diveacells. One model run was initial-
ized with 50 néve cells (\) and a viral load of 5004). The other model run started with
50,000 néve cells @) and the same initial virus loa@)

mouse‘(EhI et All 19&8), and the number was raised to 50 ,p@@dptive transfer from
donor mice. Increasing the number ofiveacells by 1000-fold moved the peak viral load
of the infection between 1 and 2 days earlier and reduceditaelead by about 2 logs.
In other words, the infection did not reach high levels. Thedel’s results are in agree-
ment with these experiments; after increasing the numbegieé cells from 50 to 50,000,
the peak virus load was one day earlier and about 2 logs antlaéle in the control case

(Figure 5.9).

Surprisingly, the augmented immune response did not dieganfection more quickly
in the model. The virus’s reproductive rate is limited by thember of uninfected cells.
A virus that is too prolific can exhaust the supply of new ctdlsnfect. A weak immune
response might allow the virus to infect most healthy cellace this happens, the virus
is easier to eliminate because its spread is slowed. A strargponse might restrict viral

spread early enough so that a large pool of uninfected cefisintained, so the virus is
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Figure 5.10: High- and low-avidity responses. The simualaieal load () is set to 500 on

day 0. The high-avidity clonea() peaks about two days earlier than the low-avidity clone
(D).

able to infect new cells as the response eliminates oldecied cells. This effect can be
observed in Figure 5.9. Note that the decline of viral loaslasver when it did not peak

at high levels.

5.2.4 High- and low-avidity responses

To study the clonal composition of the T cell response, | henmodel with a virus with a
single epitope and two T cell clones with different aviditie this epitope, a high-avidity
clone K = 7.8 x 10°) and a low-avidity one = 4.5 x 10"). | assumed both clones
initially contained 50 nive cells each. The peak of the high-avidity clone’s respaas
over one log greater than and over one day earlier than theadity one (Figure 5.10).

Scenarios involving larger numbers of clones are preseantte following section.
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5.3 The clonal composition of T cell responses

One of the strengths of the model is that it can create a lagertoire of CTLs with
different avidities to various antigens. Perhaps 20 T delhes respond to a single epi-
Ly 199%; Blattman el L\I., 2‘002). Theseas have affinity not only

tope ‘(Maryanski et al
for the epitope in question, but for a range of related egisodn a system subjected to

heterologous infections, memory cells that cross-reachutiiple antigens might be an

essential part of our immune responées (Welsh and‘ Jﬁeliﬂi)ZBOr example, it has been
found that the CTL response to a particular hepatitis C epitmpss-reacts with an in-
fluenza A epitope. Thus, one may gain partial protection foma pathogen by exposure
to an unrelated one. The digit string implementation, whinaplicitly defines an affinity

between a TCR and any epitope, allows one to model the effémtefologous infections

over an organism’s lifetime.

| simulated the response of a mouse with a realistic-sizpdrteire to a viral infec-
tion. | used the xor distance rule (Appendix A.2) with an alpét size of 128 and set
the MHC string length to be 4 digits and the peptide stringyterto be 6 digits. The
simulated mouse had®x 10° T cell specificities before thymic selection, but only about
200 of these were explicitly generated by the simulatiohs, remaining clones falling
outside the cross-reactive cutoff of the antigen. Of thapproximately 20-30 survived
the thymic selection process against 30,000 randomly gé&ekself peptides to join the
naive repertoire (Table 5.1).

5.3.1 The primary response
| simulated the primary CTL response to a viral infection. [f£am infection, antigenic

levels were too low to stimulate T cell proliferation, so th&éve T cell population was

stable. As the virus infected cells, the higher-affinity CTkere stimulated and their
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Figure 5.11: Primary and secondary CTL responses to a viiattion. 500 viral units
were injected on days 0 and 28. The virus levels are indicayee and the number of
CTLs in the three highest-affinity clones@s A, and¢ (in decreasing order of affinity).
Lower-affinity clones are represented by lines with no megk&ach CTL clone initially
has 10 unstimulated nae cells.

probability of entering the response increased. Low-a§fiQiTLs were later stimulated
to join the immune response when antigen reached suffigidagh levels (Fig. 5.11).
Thus, the entry of clones into the response was staggertdpmigressively lower affinity
clones tending to enter the response later. A similar olsiervhas been made in murine

systems: the contribution of a T cell clone to an immune raspas largely determined by

the time of its entry into the responlse (Bousso ek al., 19989\-affinity clones sometimes
responded more quickly than high-affinity ones becauseithlation is stochastic. With
a more slowly growing virus, this occurred less often beeah& more gradual rise in
antigen levels led to a greater delay between the times miustion of high- and low-

affinity T cells (data not shown).

Even among syngeneic mice, the CTLs involved in a primaryaesp can have a

variable mix of affinities for antigen (Bousso et al., 2000)miarly, different runs of
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the model with identical initial parameters had differeegponding clones. Because the
initial number of cells in a single clone is small, stochasfifects play a large role in the
composition of the primary response. In the model, a nevitygated nave T cell must
survive a high death rate between the time of antigenic $itiaun and the beginning of its
programmed response, so that on average only 6 cells out aDtfrom a particular T cell
clone survive to proliferate. Because the model is discneteassumes that proliferation

is antigen-independent, a response that begins with 1 tolf#gating cells will peak
between 60,000 and 360,000 effector cells. This agrees tivérestimate that only 1

to 6 cells per clone initiate CTL responses in mice and thaviddal clones produce
between 4< 10* and 37 x 10° cells at the peak of the responLe (Bousso Qt al., 1999). As

a consequence of the antigen-independent proliferatiddTafs, memory levels formed

by the primary response in the model are proportional tonit&i number of cells that
successfully enter proliferation because a constanidmaof effector cells formed convert

to memory (about 5%).

The average affinity of T cells changed dramatically durlregresponse to infection in
the model. | define the average affinity of the response todaterse of the averad&y
value (defined in Section 4.4) of all CTLs. Three days aftezdtibn, the average affinity
rose (i.e., the averad€y fell) rapidly as high-affinity clones expanded (Fig. 5.12he
rising antigen levels progressively crossed the stimutathreshold of lower and lower
affinity cells and recruited them into the response. As thelllresponse peaked, the aver-
age affinity dropped (i.eKq rose) as the contribution of low-affinity clones to the ollera
response increased and the programmed expansion of Higityafells ended. The aver-
age affinity stabilized after day 10 as memory cells formettidaminated the population.
These trends agree with observations made during expemimefection of mice with
paramyxovirus simian virus 5: high-affinity CD8T cell clones were exclusively detected

early in the CTL response at day 3, but low-affinity clones cosgal ~50% of the re-

sponse by day 5 post-infectio‘n (Gray et al., 2003). Simjilarlthe model, low-affinity

clones comprised half of the response after day 7 posttiofec | also measured the
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Figure 5.12: The average CTL affinity during primary and seleoy responses to antigen.
Affinity is 1 divided by the dissociation constalig, which is defined as the amount of
antigen required to induce half-maximal stimulation in a C3Q0 viral units were injected
on days 0 and 28. The data plotted are the average values @0mxperiments.

affinity of the response as the ratio of low-affinity CTLs to tngffinity CTLs. This ra-

tio rapidly dropped at the beginning of the CTL response tlose after day 7 (Fig. 5.13),
which agrees qualitatively with observations in mice faliog infection with recombinant
vaccinia expressing a well-characterized peptide antiggn ovalbumin: this ratio was

initially high, dropped by day 6 post-infection, and retedrto a high value in the memory

population after the primary response (Alexander-Milg00).

5.3.2 The secondary response

| simulated a secondary response to antigen by injectingiadal virus into the system
28 days after a primary challenge. The T cell clonal hienaiolthe secondary response
was more consistent across different simulation runs thahdbserved in the primary

response. In the simulations of the secondary responseus, \tifound that the same
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Figure 5.13: The ratio of low- to high-affinity T cells durirgprimary and secondary
response to antigen. 500 viral units were injected on daysl®8. The data plotted are
the ratios of the number of cells of the 26 lower-affinity asrto the 3 highest-affinity
clones averaged over 100 experiments.

highest-affinity T cell clones were dominant, while a valeamix of lower-affinity clones
comprised a small fraction of the response. The recruitrohigh-affinity memory cells

drove a second increase in average T cell affinity for ant{§&mn(5.12).

The model results agree with observations that the clomaposition of the secondary

response in mice varies less than the primary among syrgeanénals (Bousso et al.,
2000; Bachmann et JI., 1997; Busch et al., 1998a; Blattman, 0; Kedzierska et al.,

2004), that the secondary response is composed of a smaiteofsresponding

clones ‘(Savage et ‘a., 1999), and that while the primaryoresp recruits a mix of

high- and moderate-affinity clones, the secondary preteign recruits high-affinity

clones ‘(Estcourt et al.,, 2002). In the simulations, thisscsiency of the secondary re-
sponse compared to the primary occurs because of the largdrar of cells involved. As

discussed above, precursor frequencies are low in the priragponse, allowing stochas-
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Figure 5.14: CTL responses to non-replicating virus folldvioyy replicating virus chal-
lenge. The non-replicating virus dose on day 0 was (@)1L2° units and (b) 4< 10* units.
The replicating virus challenge of 5,000 viral units was audstered on day 28 in both
experiments. Virus levels are indicated &gnd the number of CTLs in the three highest-
affinity clones as1, /A, and¢{ (in decreasing order of affinity). Lower affinity clones are
represented by lines with no markers.

tic effects to determine whether the first cell to proliferatill come from a high- or
low-affinity clone. By contrast, there is a large number ofcpér clone in the secondary
response, and the hierarchy of responding cells is thexefoich more stable among sim-

ulation runs.

5.3.3 Non-replicating antigen

| simulated immunization with & 10° viral units of non-replicating antigen. This immu-
nization created a sharp spike in the antigen level thathapiecayed. The high initial
antigen load maximally stimulated all T cells with an affingdbove a certain threshold
(dependent on the antigen dose). This is in contrast totiofeavith replicating antigen,
in which the gradually increasing antigen stimulates hadfinity clones first and gives
them a time advantage over the lower-affinity clones. If ¢hleigh-affinity clones clear

the infection quickly, then low-affinity clones receive utfilscient antigenic stimulation to
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be recruited into the response. This time advantage is rattarfin infection with non-
replicating antigen, in which the sharp spike in antigetimslation caused clones of dif-
ferent affinities to peak simultaneously (Fig. 5.14a). Beeathhe model features antigen-
independent proliferation, the high-affinity clones do iné¢rfere with the proliferation of
low-affinity clones that have already been stimulated. &foe, non-replicating antigen
creates a flatter distribution of high- and low-affinity oksnwith the average affinity being
dependent on the antigen dose. The decay phase of antigadgsa period during which
high- and low-affinity clones receive different degreestofalation. That is, as antigen
levels progressively decline, only high-affinity cells atemulated. This occurs for both
replicating and non-replicating antigen, as both undergie@ay phase. However, this
effect probably makes only a small contribution to diffdrating high- and low-affinity
cells for two reasons: (i) it might occur during the phaserdfgen-independent prolifer-
ation, and (ii) if antigen decay is very rapid, there isditime difference between when

the stimulation thresholds of high- and low-affinity celte arossed.

A variety of experiments suggests that a higher-affinitpoese can be recruited with
lower doses of antigerl; (Rees et LI., 1499; AIexander-lWll@O(%; Walter et all., 20&)3).

Presumably, low doses of antigen cannot stimulate lowigfficlones, but can stimu-

late high-affinity ones. These high-affinity clones appeabe better for infection con-
: 199%; Derby et ul 2&01). ifvestigate this phenomenon, |
simulated inoculation with a smaller dose ot 4.0 viral units of non-replicating antigen.
Fewer clones responded to the low dose (Fig. 5.14b) thanighedose (Fig. 5.14a). The

low dose produced memory cells with a higher average afffoityantigen than the high

trol AAIexander-MilIer etal.

dose. However, because the low dose recruited small nurobdrsells, systematic dif-
ferences in affinities recruited by the different antigesekwere sometimes obscured by
stochastic effects. When used as a vaccine, the smalleeardigse afforded less protec-
tion against subsequent infection by virus, allowing thewito peak at levels three times
higher than in the trial with the larger antigen dose. Thgdamumber of memory cells

of various affinities formed in response to the high-dosecwecprovided better protec-
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Figure 5.15: Comparison of responses to replicating andraplcating virus challenges.
For the replicating virus infection, the virus levels ardigated bye and the total number
of CTLs by A. For the non-replicating antigen, the antigen levels adecated byo and
the total number of responding CTLs Y. The data in this figure are drawn from the
experiments shown in Figs 5/11 and 5.14b.

tion than the small number of high-affinity cells from the lol@se vaccine. The lack of
increased protection using low doses might be because nihdagion does not include
direct competition between clones. Thus, the same set btdtigity clones are stimu-
lated with high- and low-dose antigens in the simulation grav equally well, while in
an animal vaccinated with a low dose, these high-affinityetomay expand more due to

a lack of competition with low-affinity clones for resources

Comparing the dynamics of the CTL responses to replicatingnanereplicating virus

infection yielded results similar to those found in micep@asding to a killed bacteria

vaccine (Lefrancois et al., 2003). In both the computer ehadd the mouse experiments,
the CTL levels in the replicating and non-replicating virasisarios were indistinguishable
on day 5 (Fig! 5.15). However, the responses soon divergéh,the response to the

replicating virus peaking days later while the responséh&orion-replicating declined.
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number of clones distance to self peptide
resolved unres. p-value resolved unres. p-value
Hamming| 27.13 2457 ®7x101Y] 18.93 19.12 B3x 102
xor | 23.97 21.18 20x10°16 | 76.75 69.36 B2x 1016
L1 | 29.16 25.36 20x10°1%|9.76 850 20x10°16

Table 5.3: Differences between repertoires that clearfttion and those that did not.
For each of the metrics, the CTL simulation was run 1,000 tjraes the infection was

considered to be resolved if there was no virus present f@ake after infection. The

second and third columns show the average number of CTL closestiated per epitope
in the resolved and unresolved cases. The fifth and sixthmomdushow the antigenic
distance between the epitope and the nearest self peptitie resolved and unresolved
cases. The p-values are from two-sample t-tests.

The final memory cell level induced by the replicating virogection was about an order

of magnitude larger than that from the non-replicatinggenti

5.3.4 The number of CTL clones per epitope

The CTL response does not always resolve infections in theemdglecause the inge
repertoires are generated stochastically, some are mpedbleaof eliminating particular
antigens than others. | compared the repertoires that videet@ clear an infection and
those that could not. | ran the simulation 1,000 times fohezfche three distance met-
rics (Hamming, xor, and.1’) using an initial virus dose of 1,000. The virus dynamics
parameters are from Table 5.2, and infected cells exprasgla gpitope. | considered the
infection to be resolved if there was no virus present fouekgeafter infection. For the
Hamming distance trials, 80% of the infections were resh\feor the xor and.1’ trials,
61% and 69% were resolved, respectively. The differencéseise rates is not a property
of the metrics themselves, but reflect the difficulty of cadiing the different metrics to

produce similar results.

For each epitope instantiated during a simulation, a sefigerCTL clones is created
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using lazy evaluation (Section 4.2.2). All of these clonagehsome affinity for infected
cells expressing this epitope, although not all of themigipete in the response because
of stochastic effects and indirect competition among doiioe antigen. A higher num-
ber of instantiated clones correlates with a higher prditaloif pathogen clearance in the
model. For all three distance metrics, the average numhzonés instantiated was higher
for cases in which the antigen was cleared than in those ishwibiwas not (Table 5.3).
Somewhat surprisingly, the antigenic distance from théogpito the nearest self peptide
also had an effect for two of the three distance metrics. Vheage distance was higher in
the resolved cases for the xor alndl trials (Table 5.3). It appears that this is because the
less similar an epitope is from all self peptides, the latgemumber of clones generated
for that epitope by the simulation for the xor abtl cases (Figure 5.16). This is probably
because negative selection eliminates pre-selection G¥dtsate too “close” to self pep-
tides. For Hamming distance, the distance between thepepétod the nearest self peptide
did not correlate with either the resolution of infectiorabile 5.3) or the number of CTL
clones instantiated (Figure 5/16a). These results arastenswith those in Section 5.1.5,
in which the Hamming distance between an epitope and theesieself peptide had no
effect on CTL peptide binding degeneracy.

5.4 Summary

In this chapter, | tested the CTL model described in Chapterd&ua wide range of
conditions. Most of the model’s results agree with the expental literature, and the
model makes a large number of predictions for laboratoryeerpents that have not yet
been performed. Some of the results probe the composititimeafidve CTL repertoire

and its ability to detect antigen. The remaining resultd@epthe dynamics and efficacy

of the CTL response.

The results of my model reveals effects of thymic selectiat are different than pre-
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Figure 5.16: Number of clones vs. distance between an ep#og its closest self pep-
tide. 10,000 random epitopes were generated, and the cestdoetween these epitopes
and their nearest self peptides were measured. A new CTLto#@ewas created for each
of these epitopes, and the average and standard deviatiba ntimber of CTL clones is
plotted against the epitope to selecting peptide distahbe.results shown are from sim-
ulations using three distance metrics: (a) Hamming, (b) and (c) modified Manhattan
distances.

viously believed. The standard view of immunologists ig tha role of negative selection
in the thymus is to eliminate CTLs that respond to self pegtaed the role of positive
selection is to eliminate CTLs that can not bind MHC. The resiuim the model reveal
more complex effects. Because TCRs bind to both peptide and Melfatne selection
also affects the CTL repertoire’s affinity for MHC and postiselection affects its affinity

for self peptide. In the model, negative selection elinesaioth CTLs that are have high
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affinity for self peptides and those that have high affinity MHC. Positive selection not
only eliminates CTLs that have low affinity for MHC, but also sleowith low affinity for

all self peptides. | have found evidence of these effectkarliterature. An implication of
these findings is that thymic selection does not only elit@r@TLs that would be detri-
mental or useless in an immune response, but those thateffieisnt and suboptimal.

Thus, the process of thymic selection can be cast as an a@ption problem.

The dynamic behavior of the model reproduces many obsenstf CTL responses
in mice. In normal infections, the secondary response gelaaind faster than the primary
because of the larger pool of CTL and the shorter delay in thigargse of memory cells.
One consequence of the greater magnitude of secondarynsesp that they are more
consistent among identical individuals than the primaigposse. The immune system
can be manipulated in the laboratory to produce differehtbm®rs. For example, antigen
can be eliminated by massive doses of antibiotics or the inemasponse can be boosted
by injecting extra T cells. The behavior of the model agre&h real-world experiments
in these situations, and this agreement indicates that tidehtould be used to predict
the outcome of similar laboratory experiments. One surggigesult is that the immune
response could clear an infection that reaches high viealddaster than an infection that
does not reach high levels. When a virus is too successfulrdadts most of the body’s
cells, the immune system can eliminate it quickly. If thesrtfon is less extensive, then
the infection is prolonged because the virus spreads tdectad cells even as the im-
mune system is eliminating infected cells. Thus, itis galsgihat a less effective immune

response could result in a better outcome for the organism.

Other benefits of using a computer model instead of mouse Ismoudude the abil-
ity to make extremely detailed observations and to repredaxperiments exactly. For
example, the affinity of responding cells may determine tbayts ability to eliminate
an infection, and the model makes predictions about the ositipn of the response that

are supported by real-world observations. Low doses ofimagecruit only the highest-
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affinity CTLs, while high doses recruit a broad range of afi@sit

Three versions of the model, each using a different defmitibantigenic distance,
were tested. The versions using xor and modified Manhattstardie produced results
consistent with each other, while the Hamming distanceimengelded different results
in Sections 5.1.5 and 5.3.4. Hamming distance might be imeddally different than the

other two distance metrics, or these discrepancies coniglgibe due to the choice of
parameters used in the models. It is not surprising that theard modified Manhattan
distance versions agreed—they produce similar affinityribistions in the model (Sec-
tion/4.4). The Hamming metric differs because it is coardee-distance between digits
is either 0 or 1, while the distance between digits in the otlve metrics covers a range
of values. This makes it difficult to calibrate the Hammingsien of the model to match
the others. Itis possible that the differences in the metticuld disappear if longer string
lengths were used to represent the TCRs and the peptidesgbuirtiber of possible pep-
tides and TCRs would be unrealistically large and the modelavog difficult to run. For

reasonable string lengths, these differences will undadiptaffect the model’s results.
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Immune exhaustion and mutating

pathogensL]

La perfection est atteinte non quand il ne reste réeajouter, mais quand il
ne reste riera enlever.

[You know you've achieved perfection in design, not when yawe nothing
more to add, but when you have nothing more to take away.]

—Antoine de Saint Exupery

So little of what could happen does happen.

—Salvador Ddl

The model presented in Chapter 3 used to produce the res@mioter 5 assumes that
viral infections are resolved quickly. When the immune syst&an not clear an infection
quickly or if the body is repeatedly exposed to antigens, Cd&s behave differently.
During long-term infections, CTLs can die from over-stintida, a phenomenon known

asexhaustion To explore long-term dynamics in the model, | added exhamgb the
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model (Section 6.1). Without this feature, the model cardpee unrealistically large
primary responses to antigens, and this effect is compaliitlee infection is not cleared
by the primary response, leading to wild oscillations in CTHdavirus levels. Adding
exhaustion to the model not only affects the ability of themiuame system to clear an
infection (described in Section 6.2), but it also allows tmebserve a response that lasts
for longer periods of simulated time. As an illustration op@longed CTL response, |

record the effects of a rapidly mutating virus in Section 6.3

The results described in this chapter should be interpnstddcaution. Experimen-
talists have studied acute responses more thoroughly tiealonng-term dynamics of the
immune system. This is due, in part, to their reliance on raausdels. Not only do
mice have short life spans, but immunological assays oéguire the mouse to be killed.
Instead of tracking individual mice over time in longitudirstudies, researchers usually
begin with a cohort of identical mice and sacrifice them afedént times to simulate a
time series. This approach is problematic if the mice areiaentical or if stochastic

effects play a significant role in the immune response.

Long-term dynamics are also difficult for modelers. For sanfections, one can
assume that the CTL response is so fast and effective thabtitglution of other com-
ponents of the immune system is minor. However, if the indecis not resolved quickly,
then the roles of other immune cells, such as helper T cellsgIB, and macrophages,
cannot be ignored. Therefore, realistic models of longitefections need to be consid-
erably more complex. The mechanism for immune exhaustiopgsed in this chapter is

intended to be biologically plausible but not complete.
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6.1 Implementation

When over-stimulated by antigen, CTLs can become anergic en &lre, a phe-

nomenon known asxhaustion Prolonged exposure to antigen appears to cause effec-

tor CTLs to become progressively more impaired, eventuafding to T cell dele-
J, 20

tion &Fuller and Zajii

043; Wherry et‘ AI., 2003). High dosésntigen or moderate

doses of antigens that express excessively high epitopkslean also induce apoptosis in

CTLs (Moskophidis et al., 1993; Wherry et

a)

al., 1999, 2002). &dtion might be pe-

ripheral tolerancemechanism to eliminate self-reactive T cells. If thymicesgibn does

not eliminate all T cells that react to healthy cells (i.ental tolerance fails), then these

cells will react to the extremely high constant levels of pelptides in the body. Exhaus-

tion might prevent self-reactive T cells from effecting atined response against healthy

tissue‘(Anderton et M 2001).

| assume that exhaustion is induced by antigenic stimuldigcause high-affinity T

cells are preferentially eliminated by high doses of amti&@nderton et al.

: 20&)1) and

those that respond to immunodominant epitopes appear tobesusceptible to exhaus-

1997

tion than those that respond to subdominant epitopes (Fatel.,
‘1998; Slitka et al.

stimulation in vitro is dose-depende‘nt (lezzi et‘al., 1998)

; Zajac et al.,

, 2003). It has also been found that debififector T cells by antigenic

To add CTL exhaustion to the model, | introduce an additioffat&or cell death term

based on the level of antigenic stimulation that it receivBgcall that stimulation was

defined in Equation 3.13:

ali
2K
&li

Stimulation=
1+3%

(6.1)

Stimulation determines the rate at whichiveaand memory cells are recruited into the

response. If this level of exposure to antigen recruitsscéfien | assume that a higher

level will cause these cells to die. Therefore, | introducee® term, “over-stimulation,”
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which is identical to stimulation except that the dissaoratonstants K are multiplied by
25:

Over-stimulation= (6.2)

eli

25K;
Like the original stimulation term, over-stimulation is anttion that saturates at high

levels of antigen, except that it requires higher levelswigen for it to reach its maximum.
In addition to their normal death rates, effector CTLs are alsbjected to a death rate of
ds = 5 day ! times the “over-stimulation.” This rate needs to be highdarger the high

proliferation rate of effector CTLs.

Overexposure to antigen also appears to impair the formafionmunological mem-
ory. Memory T cells formed during a persistent infection cenunresponsive to anti-
gen ‘(Masopust et H 20H4; Wherry and AhrAed, £004). Thexetbe effector cells that

are in the process of converting to a memory phenotype dieséaf the stimulation (not

the over-stimulation) times 1.0 day. The effector cells at the end of their programmed
division cycles (see Section 3.2.4) also die at this rate.

In summary, neve CTLs convert to effector cells upon exposure to antigeefféctor
cells are exposed to levels of antigen much higher than gdssary to recruit them, they
die of over-stimulation. If there is antigen present at the ef the primary response, most

effectors die without converting to memory cells.

6.2 Viral dynamics and viral clearance

It has been observed that LCMV infection (see Section 2.1s4nore likely to be

chronic if the virus is administered at high doses or if a memlent strain is

used ‘(Moskophidis etal., 1993). | used the model to simutdextions with slow- and
fast-replicating viruses administered at low (500 unitg] high (10,000,000 units) doses.

For the slow-replicating virus, | set= 65 andp = 1 x 10~/ and for the fast-replicating
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virus, | setrt= 100 andB = 2 x 10~ ’. Section 3.1 defines these parameters. Typical runs
are shown in Figure 6.1. In many cases, the initial CTL respates not resolve the
infection. When the primary response fails to eliminate tinesy the viral load rebounds,
and the memory cells formed by the first effector CTLs elimentdie virus a few weeks

later in a secondary response (e.g., Figures 6.1c and d).

For the slow-replicating virus, the immune system coul@rctee infection more easily
for low- than high-dose exposures (Table/6.1). For therfaglicating virus, the immune
system could rarely clear the infection quickly, regargletthe initial dose (Table 6.1).
These results are qualitatively consistent with LCMV obagons. However, the dynam-

ics of a prolonged infection do not agree with laboratoryestations.

In the lab, a persistent virus can survive at low levels in gaaent dynamic equilib-
rium with the immune response. In the model, viral replmatnd CTL clearance never
find an equilibrium value, and the viral load declines durnGTL response and rapidly
recovers when the programmed response ends. Addition®tmdidel could allow the
virus to persist at low levels. One extension would be theodction of spatial com-
partments to the model. In the current model, the immune ee# assumed to be evenly
mixed throughout the body, so the entire body is under theedawel of immune surveil-
lance. If the body in the model were compartmentalized, gpatial heterogeneity would
give the virus the ability to temporarily evade the immunspanse by moving to new
compartments. The virus might be able to survive at low kuealder these circumstances.
Adding complexity to the CTL response would also change thetigs of viral clearance.
The model assumes that an effector CTL will eliminate inféctells at the maximum rate

until its programmed response ends or the cell is killed thaestion. In fact, real effector

cells gradually lose effector functiorls (Fuller and Zan%OS; Wherry et aIJ, 2003), and

they can even recover functions after losing thLem (Schml@ﬂﬁ%. Adding a wider range

of CTL response levels to the model could allow the virus teiseat an equilibrium level.
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Figure 6.1: The resolution of infection with slow- and fasplicating virus strains in-

troduced at low and high doses. The low dose was 500 virasuaitd the high dose
was 10,000,000. The plots show representative runs izeiith (a) low-dose of slow-

replicating virus, (b) high-dose of slow-replicating \8tuc) low-dose of fast-replicating
virus, and (d) high-dose of fast-replicating virus. Theusiloads are indicated by lines
marked bye and the numbers of CTLs from each clone are plotted as unménkesd

14
time (days)

6.3 Immune escape

Some antigens can alter their epitopes in order to evademhmine response. If the
immune response targets a particular immunodominantpgiiofected cells expressing
variants of this epitope might partially or fully avoid deten by effector cells. The

immune system subjects pathogens to evolutionary presRapadly mutating pathogens

can generate thousands of new antigenic strains withingdeshost, and the successful
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slow fast
low-dose high-dose low-dose high-dose
Hamming| 99% 99% 2% 8%
xor | 41% 20% 0% 0%
L1 | 64% 52% 1% 0%

Table 6.1: The resolution of infection with slow- and fagplicating virus strains intro-
duced at low and high doses. The low dose was 500 virus pestiaind the high dose
was 10,000,000 virus particles. For each set of parameber<CTL simulation was run
100 times, and the numbers in the table indicate the pememithese runs in which the
infection was resolved, which | define to be the absence aévyour weeks after infection.

mutants can quickly spread, while the unsuccessful oneppiéar. The immune system

is also highly adaptable, and the host and pathogen musteterfgr control of the body.

| ran simulations with mutating pathogens that express @lesiepitope and have the
same growth parameters as the slow-replicating virus thegtin Section 6.2. The non-
mutating version of this virus, when administered at lowedp<ould usually be cleared
within four weeks (Tablé 6.1). By adding a mutation rate of A@nutations per virus
replication (mutation is defined in Section 4.3), the infaciwas rarely cleared. Mutant
strains are assigned the same replication and mutatios agtéheir parent strains. The
total virus loads oscillated, peaking about every two weekgical runs are shown in
Figure 6.2.

The progression of individual virus strains is plotted igufie 6.3. The dark vertical
bands in these plots correspond to the simultaneous peaksltiple strains. The strains
that comprise each peak are not necessarily created atrtieetgae; one can see that the
lines that represent each strain can begin at different piongts but still peak at the same
time. Therefore, | assume that the CTL response periodicalppresses the spread of
most strains, which proliferate after the response dirhgss Most strains do not survive
these purges. The peaks in the viral loads are followed bstbwf new mutants, which

appear in in Figure 6.3. as groups horizontal lines that atdahe same point on the x axis.
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Figure 6.2: The viral load of a slowly mutating pathogen. Tingation rate of the virus is
1 mutation for every 1®replications. Solid lines represent CTL levels, while thetud
lines represent the total viral load of all strains. Versiohthe model using different defi-
nitions of antigenic distance were used: (a) Hamming, (lb)aed (c) modified Manhattan
distance.

From these observations, | assume that the original virplkceges until it reaches high
levels and generates variants. The CTL response eliminatesriginal strain and most
of its descendents, but some of the strains will survive sipbg because their epitopes
escape immune system detection or possibly just by luck.growth of these survivors
is temporarily suppressed by the cross-reactive CTL regpamisich eliminates cells in-
fected with the original virus and similar strains. Because programmed response of
effector cells lasts for only a few days, each response wahtually end. When the initial

response is over, the surviving strains soon generate adqak in viral load, which
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Figure 6.3: Emergence of strains using slowly mutating @g&ims. The individual strains

are displayed from the same trials shown in Figure 6.2. Thesvbad of each distinct

strain over a period of sixty days is represented as a rowayf dots, and the darkness of
each dot is proportional to the log of the viral load of tha&st at a time point. Time runs

along the x-axis. Versions of the model using different difins of antigenic distance

were used: (a) Hamming, (b) xor, and (c) modified Manhattatadce.

recruits a new set of CTLs. A new set of strains is created duhis peak.

The viral load peaks of multiple strains do not remain syonfred. If a new mu-
tant virus has an epitope that is not recognized by effectdtsCThen it can replicate
before the response to its parental strain is over. This easbberved when the mutation
rate was raised to @ mutations per virus replication. Figure 6.4 plots the tofals
loads of representative runs, and Figure 6.5 shows thegss@f the individual strains in
these runs. Although the viral load peaks are synchronizécsg they quickly go out of
phase and the peaks become less coherent over time (Figird Be faster mutation rate
qguickly generates mutants that express epitopes that ¢hradenmune response. The re-
sponses to these different strains is independent, thugigreamics are not synchronized
by cross-reactive CTL responses. This effect is less appaggn Hamming distance is
used to define antigenic distance (Figures 6.4a and 6.5&).vifal loads of the various
strains appear to remain synchronized. In the Hammingrdistaersion of the model, a
single mutation in an epitope never allows a virus to escafe d&fection (Section 4.3).

Therefore, the cross-reactive CTL response can keep a atrdiitis mutants synchronized,
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Figure 6.4: The viral load of a quickly mutating pathogeneThutation rate of the virus
is 10~4 mutations per replication. Solid lines represent CTL lewstsile the dashed lines
represent the total viral load of all strains. Versions @& thodel using different defini-
tions of antigenic distance were used: (a) Hamming, (b)aod, (c) modified Manhattan
distance.

perhaps until strains accumulate multiple mutations.

The mutation rate does not significantly affect the rate atlwkirus strains can accu-
mulate mutations. It is unlikely that a virus will produce atant strain until it reaches
high population levels, at which point it can produce many is¢rains that differ from
itself by exactly one mutation. The CTL response to the pasgmain keeps these new
viruses at low levels or eliminates them altogether. Tleefthese new strains will not
replicate widely enough to generate their own mutant ssr@arinich would differ from the

parent by two mutations) until the previous CTL response wishies. Thus, the number
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Figure 6.5: Emergence of strains using quickly mutatinpgéns. The individual strains
are displayed from the trials shown in Figure|6.4, Eachmliststrain is represented as a
row of gray dots, and the darkness of the dot is proportian#i¢ log of the viral load of
that strain at a time point. Time runs along the x-axis. \d@rsiusing three different defi-

nitions of antigenic distance were used: (a) Hamming, (lb)aed (c) modified Manhattan
distance.

of mutations that can accumulate within a single lineagemged to approximately one
mutation every two weeks, regardless of the virus’s mutatade.

Many pathogens produce periodic “bursts” of new strainsheirt hosts. Some

examples (many of which are reviewed in Deitsch ét‘al. (1pare Plasmodium fal-
ciparum (which causes malaria) (Roberts et al.

, 199Zjypanosoma bruce(sleep-

ing sickness) (BarrE 1986; Vickerman, 1989), awdhaplasma marginale(rick-
ettsemia) (French et al., 1999). Although some of theseogatfs are controlled by the B

cell response, the primary mechanisms that create theloadloscillations in my T cell

model (i.e., cross-reactivity and a delayed immune respoalso apply to other forms

of immune response. This phenomenon has been modeled by ¢ehg., Nowak et ;I.
&199%); Antia et aI.‘(lQQLGJ; Haraguchi and SaLgki (1957);kl§eet al‘. (2004)). These

models include separate “strain-specific” responses tatetiminate only a particular
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antigenic strain and “cross-reactive” responses that fieetee against all variants. In
my model, these “responses” are not separate. The CTLs in ndglnetiminate infected
cells at a rate based on the similarity between their recgjatad the MHC—epitope com-
plex. My CTL model also differs from previous work by includim programmed CTL
response. The programmed response causes the frequerssiliaitions in viral load to
be determined solely by CTL kinetics, not viral kinetics. Theult is that the period be-
tween peaks in viral load are the same for any virus, regssdiéits replication rate. Data
in the literature to support or contradict this result ididiflt to find because the patho-
gens that produce periodic peaks are generally parasiesjranses, so they will not be
controlled by CTLs.

6.4 Summary

| added immune exhaustion to the CTL model by incorporatingdutional effector cell

death term. With this extended model, | found that incregsie initial dose or the growth
rate of a virus makes it more difficult for the immune systeneliminate it. Adding

exhaustion also made the model’s prolonged CTL responses mealistic, so | tested the
effects of infecting the system with a mutating pathogenre Vinus level oscillated, with

peaks about every two weeks. These oscillations were cdws#dte regular creation of
new viral strains and their elimination by CTLs. A higher ntida rate decreased the
coherence of these oscillations but did not increase tleeatatvhich a single strain could
accumulate mutations over time. The model’s response taatimg pathogen highlighted
another difference among the different distance metridse CTL response was highly
cross-reactive when the Hamming distance metric was usethesCTL responses to
various mutant strains remained synchronized. For ther otle¢rics were used, a single
mutation could sometimes cause a new variant to temporewvdygle the CTL response.

The set of nave CTLs responding to this variant would behave indepemgehthe CTLs
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responding to the parent strain, so the oscillations inl total load become less well-

defined over time.
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Conclusion]

| had worked hard for nearly two years, for the sole purpose tfsimg life
into an inanimate body. For this | had deprived myself of ssd health. |
had desired it with an ardour that far exceeded moderationnaw that | had
finished, the beauty of the dream vanished, and breathlagssriand disgust
filled my heart. ..

—Mary ShelleyFrankenstein

| developed a computer model of the cytotoxic T lymphocytel(TrEsponse to viral
infection. Using this model, | explored the compositiontad have CTL repertoire and the
dynamics of the CTL response. The model revealed a mecharyismhioh the immune
system can shape theima CTL repertoire to detect foreign peptides with efficiensing
positive and negative selection. This mechanism is botlogically plausible and explains
several somewhat surprising results in the literaturetheunrexperiments are necessary to
refine the hypothesis. If the model’s results prove to beembdsthen the model could be

used to develop “thymic vaccination” therapies, in whiclptoes are introduced directly

into the thymus to shape the immune cell repert&re (FritHaseli et aIH 2004).

The model also replicates the dynamics of the CTL responseabinfection under a
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wide variety of conditions, including natural infectiorgacination with a non-replicating
antigen, administration of antibiotics, and the injectarmassive amounts of additional
CTLs. The typical approach to immunological modeling hasnbigecreate a minimal
model for each of these scenarios, which makes the modealsr éasconstruct but re-
stricted in scope. By creating a single model that accomnesdagany different immuno-
logical phenomena, one can use it to test wewbinationf vaccination and other treat-

ment strategies for preventing or controlling viral infeat

| have demonstrated that modeling can be used to enhancenderstanding of im-
munology in different ways. Some of the results describatimwork took advantage of
the ease with which one can perform experiments with a coenpnbdel. For example,
Section 5.1's analysis of the CTL repertoire before and dftgmic selection would be
extremely expensive and time-consuming to perform in theratory. Computer models
can be used to run experiments before more costly animal sestused. | performed
other experiments in an attempt to explain known CTL behawitthough the model con-
tains a simple representation of the CTL life cycle, the miagie and composition of the
simulated responses reported in Sections 5.2 and 5.3 résénase observed in mouse
experiments. Thus, the elements of CTL behavior includedchénmhodel could be the
primary factors governing short-term responses. In Chdjteuse the model to explore
immunological phenomena that are not well-understood. B®ranodels can be easily

modified, they provide convenient vehicles for hypothesssing.

A major task in constructing the model was the represemtatia implementation of
CTL—infected cell binding. Because it was infeasible to impat a simulation of the
molecular binding interactions between a TCR and an MHC—-geptomplex, | used a
highly abstract digit string representation for the TCR amal complex and a string dis-
tance rule to define the binding strength between them. ™iardie calculation had to be
computationally efficient but still capture some aspechefliinding interactions. Because

there is no single “correct” rule for this purpose, | implerted three different ones and
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ran the model using each of them. When there is only one epitoffee system, then
the choice of rule is less important—all three distancestitat | used produced similar
affinity distributions. In experiments involving only a gie epitope, | arbitrarily chose
to use the xor metric, which was the most efficiently impletedn When studying the
foreign peptide coverage of a CTL repertoire or simulatingosxire to mutating antigens
or more than one kind of pathogen, the choice of distanceicrigtcomes important; the
metric defines how cross-reactive responses behave in telpwehich play a major role
in these situations. | assumed that a result produced byrak tversions of the model was
robust to the metric’s definition. If an effect only occurnesing one of the metrics, then
| had less confidence in the result. In such cases, one needasaer why an effect de-
pends on the definition of the metric and what properties dartblecular binding events
that occur in the immune system share with the metric. Eadhiar@robably has unique
characteristics that reflect some of the properties of teal*binding events that occur in

the body, so each could be valid in different situations.

Model-building requires one to make many simplificatiorssuanptions, and compro-
mises. By necessity, a model is a simplified representatidheo$ystem of interest. The
simplification process demands that many aspects of therayls¢ ignored or drastically
reduced. Some of the decisions | made while implementingribdel were based com-
putational efficiency rather than biological fidelity. Foaenple, because little is known
about how the birth and death rates of effector CTLs changmgltine course of a re-
sponse, | assumed that they were constant. Such assumptzaaiesboth the implemen-
tation and calibration of the model easier. As more quan@aneasurements are made
of the CTL response to antigen, the model should be extendedtltecde them. | chose
to adapt the scope of my model to match data available in teeature. However, the
literature grows each day, and our ability to observe imnuels is improving so rapidly
that many parts of the model will require revision within efgears. In particular, quanti-
fying the effects of interactions among different kindsmfmune cells, such as the innate

immune system and helper T cells, will provide modelers wilv opportunities. These
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interactions will advance the state of immunological modgimmensely. Many immune
cell types are involved in responses, and restricting a itodesingle type severely limits
its applicability. Therefore, model-building should beialdg between the modeler and
the disciplinary scientist. | have used the published tesaflimmunologists to construct
a model, and | hope that immunologists will be able to use niglel to guide future

experiments.
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Calibrating the distance metrics ]

There are three versions of the CTL model, each using a diffetefinition of string
distance: Hamming, xor, and modified Manhattan. This appetefines these metrics
and summarizes their calibration in the context of the madelg the procedure described

in Section 4.2. Each of the following three sections cos$six parts:

1. A formal definition of one of the distance metrics.

2. The alphabet size and string lengths for the peptides and TTRs alphabet size
and string lengths must be determined for the receptors igadds in the CTL
model. One constraint is that the ratio of the length of a TCRrG¥binding por-

tion to its peptide-binding portion must be 2‘:3 (Detourslel]éw‘})). Another con-
straint is that the number of possible TCR strings that theehoan create should

be at least 1¥, which is the estimated number of different TCRs that a human

can generaté (Davis and Bjorkaaln, 1988). The number of desEER strings for

strings of length_ using an alphabet of sizeis k-.

3. The thymic selection thresholdsUsing the definition of the metric, the string

lengths, and the alphabet size, | apply the algorithm desdrin Detours et al.
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1999) to find the distance distribution of random pre-sedecTCRs from their

selecting peptides. This distribution is used to compugepbsitive and negative
thymic selection thresholds according to the procedureries in Section 4.2.1.
The positive and negative selection thresholds are fourshtisfy observed con-

straints of thymic selection in murine systems.

4. The size of the pre-selection andive repertoires and the average number of re-
sponding clones per epitopBecause the CTL model is calibrated using data from
mouse experiments, mouse estimates are used to determeirsizénof the niae
repertoire and the number ofiwa clones per epitope in the model. 610107 is

1993;

Casrouge et al., 2000), and the number of respondiingera@dones per epitope has

been estimated to be 10-20 in mige (Blattman LEIH.TZOOZ). Bbthese values

depend on the size of the pre-selection repertoire. The eumbclones in the

the estimated number of clones in a mouseis@aepertoire (Pannetier et al.,

naive repertoire size is the number in the pre-selection tepertimes the fraction
of clones that survive selection (computed in part 3). fidreign peptide response

frequency which is the fraction of ri@e clones that respond to a random peptide

presented on self MHC, is computed using a procedure fromudett al. (1999).

The average number of clones that respond to an epitope ferttign peptide re-
sponse frequency, which has been experimentally obseoveel between 1 and
104 &Stockinger et zM 19&); Zinkernauel, 1%96), multipligctibe ndve repertoire

size.

5. The distribution of distances between two random striAdss distribution is used
by the lazy evaluation procedure described in Section 4.2@ lazily generate
the CTLs for each MHC—epitope complex, the simulation geesrtte appropri-
ate number of pre-selection TCRs that are at each distance0ftonone less than
the cross-reactive cutoff. To do this, | first determine tisribution of distances

from random strings to a reference string. This distribugoves the proportion of
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pre-selection TCRs that are at each distance from the MHC-epdomplex. One
can compute the expected number of clones at each distancailtiplying this

distribution by the total number of clones in the full prédestion repertoire, which
is about 18. During a simulation, to compute the actual number of clatesach
distanced, a random number is drawn from the binomial distributionngshe size

of the full pre-selection repertoire and the proportionlohes atd as parameters.

6. An algorithm for generating a random string at the desiredtaince from a given
string. After the number of strings to generate at distaddeom an MHC—epitope
complex string is determined, the TCR strings are generaldskse new strings

form the pre-selection repertoire for a particular MHC—epd pair.

In the sections that follow, | use the following notationrirsgs are sequences bf
digits, digits are drawn from an alphabet of skz&J is the universe of possible strings,
|U| is the number of different strings ln, 1(x,y) is the distance between two digksnd
y, D(a,b) is the distance between two strirgandb, and P{X = z} is the probability that

random variableX is equal toz.

A.1 Calibrating Hamming distance

1. A formal definition of Hamming distanceThe Hamming distance between two

strings is the number of positions in which they differ (Hamgj 1950). The Ham-

ming distancdy between two digitx andy is:

1 ifx=y

The Hamming distancBy between two stringa andb is

Du(a,b)= Y In(a.b) (A2)
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whereg; andb; are theith digits of the stringg andb.

2. The alphabet size and string lengths for the peptides and TB&®ming distance
is “coarse” because the distance between two digits is a&ehaoplather than scalar,
value (Equation A/1). The distance between two strings cdy ke values be-
tween 0 and., the length of the strings. If one chose to use small stringtles to

represent the peptide and MHC strings (such as 6 digits angdi# ds suggested

in Detours et al. (1999)), it would be difficult to find pos&iand negative selection

thresholds such that 1%—-3% of pre-selection clones suttryraic selection. There-
fore, the string lengths must be longer. Long strihgsan lead to an unreasonably
large universe of TCRs, which k& wherek is the alphabet size. Therefore, | chose
a small alphabet size to reduce the number of possible TCRse&sons discussed
in‘Kanerva‘(198‘8) aAd Smith etul. (1997), 2 might not be ablatalphabet size, so

| set the alphabet size to be 3. | test many combinations of N#tiGth and peptide

length such that their ratio is 4:6 to match the values in Destet al. (1999).

3. The thymic selection threshold$he distribution of distances between a TCR and
its selecting MHC—self peptide complex can be derived usipggion A.2 and the
procedure in Detours et al. (1999). | used this distributiorfind string lengths
for the MHC- and peptide-binding portions of the TCR that $atike 2:3 length

ratio, contain an appropriate-sized selection window oit&li—3% of pre-selection
TCRs, and are of moderate length. | found that an MHC length @frPa peptide
length of 48 yielded several appropriately sized seleatimmdows; the distances of
34, 35, or 36 would all be plausible thymic selection winddgure A.1). For all
of these candidate windows, the positive and negative tieethresholds are equal,
so only TCRs that are exactly 34, 35, or 36 away from the nearkI-Melf peptide
complex survive thymic selection. | chose to set the pasiind negative selection
thresholds to clones at distance 34 for the Hamming distaexson of the model.

About 3.96% of clones survive thymic selection.
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0.1

candidate selection windows
number of clones is 0.5-3%
number of higher-affinity clones is 1-2x more

pre-selection TCR

r Q- 7
& =t 1 1 1
% 35 40

Figure A.1: Setting the thymic selection window using Hamgndistance. The thymic
selection window should cover about 1-3% of the possibiegsr so the strings at distance
34, 35, or 36 satisfy this constraint (indicated by the aspwbout 1-2 times more strings
should be of higher affinity than those in the window, so theuglative distribution (in
this case, the sum of the number of strings up to but not imatuthe current distance)
should be about 1-2 times larger than the number of strintgeiselection window. The
strings at distance 34, 35, or 36 each satisfy this constrain

4. The size of the pre-selection andive repertoires and the average number of re-
sponding clones per epitop&/hen the size of the pre-selection repertoire is set to
8 x 10’ clones, the riae repertoire size is.37 x 10°, which agrees with observa-
tions in mice. The expected number of responding clonestope is simply the
naive repertoire size multiplied by the foreign peptide resgmfrequency. | calcu-
lated the foreign peptide response frequency to .48 8 106, which falls within
the range observed in laboratory experiments. Using thakes, the number of

responding clones per epitope is about 27.

5. The distribution of distances between two random stringse lazy evaluation al-

gorithm requires that the expected number of strings tleatayiven distance away

from a reference string be computed. In Kanerva (£988), # praven that the pro-

portion of all strings that are distandeaway from a reference string is defined by
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the binomial:

k—1
9 (A.3)

COEYEET e

where P{Dy(X,y) = d} is the probability that random stringsandy are exactly

PrDH(xy) =d} = 3(L,

Hamming distance apartk is the alphabet size, aridis the length of the string.

6. An algorithm for generating a random string at the desirestalce from a given
string. | generate random strings at Hamming distaddeom a reference string by
randomly choosingl digits to differ from the reference string. These digits seé
to random digits that are not equal to the other string’s Jevtlie remaining digits

are copied from the reference string.

A.2 Calibrating xor distance

1. A formal definition of xor distancd&.he xor distanceDyqr, IS the sum of the bitwise

xors between the corresponding digits of two strin%gs (Dest@t aIH 1999). For two
one-bit numbers, the xor operation)(is defined to be 1 if the numbers are different
and O if they are the same. This operation is extended to 4mitilhiumbers by
decomposing each numbemto a sum of bits(...x;, each multiplied by 2 raised

to a powerx = ¥ xi2'. The xor distance between two digitger, is:

Ixor(X,y) = X@y (A.5)
= 3 (xewn? (A.6)

|
wherex; andy; are theith bits of the digitsx andy. The xor distanc®y.; between

two strings is

Dxor(a,b) = Z Ixor(&, i) (A7)
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where g and b; are theith digits of the stringsa and b. For example, the
xor distance between 3 and 5 is 6 because 3 can be decompasetiansum
O0x224+1x2'+1x2%and 5is 1x 224+ 0x 21 4+ 1 x 29, and the sum of the xors of
the coefficients of the powers of 2 is<12? 4+ 1 x 21 + 0 x 2°, which is 6:

3=0x 2241 x 2141 x 20
+ 5=1x22+0x21+1x 20
6=1x 22+1 x 21+0x 20

2. The alphabet size and string lengths for the peptides and TIGRe values derived
in Detours et al. (1999) for the lengths of the MHC and pepsigimgs: 4 digits for

the MHC strings and 6 for the peptides. However, | reduceatpleabet size from
256 to 128 for computational efficiency and to reduce the sizéhe universe of
possible TCRs from .2 x 10?4 to 1.2 x 10°.

3. The thymic selection thresholdBhe expected distribution of distances from a ran-
dom TCR to its selecting MHC—self peptide complex is plotteigure A.2. This
distribution was verified by generating 3 random MHC striagsl 30,000 random
self peptide strings then computing the distance betwe€000 random TCR
strings and the nearest MHC—self peptide complex string. édpected and ob-
served distributions agree except in the low-affinity (&adistance) tail, which are
eliminated by positive selection (Figure A.2). The thynetestion window consists
of strings at distances from 140 to 149 from the selecting Ms&lf-peptide com-
plex. This range covers 0.807% of the random TCR strings, 486l & the TCRs

that survive positive selection are killed by negative cibe.

4. The size of the pre-selection andive repertoires and the average number of re-
sponding clones per epitopkset the size of the pre-selection repertoire 2108
clones, and after thymic selection the repertoire is rediioce x 10°. The foreign

peptide response frequency i®1x 10~°, so about 25 rige clones respond to each
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epitope. Note that the number of pre-selection clones ikdrighan that used in
the Hamming version (Section A.1) because a smaller fractfclones happens to

survive selection in the xor version.
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Figure A.2: The distribution of xor distances between ag®lection TCR and the nearest
MHC-self complex. The negative selection threshold is 140tha positive is 149 (indi-
cated on the x axis by the “-” and “+”). This results in a windsize containing 0.807% of
all possible TCRs, with about 1.29% of pre-selection clonesieated by negative selec-
tion. The plot shows the expected resutisgnd empirical results from generating 100,000
random TCR strings (solid line). The computations were paréal using 3 MHC types,
10000 self peptides per MHC type, MHC length of 4 digits, mptength of 6 digits, and
an alphabet size of 128.

5. The distribution of distances between two random strirtgs. the lazy evaluation
algorithm, | compute the distribution of distances betweemrandom strings. The
distance between two random strings is the sum of the distdvetween their corre-
sponding digits, and the distribution of the sum of inde@mdandom variables is
the convolution of their individual distributions. The jability distribution of dis-
tances between two random digits{Rer(x,y) = d}, is uniform ford =0...k—1

(wherek is the alphabet size) and zero elsewhere. Therefore, thapilay distri-
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0.004
0.003 —

0.002

fraction of strings

0.001 —

L N L
% 500 1000 1270

xor distance

Figure A.3: The probability distribution of xor distancestiveen two random strings of
length 10 using an alphabet size of 128.

bution of xor distances between two strings is:

Pr{Dxor(a,b) = d} = Pr{lxor}" (A.8)

where Pflyor}" is the probability distribution Rixor} convolved with itselfn — 1
times. An example of this distribution using the string paegers used by the CTL
model (string length of 10 and alphabet size of 128) is ptbiteFigure A.3.

6. An algorithm for generating a random string at the desiredtaince from a given

string. To generate strings at a given distance from a referencgstruse the bit

composition sets algorithm, described in Detours et al0{20 This technique is

computationally efficient but requires a large amount of rmgm
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A.3 Calibrating a modified Manhattan distance

1. Aformal definition of modified Manhattan distancg)Ll use a modified version of
the first-order Minkowski metricl.;. The standard first-order Minkowski distance

is the sum of the absolute values of the differences betwesedigits of two strings:

D|_1(a, b) = Z ]a; — bi| (A.9)

In two dimensions, it can represent the number of blocks crels to travel to
go between two points in a city if one must travel along a gfidteeets. There-
fore, Ly is also known as Manhattan distance, city-block distaned,taxicab dis-
tance (Krause, 1987).

| use a modified Manhattan metric, which | denatg in which the dimensions
have cyclic boundaries so that the space “wraps aroundti(€ig.4). The distance

between two digits is:

lLv(X,y) = - Thy=k/z (A.10)
7 k—|x—y| otherwise

The distance between two strings is the sum of the distane®gebn their corre-

sponding digits:
Diy(ab) =} liv(a,bi) (A.11)
|

In standard_1 space, the positions near the edges of the space have gdmeagh-
borhoods. The termeighborhoods the set of strings that are at or within a given
distance of a reference string. For example, on a line, a pbiposition 2 has two
neighbors that are distance 1 away (at 1 and 3), while a po@has only one neigh-
bor that is distance 1 away (at 1). Usibgspace with cyclic boundaries, the point

at 0 has two neighbors at distance 1: the points at Inamdheren is the maximum
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o
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Figure A.4: The modified Manhattan distan¢g)(in 2 dimensions. It is the same as the
standard_; distance except that boundaries are cyclic so the spac@sa@und.” In this
figure, all o’s are distance 2 away from the x.

value on the line. Thus, the neighborhoods of all points;ihave the same size and

shape.

2. The alphabet size and string lengths for the peptides and TCG#s the modi-
fied Manhattan distandg), | use the lengths of the MHC and peptide strings from
Detours et al. (1999): 4 digits for the MHC strings and 6 fag geptides. | chose
an alphabet of size 32, so the number of possible TCRs$-32.13 x 10,

3. The thymic selection thresholdSsing the derivation frorjn Detours et‘ AI. (1%99), I
found that the thymic selection window consists of the ctoatedistance 19 from

their selecting peptides, resulting in 0.778% of the pleet®n repertoire surviv-
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ing thymic selection (Figure A.5). About 70% of the cloneattBurvive positive
selection are killed by negative selection.

4. The size of the pre-selection andive repertoires and the average number of re-
sponding clones per epitopkset the size of the pre-selection repertoire :210°
clones, and after thymic selection the repertoire is rediice x 10°. The foreign
peptide response frequency ig3x 107>, resulting in about 28 responding clones
per epitope.
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Figure A.5: The distribution of modified Manhattan distasdetween a random pre-
selection TCR and the nearest MHC—self complex. The thymecteh window consists
of clones at distance 19. This results in a window size of &7,7with about 1.78% of
pre-selection clones eliminated by negative selectiore éxpected distribution is denoted
by o and a trial using 100,000 random TCR strings by the solid liee computations
were performed using 3 MHC types, 10000 self peptides per MMBC length of 4
digits, peptide length of 6 digits, and an alphabet size of 32

5. The distribution of distances between two random strifgswas the case for xor
distance (Section A.2), the distribution of distances leefmtwo random strings is

the convolution of the distribution of distances between tandom digits. The
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Figure A.6: The probability distribution of modified Mankext distancesL{) between
two random strings of length 10 using an alphabet size of 32.

probability distribution of inter-digit distances faf, is:

1/k ifd=0ord=k/2
Pr{lLy(xy)=d} =<¢ 2/k if d<k/2 (A.12)

0 otherwise

wherek is the alphabet size. Note thatcan only equak/2 whenk is even. The
distribution of inter-string distances is {FP[&}L. An example of this distribution
using the values used by the model (string length of 10 arftbhlgt size of 32) is
plotted in Figure A.6.

6. An algorithm for generating a random string at the desiredtaince from a given
string. | have implemented an algorithm to generate random stringsgivenL)
distance from a reference string. One part of this algoritahculates probability
distributions required to generate these strings. Thersa@iroutine takes two pa-
rametersn andd, which are the length of the string and the desired distarare f

the reference string. For all valid combinationsx@ndd, the routine computes and
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stores the probability distribution of distances for thsetfdigit of the string. For ex-
ample, if half of all possible strings of lengthand distancel from the origin begin
with the digits 1 ork — 1 (both distance 1 from the origin), then the distribution of
distances for the first digit would be®for distance 1. For a string of length 1 (i.e.,
n = 1), the distribution that describes the number of stringssehfirst (and only)

digit is distanced from the origin is:

.

1 ifd=0andr=0or

if d=k/2 andr =k/2
UIP{ILy(asby) =r} =4 (A.13)
2 ifd<k/2andr=d

| 0 otherwise

From this distribution, the distributions for strings ohtgh d can be computed

recursively:
U|PH{l y(ag_1,bg-1)=d—r} ifr=0o0r
U[Pr{lLy(ad,bg) =1} = if r = k/2
2U|Pr{lL1(a8g_1,bg_1) =d—r} otherwise
(A.14)

The digit distributions are normalized to sum to 1 to obtaibability distributions.

The digit distance distribution is used to generate newaanstrings at distance
from a reference string. The first digit is chosen by randodngwing a digit dis-
tanced; from the distribution P{l_y/(a_,b.) = r}. This random value is converted
to a digit by either adding or subtracting (with equal prabgh it from the digit

in the reference string. The distanggfor the second digit is drawn from the dis-
tribution PRI 1(a._1,b —1) =d—d1}. Again, this distance is either added to or
subtracted from the second digit in the reference strings ptocedure is repeated

to compute the remaining digits of the new string.
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Alternative biological assumptions(]

The model presented in this work is not intended to be congmgkie. My intent was
to create a computationally efficient model of the CTL respaisinfection that would
elucidate issues of repertoire selection and the dynanfitseeaesponse. If one is inter-
ested in other aspects of CTLs, the model would need to bedederin addition, some
features of the T cell response are incompletely or possiagrrectly understood, so |
often had to choose among competing hypotheses. The punptise appendix is to list

a few alternatives to the assumptions used by my CTL model.

In Section 3.2.2, the representation of affinity in the madada$ been simplified to
exclude the phenomenon sérial triggering in which a single MHC—peptide complex
can stimulate multiple TCRs (Valitutti et al., 1995). An MHCgtide complex that has a

low dissociation rate with a CTL's TCRS stimulates only a smaithber of TCRs because
each binding interaction takes a long time. A complex withighér dissociation rate
would have the opportunity to bind to more TCRs per unit timealose after disengaging
with one TCR it could bind to another. Thus both the affinity lo¢ tinteractions and
the dissociation rate determine the stimulation that a CTeixes. The model could be

extended by adding dissociation rates to the CTL recruitrpsdess.
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In the same section, | assert that memory cells have the satigeic stimulation re-

quirements as riee cells ‘(Bachmann et EJL, 19{99) and incorporate this faotthre model.
Some studies have found that memory cells are more sensitaetigen (Pihigren et al.,

1996). However, this effect is not consistently supportetthe literature, and it is certainly

not well quantified. Memory cells in the model can respondoteer levels of antigen
without requiring lower stimulation thresholds becauseythre usually present in larger

numbers than rige cells and require less time to begin their initial rouatiproliferation.

Simultaneous responses to different epitopes expresstelsame infected cells are
independent in the model (Section 3.2.3). This effect mék@sodeling much easier and

less computationally expensive, but it cannot be true. & haust be competition for non-

specific resources such as cytokines (Borghans et al., 19@9¥0 the surface of infected

cells. However, it is not known how significant this competitis during the course of a

typical response.

The model assumes that newly recruited effector cells haanatant death rate and
divide for a fixed number of cycles before they stop replimgt{Section 3.2.4), but the
results from the CTL model described in Allan et LI. (2004)icatk that the death rate

for an effector cell should increase and the proliferatiate rshould decrease with each

division. This is probably true, but current CFSE technolagyot accurate enough to
estimate the death and replication rates during the entiwese of a response, so | have

used the simpler assumption that these rates are constant.

The model uses a considerably simplified CTL life cycle (%ec8.2). CTLs perform
many roles during an immune response, such as eliminatfegted cells and producing

cytokines, and the magnitude of infection might determioe Imany of these functions

they adopt (Auphan-Anezin et al., 2003). These functiomsalao become progressively

downregulated at the end of a response or during a chronpomes (Fuller and Zajac,
‘2003; Wherry et al., 2003), as mentioned in Section 6.1. My ehadsumes an “all-or-

nothing” activation of CTLs, while a more comprehensive miadauld allow for partial
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activation.

All effector cells in the model have an equal probability @neerting to memory
throughout the course of the response (Section 3.2.5)hmiassumption does not agree
with recent findings that suggest that some effector ceispae-determined to become

memory cells. Some studies show that the subset of effeittarexpress the interleukin 7

receptom-chain (IL-7Rx) early in the response become memory cells (Kaech et al3;200

‘Huster et aJI., 2004). Expression of C&@ receptors by effectors has also been found to

correlate with conversion to memory (Madakamutil eJ aIQA@O However, it is not known
if the effector cells that express IL-tRor CD8xa behave differently during the response
than those that don’t, so making this distinction in the medwrild not affect its behavior

without this additional information.

Proliferation rates for rise- and memory-derived (primary and secondary) effectors
are the same in the model (Section 3.2.5), but in reality rsd&xy effectors might have

shorter division time4 (Rogers et LI., ZBOO). Net populagjowth of secondary effectors
happens to be higher in the model because they have lowdr dgas than primary effec-
tors. Shorter division times would increase the secondegter cell population growth

even further.

The timing of the expression of epitopes probably plays aomaple in im-

munodominance‘ (van der Most et aLI., 2003). For example, CHspanding to the

LCMV epitopes expressed significantly earlier than otheraldcalominate the re-

sponse (Fuller-Pace and Southern, 1988). The CTL model datesonsider timing ef-

fects, and all epitopes are immediately expressed upomtéetion of healthy cells (Sec-
tion'3.2.2). Only the expression levels of different epé@sliffer in the model.

The model of thymic selection described in Section 4.2.1 esakany simplify-
ing assumptions based on those useh in Detourg eL.t al. (1Aare that paper’'s pub-

lication, a handful of other thymic selection models hav@esped in the literature.
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van Den Berg et al. (2001) introduces antigen-presentirlg @&PCs) that express a mul-

titude of self peptides in the thymus. It also uses a more ¢texngepresentation of
CTL stimulation than that used ‘in Detours et LI. (1999). THesgures allow different

self peptides to be presented at different levels, whichdcafiect the nae CTL reper-
, 20&)4). The model ‘in Faro ek Lal. (2004)d#s the thymus into two

compartments: the cortex and the medulla. This divisiorsaddew level of detail that

toire %Laurie et al.

could potentially be calibrated with experimental dataother feature that could Finally,
CTLs can modulate the number of TCRs they express in response tenvvironment
in the thymus and the periphelLy (Grossman and‘ Paul, J%OOlemcmiand WraiM, 20$2).

This fact complicates the distinction between autorea@ivd non-autoreactive CTLs, and

models (such as van Den Berg and Rand (2004)) have been usedydrstse effects.

| assume that the cross-reactive cutoff is equal to the ivegselection threshold used

in thymic selection (Section 4.2.2), even though the thessreactive cutoff might be

more stringent‘ (Pircher etil., 1991). This would imply thgtre-selection cell is more

sensitive to peptides and would respond to a larger rangepifdes than a post-selection
effector cell. Adding this effect to the model might affec€@L model of autoimmunity, a

phenomenon | do not address—uninfected cells in the modebtiexpress self epitopes.

Finally, most of the data used in the model are based on maerperiments. Many
modifications would be required to convert the model to acooofate human data. One
could simply multiply many of the constants by 10,000 to esgnt the difference in mass

between mice and humans, but one should probably use maisticescaling laws, such

as those described in Wiegel and Perelson (2004), to adaptdlel to other organisms.

121



Glossary

affinity e The strength of the binding interaction between a single T@& an MHC—
peptide complex

anergy e A state of unresponsiveness in immune system cells.
antigen e An agent that stimulates an immune response, such as a vibasteria.

avidity e The total strength of the binding interactions between a €TMCRs and the
MHC—peptide complexes expressed by a single target cell.

clonee A group of genetically identical cells derived from the saaneestor.

cross-reactivity e The ability of a single lymphocyte to respond to both an gu@tand its
variants.

cross-reactive cutoffe The maximum antigenic distance between a TCR’s cognate pep-
tide and another peptide recognized by the same TCR.

CTL e Cytotoxic T lypmohcyte. An immune cell that can eliminateeictied cells by
detecting abnormal peptides presented by MHC.

degeneracye Peptide binding degeneracy is proportional to the size@t#t of peptides
to which a TCR can bind. Thus, a TCR that can bind to a large segtigees has a high
peptide-binding degeneracy.

effector T cell e A replicating T cell that eliminates infected cells.

epitopee The portion of an antigen that triggers an immune respomsbelcase of CTLS,
a foreign peptide generated by virus or bacteria and preddiyt MHC.

foreign peptide response frequency The fraction of clones that respond to a particular
foreign peptide presented by MHC.

LCMV e Lymphocytic choriomeningitis virus. A non-cytopathic wé that infects mice.
LCMV is often used to study the murine T cell response.

memory T cell ¢ A quiescent T cell derived from an effector cell. These |dugd cells
are created during T cell response and respond to antigem qouaskly than néave cells.
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Glossary

MHC e Major histocompatibility complex. MHC molecules presersigments of a cell’s
internal proteins on the cell’s surface.

naive T celle AT cell that has survived thymic selection but has not yehb®gosed to
antigen.

negative selectiors The phase of thymic selection that follows positive setettiNega-
tive selection eliminates T cells that have high affinitydoe or more MHC—self peptide
complexes.

peptide e A short sequence of amino acids, a protein fragment.

positive selectione Positive selection eliminates T cells that have low affirfiy all
MHC-self peptide complexes expressed in the thymus.

programmed responses The pre-determined sequence of actions that\genkcell takes
after antigenic stimulation. Even a brief exposure to awtigan cause a T cell to go
through many rounds of division, adopt effector functichen convert to memory cells.

repertoire e A set of T cells.

selecting peptidee During thymic selection, a CTL's selecting peptide is the MISEH{-
peptide complex to which the CTL has the highest affinity.

string distance metric ¢ A function that takes two strings as input and returns a scala
value. The triangle inequality holds, so the distance betwe/o stringsA andB is less
than or equal to the sum of the distances betw&and a third stringC, and betwee
andC.

T cell o A type of lymphocyte.

TCR e T cell receptor. A CTL has many TCRs on its surface that bind to Mptptide
complexes on other cells.

thymic selectione A process that takes place during the maturation of CTL psscar
CTLs that survive positive and negative selection exit tlyenilrs and mature to become
nave cells.
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