The Linear Programming Approach to Approximate Dynamic Programming

Daniela Pucci de Farias
(joint work with Ben Van Roy)

Massachusetts Institute of Technology
Outline

- Markov decision processes
- Approximate Dynamic Programming
- Approximate linear programming
- Performance and Error Analysis
- Constraint Sampling
Markov Decision Processes

- (finite) state space S
Markov Decision Processes

- (finite) state space S
- (finite) action sets A_x
Markov Decision Processes

- (finite) state space S
- (finite) action sets A_x
- costs $g_a(x)$
Markov Decision Processes

- (finite) state space S
- (finite) action sets A_x
- costs $g_a(x)$
- transition probabilities $P_a(x, y)$
Markov Decision Processes

- (finite) state space S
- (finite) action sets A_x
- costs $g_a(x)$
- transition probabilities $P_a(x, y)$
- discount factor α
Markov Decision Processes

- (finite) state space S
- (finite) action sets A_x
- costs $g_a(x)$
- transition probabilities $P_a(x, y)$
- discount factor α
- Minimize $E \left[\sum_{t=0}^{\infty} \alpha^t g_{a(t)}(x(t)) \right]$
Tetris

- \(x \in S \): wall configuration and current piece
- \(a \in A_x \): Piece placement
- \(P_a(x, \cdot) \): Distribution of next piece
- \(g_a(x) \): number of rows eliminated
Examples

- Scheduling/routing in queueing networks
- Dynamic resource allocation
- Asset allocation/risk management
- Power management in devices
Dynamic Programming

- Bellman’s equation

\[J(x) = \min_{a \in A_x} E \left[g_a(x) + \alpha J(y) \right] \]
Dynamic Programming

- Bellman’s equation

\[J(x) = \min_{a \in A_x} E [g_a(x) + \alpha J(y)] \]

- Value iteration, policy iteration, linear programming
Dynamic Programming

- Bellman’s equation

\[J(x) = \min_{a \in A_x} E \left[g_a(x) + \alpha J(y) \right] \]

- Value iteration, policy iteration, linear programming

- Obtain an optimal policy

\[u^*(x) \in \arg\min_{a \in A_x} E \left[g_a(x) + \alpha J^*(y) \right] \]
Dynamic Programming

- Bellman’s equation

\[J(x) = \min_{a \in A_x} E \left[g_a(x) + \alpha J(y) \right] \]

- Value iteration, policy iteration, linear programming

- Obtain an optimal policy

\[u^*(x) \in \arg\min_{a \in A_x} E \left[g_a(x) + \alpha J^*(y) \right] \]

- The curse of dimensionality
Outline

- Markov decision processes
- Approximate Dynamic Programming
- Approximate linear programming
- Performance and error analysis
- Constraint Sampling
Value Function Approximation

- Approximate $J^* \approx \tilde{J}_r$, for some $r \in \mathbb{R}^K$
Value Function Approximation

- Approximate $J^* \approx \tilde{J}_r$, for some $r \in \mathbb{R}^K$
- Generate a policy

$$u(x) \in \arg\min_{a \in A_x} E \left[g_a(x) + \alpha \tilde{J}_r(y) \right]$$
Value Function Approximation

- Approximate $J^* \approx \tilde{J}_r$, for some $r \in \mathbb{R}^K$
- Generate a policy

$$u(x) \in \arg\min_{a \in A_x} E \left[g_a(x) + \alpha \tilde{J}_r(y) \right]$$

- Linearly parameterized approximators

$$\tilde{J}_r(x) = (\Phi r)(x) = \sum_{k=1}^{K} r(k) \phi_k(x)$$
Value Function Approximation

- Approximate $J^* \approx \tilde{J}_r$, for some $r \in \mathbb{R}^K$
- Generate a policy

$$u(x) \in \arg\min_{a \in A_x} E \left[g_a(x) + \alpha \tilde{J}_r(y) \right]$$

- Linearly parameterized approximators

$$\tilde{J}_r(x) = (\Phi r)(x) = \sum_{k=1}^{K} r(k) \phi_k(x)$$

- Design a function approximator \tilde{J}_r
Value Function Approximation

- Approximate $J^* \approx \tilde{J}_r$, for some $r \in \mathbb{R}^K$
- Generate a policy

$$u(x) \in \arg\min_{a \in A_x} E \left[g_a(x) + \alpha \tilde{J}_r(y) \right]$$

- Linearly parameterized approximators

$$\tilde{J}_r(x) = (\Phi r)(x) = \sum_{k=1}^{K} r(k) \phi_k(x)$$

- Design a function approximator \tilde{J}_r
- Compute parameters $r \in \mathbb{R}^K$ so that $\tilde{J}_r \approx J^*$
Tetris

- 22 features / basis functions
 - Column heights
 - Differences between heights of consecutive columns
 - Maximum height
 - Number of holes
 - Constant function
Approximate DP: Examples

- American options pricing
 (Longstaff & Schwartz, 2001, Tsitsiklis & Van Roy, 2001)

- Job-shop scheduling
 (Zhang & Dietterich, 1996)

- Elevator scheduling
 (Crites & Barto, 1996)

- Backgammon
 (Tesauro, 1995)
Outline

- Markov decision processes
- Approximate Dynamic Programming
- Approximate linear programming
- Performance and error analysis
- Constraint Sampling
LP Formulation of DP

\[
\begin{align*}
\max_J & \quad \sum_x c(x)J(x) \\
\text{s.t.} & \quad g_a(x) + \alpha \sum_y P_a(x, y)J(y) \geq J(x), \quad \forall x, \forall a
\end{align*}
\]
LP Formulation of DP

\[
\begin{align*}
\max_J & \quad \sum_x c(x)J(x) \\
\text{s.t.} & \quad g_a(x) + \alpha \sum_y P_a(x, y)J(y) \geq J(x), \ \forall x, \ \forall a
\end{align*}
\]

- \(J \leq J^* \) for all feasible \(J \)
LP Formulation of DP

\[
\max_J \sum_x c(x)J(x) \\
\text{s.t.} \quad g_a(x) + \alpha \sum_y P_a(x, y)J(y) \geq J(x), \ \forall x, \ \forall a
\]

- \(J \leq J^* \) for all feasible \(J \)
- LP solution is \(J^* \) for all \(c > 0 \)
LP Formulation of DP

\[
\max_J \sum_x c(x)J(x)
\]

s.t. \(g_a(x) + \alpha \sum_y P_a(x, y)J(y) \geq J(x), \forall x, \forall a \)

- \(J \leq J^* \) for all feasible \(J \)
- LP solution is \(J^* \) for all \(c > 0 \)
- one variable per state
- one constraint per state-action pair
Approximate Linear Programming

\[
\max_J \sum_x c(x) J(x)
\]

s.t. \(g_a(x) + \alpha \sum_y P_a(x, y) J(y) \geq J(x), \forall x, \forall a \)
Approximate Linear Programming

\[
\max_J \sum_x c(x) J(x)
\]

\[
s.t. \quad g_a(x) + \alpha \sum_y P_a(x, y) J(y) \geq J(x), \forall x, \forall a
\]

-
 Idea: Consider only solutions \(J = \Phi r \)
Approximate Linear Programming

\[
\max_r \sum_x c(x)(\Phi_r)(x)
\]

\[
\text{s.t. } g_a(x) + \alpha \sum_y P_a(x, y)(\Phi_r)(y) \geq (\Phi_r)(x), \forall x, \forall a
\]

Idea: Consider only solutions \(J = \Phi_r \)
Approximate Linear Programming

\[
\max_r \sum_x c(x)(\Phi r)(x)
\]

s.t. \[g_a(x) + \alpha \sum_y P_a(x,y)(\Phi r)(y) \geq (\Phi r)(x), \forall x, \forall a \]

- Idea: Consider only solutions \(J = \Phi r \)
- one variable per basis function
- one constraint per state-action pair
Approximate Linear Programming

\[
\max_r \sum_x c(x)(\Phi_r)(x)
\]

s.t. \(g_a(x) + \alpha \sum_y P_a(x, y)(\Phi_r)(y) \geq (\Phi_r)(x), \forall x, \forall a \)

- Idea: Consider only solutions \(J = \Phi_r \)
- one variable per basis function
- one constraint per state-action pair
 \(\Rightarrow \) efficient constraint sampling
Some History

- early work
 - Schweitzer and Seidmann (1985)
 - Trick and Zin (1993, 1997)
 - Gordon (1995)
Some History

- early work
 - Schweitzer and Seidmann (1985)
 - Trick and Zin (1993, 1997)
 - Gordon (1995)

- analytical and computational tool
 - Morrison and Kumar (1999)
 - Paschalidis and Tsitsiklis (2000)
 - Adelman (2002)
Some History

- early work
 - Schweitzer and Seidmann (1985)
 - Trick and Zin (1993, 1997)
 - Gordon (1995)

- analytical and computational tool
 - Morrison and Kumar (1999)
 - Paschalidis and Tsitsiklis (2000)
 - Adelman (2002)

- more extensive analysis and implementation in large problems
 - Schuurmans and Patrascu (2001)
 - de Farias and Van Roy (2001, 2002)
 - Guestrin et al. (2002)
 - Poupart et al. (2002)
Outline

- Markov decision processes
- Approximate Dynamic Programming
- Approximate linear programming
- Performance and error analysis
- Constraint Sampling
Theory on Value Function Approximation

- Goals
 - Understand what algorithms are doing
 - Figure out which variations work and when
 - Reduce trial and error
 - Improve performance

© Will my algorithm compute weights \(\tilde{r} \) that make good use of my basis functions?

"Competitive" bound

If \(r \) can come within \(\varepsilon \) of \(J \), then algorithm A will compute \(\tilde{r} \) such that

1. \(\tilde{r} \) is within \(O(\varepsilon) \) of \(J \)
2. The greedy policy \(u \) is \(O(\varepsilon) \)-optimal
Theory on Value Function Approximation

- Goals
 - Understand what algorithms are doing
 - Figure out which variations work and when
 - Reduce trial and error
 - Improve performance

- Quality of ultimate approximation limited by choice of Φ
Theory on Value Function Approximation

- Goals
 - Understand what algorithms are doing
 - Figure out which variations work and when
 - Reduce trial and error
 - Improve performance
- Quality of ultimate approximation limited by choice of Φ
- Will my algorithm A compute weights \tilde{r} that make good use of my basis functions Φ?
Theory on Value Function Approximation

- **Goals**
 - Understand what algorithms are doing
 - Figure out which variations work and when
 - Reduce trial and error
 - Improve performance

- Quality of ultimate approximation limited by choice of Φ

- Will my algorithm A compute weights \tilde{r} that make good use of my basis functions Φ?

- “Competitive” bound
 - If Φr can come within ϵ of J^*, then algorithm A will compute \tilde{r} such that
 1. $\Phi \tilde{r}$ is within $O(\epsilon)$ of J^*
 2. the greedy policy u is $O(\epsilon)$–optimal
Notation

- $\|J\|_\infty = \max_x |J(x)|$
- weighted norms:

\[
\|J\|_{1,\nu} = \sum_x \nu(x)|J(x)|, \quad \|x\|_{\infty,\nu} = \max_x \nu(x)|J(x)|
\]
Graphical Interpretation of Approximate LP

Even with arbitrarily small k, we can have arbitrarily large ε, (or infeasibility!)

http://www.mit.edu/~pucci~p.18/29
Graphical Interpretation of Approximate LP

\[
J^* = \min J \text{ subject to } T J \geq J, \quad J = \Phi r
\]

Even with arbitrarily small \(k \), we can have arbitrarily large \(k J \) (or infeasibility!)

http://www.mit.edu/~pucci – p. 18/29
Graphical Interpretation of Approximate LP

Even with arbitrarily small k, we can have arbitrarily large k, or infeasibility!

$J = \Phi r$

$TJ \geq J$

$J(1)$

$J(2)$

Φr^*

Φr

J^*

http://www.mit.edu/~pucci – p. 18/29
Even with arbitrarily small $\| J^* - \Phi r^* \|_\infty$, we can have arbitrarily large $\| J^* - \Phi \tilde{r} \|$ (or infeasibility!)
Simple bound: If $\Phi v = e$ for some v,

$$\| J^* - \Phi \tilde{r} \|_{1,c} \leq \frac{2}{1 - \alpha} \| J^* - \Phi r^* \|_{\infty}$$
Error and performance bounds

- Simple bound: If $\Phi \nu = e$ for some ν,

$$\| J^* - \Phi \tilde{\nu} \|_{1,c} \leq \frac{2}{1 - \alpha} \| J^* - \Phi r^* \|_{\infty}$$

- Limitations:
 - state-relevance weights?
 - maximum norm to assess architecture
Error and performance bounds

- Simple bound: If $\Phi v = e$ for some v,
 \[||J^* - \Phi \tilde{r}||_{1,c} \leq \frac{2}{1 - \alpha} ||J^* - \Phi r^*||_{\infty} \]

- Limitations:
 - state-relevance weights?
 - maximum norm to assess architecture
 - “Lyapunov function” $V > 0$:
 \[\alpha \max_a E[V(y) | x, a] \leq \beta V(x) \]
Error and performance bounds

- Simple bound: If $\Phi v = e$ for some v,

$$\|J^* - \Phi \tilde{v}\|_{1,c} \leq \frac{2}{1 - \alpha} \|J^* - \Phi r^*\|_{\infty}$$

- Limitations:
 - state-relevance weights?
 - maximum norm to assess architecture
 - “Lyapunov function” $V > 0$:

$$\alpha \max_a E[V(y)|x, a] \leq \beta V(x)$$

- Theorem: If Φv is a “Lyapunov function” for some v,

$$\|J^* - \Phi \tilde{v}\|_{1,c} \leq \frac{2c^T \Phi v}{1 - \beta} \|J^* - \Phi r^*\|_{\infty, 1/\Phi v}$$

Error Bound Insights

- Error proportional to best in architecture
Error Bound Insights

Error proportional to best in architecture

\[\| J^* - \Phi r^* \|_{\infty, 1/V} = \max_x \frac{|J^*(x) - (\Phi r^*)(x)|}{V(x)} \]
Error Bound Insights

- Error proportional to best in architecture

\[\| J^* - \Phi r^* \|_{\infty, 1/V} = \max_x \frac{|J^*(x) - (\Phi r^*)(x)|}{V(x)} \]

- \(V(x) \) large in rarely visited states \(\Rightarrow \) good scaling properties
Error Bound Insights

- Error proportional to best in architecture

\[\| J^* - \Phi r^* \|_{\infty, 1/V} = \max_x \frac{|J^*(x) - (\Phi r^*)(x)|}{V(x)} \]

- \(V(x) \) large in rarely visited states ⇒ good scaling properties

- For multiclass queueing networks, error uniformly bounded on
 - size of the state space
 - dimension of the state space
Error Bound Insights

- Error proportional to best in architecture

\[\| J^* - \Phi r^* \|_{\infty, 1/V} = \max_x \frac{| J^*(x) - (\Phi r^*)(x) |}{V(x)} \]

- \(V(x) \) large in rarely visited states \(\Rightarrow \) good scaling properties

- For multiclass queueing networks, error uniformly bounded on
 - size of the state space
 - dimension of the state space

- Performance bound:

\[\| J_{\tilde{u}} - J^* \|_{1, \pi_{\tilde{u}}} \leq \frac{1}{1 - \alpha} \| J^* - \Phi \tilde{r} \|_{1, \pi_{\tilde{u}}} \]

- We have bound on \(\| J^* - \Phi \tilde{r} \|_{1, c} \)
Example: 8-dimensional queueing network

- Minimize total number of jobs in the system
Example: 8-dimensional queueing network

- Minimize total number of jobs in the system
- Linear and quadratic basis functions
- State-relevance weights with exponential decay
Example: 8-dimensional queueing network

- Minimize total number of jobs in the system
- Linear and quadratic basis functions
- State-relevance weights with exponential decay
- Average cost:

<table>
<thead>
<tr>
<th>Method</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALP</td>
<td>136.67</td>
</tr>
<tr>
<td>LBFS</td>
<td>153.82</td>
</tr>
<tr>
<td>FIFO</td>
<td>163.63</td>
</tr>
<tr>
<td>LONGEST</td>
<td>168.66</td>
</tr>
</tbody>
</table>
Tetris

- **Comparison against reported results**

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Average Score</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>variation on TD (Bertsekas and Ioffe)</td>
<td>3500</td>
<td>many hours</td>
</tr>
<tr>
<td>variation on policy gradient (Kakade)</td>
<td>6000</td>
<td>days</td>
</tr>
<tr>
<td>ALP (Farias* and Van Roy)</td>
<td>5000</td>
<td>hours</td>
</tr>
</tbody>
</table>

* not me!

Remarks:
3 minutes to solve the approximate LP, rest of the time spent on simulation.

Solution is very sensitive to **c**.
Tetris

- **Comparison against reported results**

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Average Score</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>variation on TD (Bertsekas and Ioffe)</td>
<td>3500</td>
<td>many hours</td>
</tr>
<tr>
<td>variation on policy gradient (Kakade)</td>
<td>6000</td>
<td>days</td>
</tr>
<tr>
<td>ALP (Farias* and Van Roy)</td>
<td>5000</td>
<td>hours</td>
</tr>
</tbody>
</table>

* not me!

- **Remarks:**
 - 3 minutes to solve the approximate LP, rest of the time spent on simulation
 - solution is very sensitive to c
Outline

- Markov decision processes
- Approximate Dynamic Programming
- Approximate linear programming
- Performance and error analysis
- Constraint Sampling
Constraint Sampling in the Approximate LP

- one constraint per state-action pair
Constraint Sampling in the Approximate LP

- one constraint per state-action pair
- many constraints in low-dimensional space ⇒ redundancy
Constraint Sampling in the Approximate LP

- one constraint per state-action pair
- many constraints in low-dimensional space \Rightarrow redundancy
- Problem-specific approaches in the literature:
 - Grötschel and Holland (1991)
 - Morrison and Kumar (1999)
 - Guestrin et al. (2002)
 - Schuurmans and Patrascu (2002)
Constraint Sampling in the Approximate LP

- one constraint per state-action pair
- many constraints in low-dimensional space \(\Rightarrow \) redundancy
- Problem-specific approaches in the literature:
 - Grötschel and Holland (1991)
 - Morrison and Kumar (1999)
 - Guestrin et al. (2002)
 - Schuurmans and Patrascu (2002)
- Generic approach? Complexity bounds?
The Reduced LP

$$\max_r \sum_x c(x)(\Phi r)(x)$$

s.t. $$g_a(x) + \alpha \sum_y P_a(x, y)(\Phi r)(y) \geq (\Phi r)(x), \forall x, \forall a$$
The Reduced LP

$$\max_r \sum_x c(x)(\Phi_r)(x)$$

s.t. $$g_a(x) + \alpha \sum_y P_a(x, y)(\Phi_r)(y) \geq (Phir)(x), \forall (x, a) \in \mathcal{N}$$

$$r \in \mathcal{B}$$

- \mathcal{N} contains i.i.d. state-action pairs
The Reduced LP

\[
\max_r \sum_x c(x)(\Phi r)(x)
\]

s.t. \(g_a(x) + \alpha \sum_y P_a(x, y)(\Phi r)(y) \geq (Phir)(x), \forall (x, a) \in \mathcal{N} \)

\(r \in \mathcal{B} \)

- \(\mathcal{N} \) contains i.i.d. state-action pairs
- \(\mathcal{B} \) is a bounding box
The Reduced LP

\[
\max_r \sum_x c(x)(\Phi r)(x)
\]

s.t. \(g_a(x) + \alpha \sum_y P_a(x, y)(\Phi r)(y) \geq (Phir)(x), \forall (x, a) \in \mathcal{N} \)

\(r \in \mathcal{B} \)

- \(\mathcal{N} \) contains i.i.d. state-action pairs
- \(\mathcal{B} \) is a bounding box

- Theorem: With ideal sampling distribution, if

\[
|\mathcal{N}| = \text{poly} \left(p, |A|, \frac{1}{1 - \alpha}, \frac{1}{\epsilon}, \log \frac{1}{\delta}, \theta_{\mathcal{N}, V} \right)
\]

then with probability at least \(1 - \delta \),

\[
\| J^* - \Phi \hat{r} \|_{1,c} \leq \| J^* - \Phi \tilde{r} \|_{1,c} + \epsilon \| J^* \|_{1,c}.
\]
Remarks on Constraint Sampling

- Sample complexity is
 - polynomial in number of basis functions
 - independent of dimensions of the state space
Remarks on Constraint Sampling

Sample complexity is

- polynomial in number of basis functions
- independent of dimensions of the state space
- linear on maximum number of actions per state $|A|$
Remarks on Constraint Sampling

- Sample complexity is
 - polynomial in number of basis functions
 - independent of dimensions of the state space
 - linear on maximum number of actions per state $|A|$
 but can do with $\log |A|$
Remarks on Constraint Sampling

- Sample complexity is
 - polynomial in number of basis functions
 - independent of dimensions of the state space
 - linear on maximum number of actions per state $|A|$
 but can do with $\log|A|$

- “ideal” distribution
- “Bounding set” \mathcal{N}
Intuition for constraint sampling

\[A_i r + b_i \geq 0, \ i \in \mathcal{I}, \ r \in \mathbb{R}^p \]

- well-approximated with \(\text{poly}(p) \) constraints
Intuition for constraint sampling

\[A_i r + b_i \geq 0, \ i \in \mathcal{I}, \ r \in \mathbb{R}^p \]

- well-approximated with \(\text{poly}(p) \) constraints
- constraint characterized by vector \([A_i \ b_i] \in \mathbb{R}^{p+1}\)
Intuition for constraint sampling

\[A_i r + b_i \geq 0, \ i \in \mathcal{I}, \ r \in \mathbb{R}^p \]

- well-approximated with \(poly(p) \) constraints
- constraint characterized by vector \([A_i \ b_i] \in \mathbb{R}^{p+1}\)
- for feasibility, assume w.l.g. \(\|[A_i \ b_i]\| = 1 \)
Intuition for constraint sampling

\[A_i r + b_i \geq 0, \ i \in \mathcal{I}, \ r \in \mathbb{R}^p \]

- well-approximated with \(poly(p) \) constraints
- constraint characterized by vector \([A_i \ b_i] \in \mathbb{R}^{p+1}\)
- for feasibility, assume w.l.g. \(\|[A_i \ b_i]\| = 1 \)
Intuition for constraint sampling

\[A_i r + b_i \geq 0, \quad i \in \mathcal{I}, \quad r \in \mathbb{R}^p \]

- well-approximated with \(\text{poly}(p) \) constraints
- constraint characterized by vector \([A_i \ b_i] \in \mathbb{R}^{p+1}\)
- for feasibility, assume w.l.g. \(\|[A_i \ b_i]\| = 1 \)
Intuition for constraint sampling

\[A_i r + b_i \geq 0, \; i \in \mathcal{I}, \; r \in \mathbb{R}^p \]

- well-approximated with \(\text{poly}(p) \) constraints
- constraint characterized by vector \([A_i \; b_i] \in \mathbb{R}^{p+1}\)
- for feasibility, assume w.l.g. \(\|[A_i \; b_i]\| = 1 \)
Intuition for constraint sampling

\[A_i r + b_i \geq 0, \; i \in \mathcal{I}, \; r \in \mathbb{R}^p \]

- well-approximated with \(\text{poly}(p) \) constraints
- constraint characterized by vector \([A_i \ b_i] \in \mathbb{R}^{p+1}\)
- for feasibility, assume w.l.g. \(\| [A_i \ b_i] \| = 1 \)

http://www.mit.edu/~pucci – p. 27/29
Intuition for constraint sampling

\[A_i r + b_i \geq 0, \ i \in I, \ r \in \mathbb{R}^p \]

- well-approximated with \(poly(p) \) constraints
- constraint characterized by vector \([A_i \ b_i] \in \mathbb{R}^{p+1}\)
- for feasibility, assume w.l.g. \(\|[A_i \ b_i]\| = 1 \)
Intuition for constraint sampling

\[A_i r + b_i \geq 0, \ i \in \mathcal{I}, \ r \in \mathbb{R}^p \]

- well-approximated with \(poly(p) \) constraints
- constraint characterized by vector \([A_i \ b_i] \in \mathbb{R}^{p+1}\)
- for feasibility, assume w.l.g. \(\|[A_i \ b_i]\| = 1 \)
In Short...

- Approximate dynamic programming: central ideas and issues
In Short...

- Approximate dynamic programming: central ideas and issues
- Approximate linear programming: analysis, performance and error bounds
In Short...

- Approximate dynamic programming: central ideas and issues
- Approximate linear programming: analysis, performance and error bounds
 - first approximation error bounds for arbitrary basis functions and decisions
 - uniform bounds for multiclass queueing networks
In Short...

- Approximate dynamic programming: central ideas and issues
- Approximate linear programming: analysis, performance and error bounds
 - first approximation error bounds for arbitrary basis functions and decisions
 - uniform bounds for multiclass queueing networks
- Forthcoming:
 - analysis of case $\alpha \uparrow 1$
 - Lyapunov function argument breaks down
 - state-relevance weights c disappear
 - relaxation of Lyapunov function argument
 - new variant of approximate LP
 - improved error bounds
Future Work

- Choice of state-relevance weights c
- Address norm discrepancy between error bound and performance bound
Future Work

- Choice of state-relevance weights c
 - Address norm discrepancy between error bound and performance bound
- Adaptive selection of basis functions
Future Work

- Choice of state-relevance weights c
 - Address norm discrepancy between error bound and performance bound
- Adaptive selection of basis functions
- Online versions of the algorithm
 - Robustness to model uncertainty
 - Incremental solution of the LP
 - Learning the Q function instead of the value function
Future Work

- Choice of state-relevance weights c
 - Address norm discrepancy between error bound and performance bound
- Adaptive selection of basis functions
- Online versions of the algorithm
 - Robustness to model uncertainty
 - Incremental solution of the LP
 - Learning the Q function instead of the value function
- Issues on constraint sampling
Future Work

- Choice of state-relevance weights c
 - Address norm discrepancy between error bound and performance bound
- Adaptive selection of basis functions
- Online versions of the algorithm
 - Robustness to model uncertainty
 - Incremental solution of the LP
 - Learning the Q function instead of the value function
- Issues on constraint sampling
- Specific applications: how far can we push guarantees?