
MONDO: A Shared Library and Dynamic Linking Monitor

C. Donour Sizemore, Jacob R. Lilly, and David M. Beazley
Department of Computer Science

University of Chicago
Chicago, Illinois 60637

{donour,jrlilly,beazley}@cs.uchicago.edu

March 15, 2003

Abstract

Dynamic modules are one of the most attractive
features of modern scripting languages. Dynamic
modules motivate programmers to build their ap-
plications as small components, then glue them to-
gether. They rely on the runtime linker to assemble
components and shared libraries as the application
runs. MONDO, a new debugging tool, provides pro-
grammers with the ability to monitor in real-time
the dynamic linking of a program. MONDO sup-
plies programmers with a graphical interface show-
ing library dependencies, listing symbol bindings,
and providing linking information used to uncover
subtle programming errors related to the use of
shared libraries. The use of MONDO requires no
modification to existing code or any changes to the
dynamic linker. MONDO can be used with any ap-
plication that uses shared libraries.

1 Introduction

For the past 10-15 years, shared libraries and dy-
namic linking have changed the way application pro-
grammers write software. Instead of writing huge
monolithic applications, it is quite common to exe-
cute smaller software components, extension mod-
ules, and plugins. For example, when programmers
use scripting languages like Python or Tcl, they also
tend to use a collection of loosely-coupled dynam-

ically loadable extension modules. Similarly, dy-
namic modules are commonly used to extend web
servers, browsers, and other large programming en-
vironments.

Although dynamic linking offers many benefits
such as increased modularity, simplified mainte-
nance, and extensibility, it has also produced a con-
siderable amount of programmer confusion. Few
programmers would claim to really understand how
dynamic linking actually works. Moreover, the run-
time linking process depends heavily on the system
configuration, environment variables, subtle com-
piler and linker options, and the flags passed to low-
level dynamic loader. The interaction of these pieces
tends to produce a very obscured picture of what
is actually going on inside an application that uses
shared libraries. Unfortunately, traditional debug-
ging tools are of little assistance since they are pri-
marily concerned with errors in program logic rather
than errors that arise from the way in which a pro-
gram is constructed and linked.

To address this limitation, we present a special
purpose debugger, MONDO (Monitor of Dynamic
Objects), that is designed to help programmers dis-
cover problems related to the run-time linking of
an application. MONDO works by watching real-
time debug traces generated by the run-time linker
(ld.so.1) and using the output information to con-
struct a global view of an application, its libraries,
and dynamically loaded modules (if any). Using this
information, it is possible examine symbol bindings,

library dependencies, as well as to uncover subtle
programming problems related to linking that are
otherwise hidden from the programmer by the lim-
itations of classic debugging tools.

In the first part of this paper, we illustrate dy-
namic linking and some of the common program-
ming errors that arise. Next, we describe how run-
time linking information can be extracted from the
loader. This information is used to construct the
MONDO debugger and how it can be used by pro-
grammers.

2 An Overview of Dynamic Linking

To create an executable, a “linker” is used to
assemble the appropriate object files and libraries
into a runnable program [2]. Linking is nothing
more than the binding of symbolic names to mem-
ory addresses. For example, if you have some proce-
dure foo() in your application, the linker calculates
where in memory foo() will reside and patches all
references to foo() making sure they point to the
memory address of foo(). Most programmers view
linking as merely the final step of building a pro-
gram. That is,can one simply runs the linker and it
collects all of the object files and library functions
into some huge “bundle of bits” that is the program.
A popular misconceptions of program state is that
once linked the program runs statically without any
dynamic changes (i.e., one just executes the pro-
gram).

In reality, the situation is much more compli-
cated and convoluted than the previously described
model. Most modern systems use dynamic linking–
a technique in which much of the actual linking is
deferred until runtime. For example, when you cre-
ate a program like this,

% ld $(OBJS) -lsocket -lthread -ldl

The linker merely records the names of libraries in
the executable instead of linking them. A command
such as ldd can be used to list these library and their
dependencies. For example:

% ldd a.out
libsocket.so.1 => /usr/lib/libsocket.so.1
libthread.so.1 => /usr/lib/libthread.so.1
libdl.so.1 => /usr/lib/libdl.so.1
libc.so.1 => /usr/lib/libc.so.1

When a dynamically linked program runs, con-
trol is first passed to a special runtime loader (often
called ld.so.1). The loader is then responsible for
locating, loading, and binding library dependencies
to the the executable–a process that occurs at run-
time.

To improve performance, most of the runtime
binding occurs lazily. Library symbols are not actu-
ally bound until they are used for the first time by a
program. This binding is managed by routing proce-
dure calls through a special procedure linking table
(PLT), a jump table use to match procedures with
memory addresses. Initially, the PLT is set up to
pass control back to the dynamic loader when a pro-
cedure is called for the first time. When this occurs,
the dynamic linker locates the symbol in a library
and patches the PLT to point to the newly bound
symbol. Many programmers are unaware that link-
ing occurs throughout the execution of a program.
For instance, when a user selects certain applica-
tion features, the linker quietly runs underneath the
program–binding all of the newly used symbols as
they are needed.

In addition to automatically binding libraries,
the runtime loader can also be used to explicitly
load new program modules through a special dy-
namic loading API. Using calls such as dlopen()
and dysym(), programmers can load shared object
files, search for symbols, and invoke functions. This
API is the basis for systems that support dynami-
cally loadable extension modules and plugins.

3 Enter MONDO

Unlike in conventional programming langauges
(C, C++, etc), users routinely change the ”struc-
ture” of their program when they import modules.
In scripting languages errors in program construc-
tion can be considered programming errors. A single

module may introduce many libraries with no clear
way of watching what is happening to a process as
they are linked. Here a mistake in program logic
results in an incorrectly built program.

The runtime linker (ld.so.1) on many systems can
supply real-time updates as it binds symbols from
dynamic objects. The LD DEBUG environment
variable allows the user to collect information about
libraries, dependencies, bindings, and relocations as
they are processed by ld.so.1 during program exe-
cution. Figure 1 illustrates some of this output for
Solaris.

The ld.so.1 debugging trace contains a wealth
of information about almost everything the runtime
linker is doing during program execution. Moreover,
this information is presented in real-time–making
it qualitatively different than the information pro-
vided by static library diagnostic tools such as ldd,
nm, or elfdump. However, the debug trace is often
unreadable and contains too much unordered infor-
mation to be easily usable by programmers.

MONDO is a tool that synthesizes real-time data
from the dynamic loader with the information that
is available from existing library diagnostic tools
(e.g., nm, ldd, etc.). Moreover, it tries to present
this information to the user in a coherent manner
using an interactive graphical user interface. The
system consists of two components; a real-time data
collector that extracts data from the ld.so.1 trace
and an analysis tool that assembles this data, com-
bines it with static library information, and presents
it to the user.

To use MONDO, a programmer simply types
“mondo” followed by a normal UNIX shell com-
mand. For example:

% mondo a.out

This sets up the proper environment variables for
monitoring, launches the debugger, and executes the
requested command. From this point forward, the
user is able to monitor the library bindings of the
command.

4 Data Collection

As previously mentioned, MONDO collects infor-
mation from ld.so.1 using its debugging mode.
This is enabled by setting the LD DEBUG and
LD DEBUG OUTPUT environment variables of a
process. Debugging data is redirected to a file where
it is read and parsed by MONDO as the process exe-
cutes. Information of interest includes library search
paths, library loading, library dependencies, symbol
bindings, and relocations. In addition to collecting
the trace data, MONDO also collects information
from the library files themselves. This is used to
build a model of what libraries have been loaded,
what symbols are contained in those libraries, and
which symbols have actually been bound by the run-
time linker.

MONDO can simultaneously monitor any number
of programs and is limited only by the underlying
operating system (number of process, open file han-
dles, etc.). Since tracing is enabled by the environ-
ment (and environments are preserved after calls to
exec()), any process spawned by a traced program
will be traced itself. Process ID is provided inline
with traces data (first column in fig.1) and ld.so.1
is able to dump trace data to a file corresponding
the PID. MONDO can follow the growth of a pro-
cess tree without the need to do system call tracing.

Function overloading, Namespaces, etc. do not
exists at the object level. To support these fea-
tures C++ compiles mangle type names. The man-
gled names reflect typing and scope information.
MONDO uses the demangingle code from GCC to
demangle these symbols names.

5 MONDO Interface

MONDO presents the loaded libraries and sym-
bols as a forest. The root of the each tree is a traced
process. Below each process is a list of every library
that process has opened. Figure 2 shows MONDO
using the GTK+ 2.2.0 libraries. Under each library
is a list symbols and where they were bound. Color
indicates the type of each symbol. Features include:

• Trace new program

% env LD_DEBUG=basic,bindings,files,libs,symbols,detail ls

...

15165: file=ls; analyzing [RTLD_LAZY RTLD_GLOBAL RTLD_WORLD RTLD_NODELETE]

15165: permit: UNUSED [GLOBAL NODELETE]

15165:

15165: file=libc.so.1; needed by ls

15165:

15165: find object=libc.so.1; searching

15165: search path=/usr/local/lib (configuration default - /var/ld/ld.config)

15165: search path=/usr/lib (configuration default - /var/ld/ld.config)

15165: trying path=/usr/local/lib/libc.so.1

15165: trying path=/usr/lib/libc.so.1

15165: file=/usr/lib/libc.so.1 [ELF]; generating link map

...

15165: symbol=malloc; lookup in file=ls [ELF]

15165: symbol=malloc; lookup in file=/usr/lib/libc.so.1 [ELF]

15165: symbol=malloc; lookup in file=/usr/platform/SUNW,Ultra-80/lib/libc_psr.so.1 [ELF]

15165: binding file=ls (0x11704:0x1704) at plt[11]:full to

file=/usr/lib/libc.so.1 (0xff2c1880:0x41880): symbol ‘malloc’

15165: symbol=lstat64; lookup in file=ls [ELF]

15165: symbol=lstat64; lookup in file=/usr/lib/libc.so.1 [ELF]

15165: symbol=lstat64; lookup in file=/usr/platform/SUNW,Ultra-80/lib/libc_psr.so.1 [ELF]

15165: binding file=ls (0x12d38:0x2d38) at plt[36]:full to

file=/usr/lib/libc.so.1 (0xff318358:0x98358): symbol ‘lstat64’

...

Figure 1: Sample LD DEBUG output

• View debug traces
• Generate library dependence graphs
• Disassembling functions
• Save/Load traced sessions

MONDO provides both a X11 and a terminal in-
terface. If X11 is present, and the GTK2 [5] libraries
are installed, MONDO provides a threaded, win-
dowed interface, designed to be easy and intuitive
for most X11 users. The interface is deliberately
simple to avoid distracting the user from the pro-
grams that are being traced.

If X11 is not available MONDO provides the user
with a terminal interface built around the curses
module. Curses is enabled by the -curses flag on
the command line or if MONDO fails to connect to
an X server. Curses may also be preferred for remote
debugging across a high latency connection such as
a modem or satellite. It provides nearly identical

functionality to the X11 interface, although users
are unable to view more than a single trace at a
time.

Figure 2: MONDO via GTK2

Figure 3: MONDO via curses

If the Graphviz [1] package is available, the user
can generate a library dependence graph (Fig. 4)
at arbitrary points of program execution. All of
Graphviz’s output formats are supported (both vec-
tor and bitmap image formats). Sometime a library
dependence is reinforced by several thousand bind-
ings to a single file. The number of bindings is not
currently reflected in dependence graphs. Graphviz
can also remove excess cycles from the graph and
concatence edges to make the graphs more readable.

6 Implementation

MONDO currently consists of 3K lines of Python
[3] and 15K lines of C for supporting functions
(c++ demangling, elf processing). Parsing of the
debug trace is easily accomplished using regular ex-
pressions. However, work is currently underway to
rewrite the parser using PLY [6], an SLR(1) parser.

Internally, the MONDO session object stores all
data related to a program trace: program name,
argument, binding history. The objects can be
saved to disk and loaded later for visualization of
comparison against later sessions. Figure 5 shows
MONDO’s internal components.

Figure 5: MONDO’s Functional Units

The graphical user interface is being implemented
with the PyGTK bindings to GTK2, and ncurses.
Python has allowed for very rapid developement
while maintaining equivalent functionality across
several interfaces. MONDO also hooks other sys-
tem tools, such as ’elfdump’ and ’objdump’, to ob-
tain detailed symbol data.

6.1 Supported Platorms

MONDO can trace programs on Solaris 2.x and
Linux 2.x with Glibc. It requires Python 2, a recent
version of SWIG (1.3.17 or greater), and either X11
or curses.

There exists no standard for the debugging out-
put of the run-time linker. The Solaris linker pro-
vides basic documentation on the features available.
Although no grammar for the output is given, most
binding information can easily be extracted from the
context. Solaris also provides details about where
symbols are represented in the PLT. The source to
ld-linux.so, Linux’s realtime linker, is freely avail-
able to the public. This makes it easier to determine
exactly when and where output will be generated.
It is necessary for MONDO to maintain seperate
parsers for each platform, but all other subsystems
are platform independent. The exceptions are a few
special pieces of data; the PID and the /proc inter-
face.

7 Limitations

It is unlikely that the implementers of ld.so.1 in-
tended the debugging trace to serve as the input to

python

/lib/libc.so.6

/lib/ld-linux.so.2

/lib/libdl.so.2

/lib/libm.so.6/lib/libpthread.so.0 /usr/lib/gcc-lib/i686-pc-linux-gnu/3.2.2/libstdc++.so.5 /lib/libutil.so.1 /usr/lib/gcc-lib/i686-pc-linux-gnu/3.2.2/libgcc_s.so.1

/lib/libreadline.so.4

/usr/lib/python2.2/lib-dynload/readline.so

/lib/libncurses.so.5

Figure 4: Python Library Dependence Graph

other programs. The output is relatively unstruc-
tured and it’s not standardized across platforms.
The level of detail available in the trace also varies
across platforms.

It’s natural to want to extend the software to
work on other platforms; The BSD variations and
Mac OSX come to mind. Preliminary tests show
that these platforms do not provide traces through
the LD DEBUG mechanism. No tracing is possible on
Windows as it has a different run-time linking mod-
ule.

The generation of trace data adds a noticable per-
formance impact to program startup and module
loading. As symbols are bound, a large amount of
trace data may be generated. However, this data is
only generated once for each bound symbol. There-
fore, a traced application generally incurs no per-
formance penalty once it has bound the most com-
monly used symbols.

Finally, Python hasn’t been particularly fast. The
debug data is often several megabytes in size and
large applications may involve tens of thousands of
symbols and dozens of libraries. As a result, it can
take quite a while to load all of this information and
to launch the monitor. So far, the focus has been

interesting functionality. Optimizations could give
a large speed boost.

8 Related Work

We are not aware of any tools quite like MONDO.
Existing Unix commands like ldd and nm provide
information about libraries, but this information is
static and presented in isolation. Profiling tools like
prof tell a programmer which procedures are used,
but require special recompilation. Moreover, a pro-
file doesn’t contain library information. A tradi-
tional debugger provides information about loaded
libraries, but doesn’t provide the same kind of run-
time information as MONDO since the debugger
doesn’t tend to interact with the runtime loader.
Component frameworks such as COM often provide
tools for inspecting the contents of component mod-
ules . However, these are too specialized to be used
with shared libraries in general.

9 Applications

Previously, information about runtime linking
and symbol binding has not been provided to the
developer in any cohesive manner. Tools such as
ldd and elfdump merely provide a static snapshot
of a library without runtime binding information.
We think that the primary utility of MONDO is its
ability to show runtime linking information. This
may be useful in debugging obscure shared library
problems or for merely gaining a better understand-
ing of how shared libraries work. This information
would also be of particular interest to developers
who have to work with extension modules and plu-
gins.

MONDO could also be a useful software engineer-
ing tool. By being able to view the structure of an
application, a programmer might be able to discover
better ways of organizing a program or they could
identify unused parts of an application.

10 Future Work

It would be useful to be able stop running pro-
cess and alter their state like tradition debuggers. If
single step execution were available, MONDO can
use it’s history of bindings to construct a symbol
timeline. These timeline could be used to influence
future executions of the same program.

Since MONDO has intimate knownledge of a pro-
grams construction, it could relink a program while
it is running. A users could potentially cook up a
piece of code in C (or Python, Perl, etc.), compile
it, then link it into a running application; overwrit-
ing an existing symbol. For example, a user could
replace libc’s version of malloc with one that gave
debugging output or one optimized for performance.
Taking this one step further, one could embed a
just-in-time compiler in MONDO and provide an
interface that allows the user to input code and the
symbol they want that code chunck bound to.

10.1 Prelinking

Libary prelinking is becoming popular as a way
to decrease application load time. Application such
as OpenOffice commonly have over 100,000 symbol
bindings during initialization. Users prelink these
symbols to avoid having to bind them every time
they run their application. The resulting program
is still a dynamic executable, but it does not have
to load dependcies externally. Optionally, a user
can choose to only prelink certain libraries; the ones
that would provide the greatest speed benefit. To do
this, the user needs the quanatative data on library
bindings that MONDO can provide. Prelinking is
possible with recent version of GNU Libc.

Another possiblity would be to use Emacs’
method for unexec. The Emacs distribution in-
cludes code to dump an in memory process image
out to an executable. MONDO could manually pre-
link by loading necessary symbols, then calling un-
exec to generate a new program.

11 Status

MONDO is currently a work in progress and in
version 0.9 with the 1.0 release expected shortly.

Details are available at:
http://systems.cs.uchicago.edu/mondo.

12 Acknowledgements

We would like to thank the following people who
have, either directly or through the community,
comtributed to our project: Sam TH, the Graphviz
Team, Stefan Jones, Lars Wirzenius, and Jon Riehl.

References

[1] E.R. Gansner and S.C North, An open graph
visualization system and its applications to
software engineering, Softw, Pract. Exper.,
00(S1),1-5(1999).

[2] J. Levine, Linkers & Loaders, Morgan Kauf-
mann Publishers, (2000).

[3] M. Lutz, Programming Python, O’Reilly & As-
sociates, (1996).

[4] J. Grayson, Python and Tkinter Programming,
Manning, (2000).

[5] GTK+ Team, Gimp Toolkit,
http://www.gtk.org

[6] David M. Beazley, Python Lex and YACC,
http://systems.cs.uchicago.edu/ply

