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Abstract: In this paper I outline an attempt to reconcile the traditional Artifi-
cial Intelligence notion of a logic-based rational agent with the contrary notion of
a reactive agent that acts “instinctively” in response to conditions that arise in its
environment. For this purpose, [ will use the tools of meta-logic programming to
define the observation-thought-action cycle of an agent that combines the ability
to perform resource-bounded reasoning, which can be interrupted and resumed
any time, with the ability to act when it is necessary.

1 Introduction

The traditional notion of an intelligent agent in Artificial Intelligence is that of a rational
agent that has explicit representations of its own goals and of its beliefs about the world.
These beliefs typically include beliefs about the actions that the agent can perform and
about the effects of those actions on the state of the world.

This traditional notion of intelligent agent has been challenged in recent years by the
contrary notion of an agent that reacts “instinctively” to conditions in its immediate
environment. A reactive agent need possess neither an explicit representation of its own
goals nor any “world model”.

In this paper, I shall outline an attempt to reconcile these two conflicting views. For
this purpose, I will extend the notion of knowledge assimilation, Kowalski [KowT79], using
the tools of meta-logic programming, to combine assimilation of inputs, reduction of goals
to subgoals and execution of appropriate subgoals as actions.

Expressed in informal, simplified, procedural, meta-logic programming style, the defi-
nition of the top-most level of a logic-based agent might take the form:

to “cycle” at time T,

observe one input at time T,

assimilate the input,

reduce current goals to subgoals for n time steps,
perform any requisite atomic action at time 7'+ n + 2,
“cycle” at time T+ n + 3.

The parameter n adjusts the resources allocated for rational processing of goals, in relation
to those allocated to making observations and performing actions. If the parameter n is
relatively small, the agent will have little time to “think” before acting. The behaviour

IThis is an updated version of a paper with the same title which appeared in Meta-Logic and Logic
Programming (K. Apt and F. Turini, eds.), MIT Press 1995, pp. 227-242.



will be similar to that of a reactive agent. If n is sufficiently large, the agent will be able
to generate a complete plan before beginning to act. The behaviour will be similar to
that of a traditional, rational agent. For intermediate values of n the agent will be able
to plan several steps ahead before committing to a particular course of action.

The definition of the cycle predicate is similar to the procedural characterisation of a
deliberate agent given by Genesereth and Nilsson [GN87]. The most important difference
between our procedure and theirs is that we aim to give the definition both a procedural
and a declarative interpretation in the spirit of logic programming.

Before discussing the cycle predicate in greater detail, I will discuss assimilation and
goal reduction.

2 Knowledge assimilation and integrity constraints

Knowledge assimilation, as outlined in Kowalski [Kow79], deals with four cases:

e The input can be demonstrated from the knowledge base, in which case the next
state of the knowledge base is identical to the current state.

e The input together with one part of the knowledge base can be used to demonstrate
the remaining part. In this case the next state of the knowledge base is the input
together with the first part of the current state of the knowledge base.

e The input is inconsistent with the knowledge base. Together, the input and the
knowledge base need to be revised to restore consistency.

e The input and the knowledge base are logically independent. In this case either
the input is added to the knowledge base directly, or, if it is more appropriate, an
abductive explanation of the input is added instead.

Unfortunately such knowledge assimilation is quite different from the kind of assimi-
lation which needs to be performed by an active, resource-bounded agent.

An agent needs to process its inputs in real time, both to update its knowledge base
and to determine whether any immediate action is required to respond to the input. For
example, the representation of the sentence

“If it is raining, carry an umbrella”

should result in the agent attempting to carry an umbrella soon after observing that it is
raining.

It is such “online” processing of inputs that is required in the top-level cycle of our
agent, rather than the “offline” restructuring of the knowledge base with which the con-
ventional notion of knowledge assimilation is concerned.

In the remainder of this paper, we shall assume that “offline” knowledge assimilation
is an activity which takes place either in parallel with the top-level cycle of the agent or at
times when the rate of input is very low. We shall focus instead on the resource-bounded
assimilation of inputs that needs to take place “online”.

The example of carrying an umbrella when it rains is typical of the kind of knowledge
an active agent would use to relate conditions it observes to actions it performs. Many



other examples readily come to mind:
“In an emergency, press the alarm signal button.”
“Give up your seat, if someone else needs it more than you do.”
“If it 1s after 10.00pm and there is no good reason to stay awake, go to sleep.”

It is natural to formalise such sentences by means of condition-action production rules.
In this paper, we shall explore the possibility that they can be formalised by means of
integrity constraints instead. ?

Integrity constraints in database systems express obligations and prohibitions that all
states of a database must satisfy. Such conditions can be expressed by sentences of first-
order logic. The obligations and prohibitions associated with such first-order sentences
are implicit in the semantics of integrity constraints rather than explicit, as they would
be if they were written as sentences of deontic logic, e.g. Jones and Sergot [JS93].

Thus, for example, we might formalise the “obligation” to carry an umbrella when it
is raining by the integrity constraint:

holds(rain,T) — holds(carry(self,umbrella),T)

If this were an ordinary sentence in the knowledge base, it would allow the agent to con-
clude that it is carrying an umbrella whenever it rains, whether it is actually carrying an
umbrella or not. As an integrity constraint, however, the sentence imposes an obligation
on the ordinary sentences to establish that the conclusion holds, independently of any
integrity constraints. This can be done by abducing that some event of putting up an
umbrella happens when it first starts raining and by preventing any event of putting down
the umbrella while it is still raining.

But it is not enough simply to add to the knowledge base a sentence stating that the
agent is performing an action. As we will see in the next section, before the assertion can
be added to the knowledge base, the agent needs to output the action to the environment,
and the environment needs to confirm that the attempted action has been successful.

Although the distinction between integrity constraints and ordinary sentences is intu-
itively clear, there have been many different attempts to give the “semantics” of integrity
constraints a formal characterisation. For deductive databases, these formalisations in-
clude the theoremhood view, Iloyd and Topor [LT85], that integrity constraints are theo-
rems that should be logical consequences of the completion of the database, the consistency
view, Sadri and Kowalski [SK87], that they should be consistent with the completion, and
the views that integrity constraints should be understood as epistemic, Reiter [Rei90] or
metalevel, Sadri and Kowalski [SK87] statements about what the database “knows” or
can demonstrate.

Despite the differences between these formalisations, the proof procedures that have
been developed for verifying integrity constraints generally treat them as goals to be
satisfied and are similar in practice. Indeed, it is exactly such a relationship between

2This interpretation of production rules in terms of integrity constraints resembles the transformation
of Rashid [Ras94]. The exact relationship, however, between our interpretation and this transformation
needs to be investigated further.



integrity constraints and goals which we will take as the operational semantics of integrity
constraints used for “online” assimilation of inputs. We will regard integrity constraints
as passive goals that become active when they are “triggered” by appropriate inputs.

For the sake of simplicity, we will assume that integrity constraints are stored in the
knowledge base, but are distinguished from ordinary sentences by their syntax. We will
assume, in particular, that all such integrity constraints are written in the form:

I —=C

where [ is an atomic formula and C' is a “complete” conjunction of all the constraints
that the knowledge base should satisfy when [ holds. Operationally, if an input matches
I (unifies with /) then the integrity constraint is “triggered” (resolved with the input)
and the appropriate instance of C' (resolvent) is added to the current search space of
goals. More formally (and more simply, ignoring unification), we can define such online
assimilation of inputs by:

assimilate(InK B, InGoals, Input, Out K B, OQutGoals) «—
constraint(K B, Input — (')
AN OutKB = (Input N InK B)
A OutGoals = (C' A InGoals)

Here the assimilate predicate expresses the relationship that holds between the states of
the knowledge base and of the search space of goals, before and after observing Input. To
simplify the definition of assimulate, as a matter of convention, a lack of input is recorded
instead as an input of true.

The predicate constraint expresses that C' is a conjunction of all the constraints that
should hold when Input holds. If there are no such constraints then C' is assumed to be
true. As a result of these conventions

constraint( K B, lrue — true)

holds as a special case.

The simplified representation of integrity constraints assumes that they have been
“precompiled” so that inputs trigger integrity constraints directly in one step without
any intermediate deductions. This assumption simplifies the definition of assimilate
(and cycle) because it means that it is unnecessary to record forward deductions from
the input that have not yet resolved with the integrity constraints. It also facilitates the
agent’s ability to process inputs in real time.

Notice that we have also assumed that integrity constraints can be written as impli-
cations which have only a single atomic condition. This assumption can be relaxed in
various ways; for example, by allowing conclusions €' which contain negative literals or
implications. Thus the constraint

ANB — C
could be written as
A— (B—-C)
and/or
B—(A-C)
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whereas

~(AA B)

could be written as

A— B

or

A — (B — false).

3 The proof predicate, demo

The resource-bounded goal reduction which an agent needs to perform can be formalised
as a variant of the familiar demo predicate:

demo(K B, P) « aziom(KB, P «— Q) A demo(K B, Q)
demo(KB, P A Q) « demo(K B, P) A demo(K B, Q)
demo(K B, true)

Here demo(K B, P) expresses that conclusion P can be demonstrated from “knowledge
base” K B; axiom(K B, P « Q) expresses that P « @) is a clause represented explicitly
as an axiom in K B. For simplicity, I use the ambivalent syntax of Kowalski and Kim
[KK91] and Jiang [Jia94]. Moreover, I have considered only the propositional Horn clause
case. The non-propositional case can be reduced to the propositional case either by using
a standard definition of unification, or by adding a clause

demo(K B, P') « demo(K B, forall(X, P))
A substitute(X, P, Y, P')

as discussed by Kowalski [Kow90]. The predicate substitute(X, P,Y, P') holds when P’
results from substituting the term Y for the variable X in P. 1 have also ignored the
processing of integrity constraints. Proof procedures which combine goal-reduction with
integrity checking have been developed by Fung [Fun93] and Wetzel [Wet94], following a
proposal by Kowalski [Kow92].

The definition is non-deterministic because it is not determined, in the first clause of
the definition, what axiom in the knowledge base, having conclusion P, might be needed to
demonstrate P. The search for the necessary axiom is performed by the non-deterministic
“inference engine” which executes the definition rather than by the definition itself.

We can add an extra argument to indicate the resources needed to construct a proof.

demo(KB,P,R+ 1) « axiom(KB,P «— Q) ANdemo(KB,Q, R)
demo(KB, PN Q,R+ S) « demo(KB, P, R) AN demo(KB,Q,5S)
demo(K B, true,0)

However, this argument counts only the number of steps in a proof rather than the number
of steps in a search for a proof.

To count the number of steps in the search for a proof, it is necessary to represent
the search space explicitly. This can be done by means of a deterministic definition of



the demo predicate, in which alternative branches of the search space are represented by
means of disjuncts:

demo(K B, InGoals, OutGoals, R+ 1) « InGoals = (G A Rest) vV AltGoals
A de finition(KB,G «— D)
A demo(K B, (D A Rest) V AltGoals, OutGoals, R)
demo(K B, InGoals, OutGoals,0) «— InGoals = true V AltGoals
A OutGoals = true
demo(K B, InGoals, OutGoals,0) « —InGoals = true V AltGoals
A OutGoals = InGoals

Here demo( K B, InGoals, OutGoals, R) expresses that the search space of goals, InGoals,
can be reduced to the search space of subgoals, Qutgoals, in R steps. For simplicity the
definition does not count the resources needed to select the atomic subgoal GG and to find
its definition G « D. As we will see in the example definition of = below, the number of
steps involved in executing the definition of = may be non-trivial.

The predicate de finition(K B, G < D) expresses that GG < D is the complete defini-
tion of GG in K B. In the general case D is a disjunction of all the conditions of all the
clauses having conclusion (G. In addition to having its logical meaning as disjunction, V
can be interpreted as an infix list constructor, terminated by false. Thus every disjunc-
tion has a final disjunct false. In particular, if GG is the conclusion of no clause in KB,
then D is just false. However, if (G is abducible, i.e. can be assumed or “made” true,
then G has no definition at all. As we will see later, actions which can be performed by
the agent are represented by such abducible goals.

Similarly, A can be interpreted as an infix list constructor, terminated by true. Thus
every conjunction has a final conjunct true. In particular, if G is defined by a conditionless
clause, then the condition of that clause is taken to be true instead.

The infix predicate, =, is any predicate which deterministically expresses the logical
equivalence of its two arguments. Procedurally, = can be viewed as selecting both a
branch (G A Rest) of the search space and a goal G in the branch. Different deterministic
definitions of = give rise to different selection strategies, which in turn give rise to different
strategies for searching the search space. For example, the following definition gives rise
to Prolog-style depth-first search:

((D1V D2) A Rest) V AltGoals = D'V AltGoals' —

(D1 A Rest)= D'

A (D2 A Rest) V AltGoals = AltGoals'
(false A Rest) V AltGoals = AltGoals
((CTAC2)A Rest) = (C1 A Rest') « (C2 A Rest) = Rest’
(true A\ Rest) = Rest

Notice that the first two clauses are like the definition of append for lists constructed
using V; whereas the last two clauses are like the definition of append for lists constructed
using A. ?

3Notice that the example definition of = does not distinguish between abducible and non-abducible



The infix predicate = is simple identity, defined by the clause X = X «.

The demo predicate has an argument (the third parameter) which records the state
of the search space after the resources allocated to goal reduction have been exhausted.
This makes it possible for goals to persist from one cycle to the next, and for execution
of the demo predicate to resume when additional resources are made available in later
cycles.

4 The cycle predicate

We can now formulate the recursive clause of the cycle predicate more precisely and more
formally:

cycle(K B, Goals, T') «
observe(Input,T)
A assimilate( K B, Goals, Input, K B, Goals')
A demo(K B', Goals', Goals" ,n)
A try-action(K B', Goals", K B",Goals", T + n + 2)
A cycle(KB", Goals", T + n + 3)

The time parameter, T', is local to the agent and behaves as an internal clock used
to “time stamp” inputs and outputs when they are recorded in the knowledge base. For
the sake of simplicity, we have assumed that time is measured in terms of inference steps,
and that each inference step takes one unit of time. For simplicity, we have also assumed
that observing, assimilating the input and trying an (atomic) action take only one time
unit each.

The constant n is the amount of resource available for goal reduction, In a more
elaborate version of the cycle predicate, n might be computed by the agent, varying in a
manner which is appropriate to the circumstances.

The try-action predicate analyses the search space of goals Goals” to determine
whether it contains any action which the agent can try to execute. There are three
cases:

e There is such an action, and the attempt to execute it succeeds. In this case, the
agent commits to those branches of the search space of goals which are compati-
ble with the successful performance of the action. The action is recorded in the
knowledge base.*

e There is such an action, but the attempt to execute it fails. In this case the branch
containing the action is discarded. The failure of the action is recorded in the
knowledge base.

e There is no such action, in which case the search space of goals is unchanged.

goals. Abducible goals should be treated in demo as though they were true, without actually being
replaced by true. Catering for abducibles can be done by modifying the definitions of demo and/or of
=. I leave the details to the reader.

4This case of try-action was defined incorrectly in the earlier version of this paper.



The try-action predicate can be defined more formally as follows:

try-action(K B, Goals, KB', Goals',T) «
Goals = (do(self, Act, T) N Rest) V AltGoals
A try(Act, T, Result)
A Result = success
A Goals' = Rest vV Alts
N KB' = (do(self, Act,T) N KB)

try-action( K B, Goals, K B', Goals', T') «
Goals = (do(self, Act, T) N Rest) vV AltGoals
A try(Act, T, Result)
A Result = failure
A Goals' = AltGoals
N KB = ((do(self, Act,T) — false) N\ KB)

try-action(K B, Goals, KB', Goals',T) «
—3JAct, Rest, AltGoals [Goals = (do(sel f, Act,T') A Rest) V AltGoals]
A Goals' = Goals
NKB =KB

Here the goal try(Act, T, Result) is abducible in the sense that it has no definition in
K B. Alternatively, it may be viewed as having a definition which is held externally in
the environment. This second view is similar to that of query-the-user, Sergot [Ser83].

Operationally, the calls to the predicate = in the first two clauses select one branch of
the search space from among all the branches containing an action which the agent can
try to execute at that time. This instantiates the variable Act to a concrete value. The
partially instantiated goal try(Act, T, Result) where Result is a variable, is now available
for evaluation by the environment. The environment instantiates the variable, Result,
to one of the values success or failure. If the result of the attempted action is success,
then the agent records the successful performance of the action in the knowledge base.
The alternative goals, Alts, are retained, because some of them might contain the same
successful action as part of alternative plans. The proof procedure (using appropriate
integrity constraints) can recognise alternatives which are incompatible with the action,
evaluate them to false, and discard them from the search space.

The second clause in the definition deals with the case when actions fail. The branch
(being a conjunction equivalent to false) containing the selected and failed action is
discarded and the agent enters the next cycle with the search space consisting of the
remaining alternative branches. The failed performance of the action is recorded in the
knowledge base in the form of an integrity constraint. (Note that, alternatively and
equivalently, if the new goals, Goals’, are left the same as the current goals, Goals, then
the evaluation of the failed action to false and the subsequent discarding of the selected
branch will be performed automatically by the proof procedure using the newly added
integrity constraint.)

Notice that the definitions of the demo and try-action predicates are neutral with
respect to the search strategy used to select branches in the search space. Thus back-
tracking upon failure is only one of the many possible search strategies compatible with
these definitions.

Another possibility is to employ an evaluation function to evaluate alternative courses



of action represented by alternative branches of the search space. The same evaluation
function could be used both to direct the search towards the most promising part of the
search space in the definition of demo and to select the most promising next action in
the definition of try-action. Such use of an evaluation function would need to be taken
into account in determining the total amount of resources consumed by the agent within
a given cycle.

As we will see in greater detail in the next section, the branch

do(self, Act,T) N\ Rest,

whose first subgoal is selected for attempted execution at time T', represents a partial plan
for accomplishing the agent’s goals. The action associated with the first subgoal represents
the first step of the plan; Rest represents the remainder of the plan. Depending upon
how much resource is available for generating the plan before the first action is needed,
Rest will contain more or less detail about the rest of the plan. The less resource, the less
detail; and the more the agent behaves reactively. The more resource, the more detail;
and the more the agent behaves deliberately.

The advantage of deliberation is that it allows the agent to look ahead, compare
alternative partial plans and try the most promising alternative. In many cases the agent
can avoid trying an unproductive action by foreseeing that it would eventually lead to
failure. The disadvantage is that in many situations the need to perform an action is so
urgent that there simply is no time for such deliberation. Moreover, when the future is
unpredictable, planning can be a waste of time.

The value of the parameter n determines the balance between deliberation and reac-
tivity. As we have already remarked, it might be useful for this parameter to be computed
and for its value to depend upon the circumstances. But the balance between delibera-
tion and reactivity also depends upon the kind of knowledge that is represented in the
knowledge base, as we will see in the following section.

5 Knowledge representation matters

The feasibility of the agent architecture outlined above depends crucially upon the way
in which knowledge is represented in the knowledge base. It must be represented, in
particular, in such a way that the backward reasoning performed by the demo predicate
generates plans in a forward direction, starting with an action that can be performed
in the current state. Conventional logic-based representations of actions and their effects
behave instead in such a way that backward reasoning corresponds to reasoning backwards
in time while forward reasoning corresponds to reasoning forwards in time.

Consider, for example, the goal of going from one location to another. A typical
logic-based representation, of the kind normally associated with the situation calculus of
McCarthy and Hayes [MHG69] or the event calculus of Kowalski and Sergot [KS86], might
employ, along with frame axioms or persistence axioms, a clause of the following simplified
form:

holds(loc(Agent,Y ), T + 1) « holds(loc(Agent, X),T')
A next-to(X,Y)
A holds(clear(Y),T)
A do(Agent, step(X,Y), T)
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Using such a sentence in the definition of the demo predicate to reduce goals to subgoals
would generate plans backwards, starting from the last action to the first. The agent
would not be able to execute any action until it generates a complete plan.

What we need instead is a representation such as:

go(Agent, X, Z,T) « holds(loc(Agent, X),T)
A next-to(X,Y)
A holds(clear(Y),T)
AT <T+n
A do(Agent, step(X,Y),T")
A go(Agent, Y, Z,T")
go(Agent, X, X, T) « holds(loc(Agent, X),T)

which includes both the current state and goal state in the same predicate. Here n' is
a parameter (sufficiently larger than n + 3) regulating the rate of movement from one
location to the next. Using such a representation backwards to reduce goals to subgoals
generates plans forwards, starting from the first action in a plan. It can be interrupted
any time after the first action has been generated, to try executing that action, even if
no part of the rest of the plan has yet been generated.

Notice that even with this representation, however, conventional axioms such as

holds(loc(Agent,Y), T2) « do(Agent, step(X,Y),T1)
ANTT < T2
A =3T*[do(Agent, step(Y, Z), T*) N T1 < T™ < T72]

of the kind used in the event calculus, are still required (for example, to solve the condition
holds(loc(Agent, X),T) in the definition of go). The crucial matter is that the goal of
the agent’s going at time T to a destination Z from its current location X should be
represented as

go(self, X, Z,T)

rather than as

holds(loc(self, Z),T).

Notice, however, that, although the definition of go might work in theory, it gives rise to
a brute-force search, starting from the current location X, that will not work in practice.
With this representation, unless the value of n is sufficiently large to allow the generation
of a complete plan, the agent will move about at random, totally ignoring the destination
Z.

For the agent to behave effectively, the choice of the location Y next to X in the
definition of go needs to take the destination 7 into account. In traditional Al approaches
this is done by using heuristic functions to evaluate alternatives in the search space and to
select more promising alternatives in preference to less promising ones. In expert system
approaches, on the other hand, such knowledge is more commonly incorporated into the
object-level knowledge base itself. In our case this can be done simply by adding an extra
condition, towards(X,Y, 7), to the definition of go to restrict the choice of next location
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Y to one whose distance to the destination is closest among all the locations next to X
which are clear at time T'. This extra condition can be specified in the form:

towards(X,Y, Z) « VY'[next-to(X,Y") A holds(clear(Y'),T) —
dist(Y, 7) < dist(Y", Z)]

which can be converted into conventional logic programming form in standard ways.

6 Logic-based multi-agent systems

A preliminary version of the resource-bounded, logic-based agent architecture described
above has been implemented in a multi-agent environment by Davila [DQ94]. Several
agents are placed at various initial locations on a rectangular grid and are given the goal
of going from their initial locations to different destinations.

Given a grid with no obstacles, except for those created by one agent temporarily
blocking another, the implementation confirmed our expectation that planning confers no
advantages over purely reactive behaviour. This is because, without an agent having a
sophisticated model of the behaviour of other agents, in this environment the obstacles
created by agents blocking one another are totally unpredictable.

The implementation was written in a combination of Prolog, used for programming
the logic-based cycle of the individual agents, and April, for programming the interactions
between the agents and the environment. April, McCabe and Clark [MC94], is a process-
oriented symbolic language, which has grown out of the experience of using concurrent
logic programming languages such as Parlog. The discussion of the previous section of this
paper, showing how inputs and outputs can be implemented using input-output streams
containing variables, suggests that an implementation combining Prolog and a concurrent
logic programming language might be more appropriate from a logical point of view.

Although planning had no value in our simple multi-agent experiment, we anticipate
that it will be important in other applications where predictions can be made reliably. To
predict the future, an agent needs to model other agents as well as to communicate with
other agents both to avoid conflicts and to achieve common goals.

It was in fact for the purpose of modelling other agents that we earlier proposed the
use of meta-logic programming to solve the puzzle of the three wise men, Kowalski and
Kim [KK91]. More recently, we have begun to investigate the use of argumentation to
resolve conflicts between different agents, Kowalski and Toni [KT94].

7 Conclusions and future work

The proposal outlined in this paper is a first step towards the development of a resource-
bound, logic-based agent architecture. Although it is firmly based on the use of logic
both at the object level to represent domain knowledge and at the metalevel to control
the observation-thought-action cycle, it makes important concessions to the anti-logic,
reactive agent school. In particular, it concedes, that when the future is unpredictable,
rational planning is not only a waste of time but interferes with the ability to act effectively
and in a timely manner.
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None the less, compared with purely reactive architectures, our logic-based agent
model can exploit reliable knowledge about the future, to avoid short-term actions that
ultimately and predictably fail to achieve long term goals. Moreover, it can be extended
to make the future more predictable, both by exploiting meta-logic to reason about other
agents and by allowing agents to communicate with each other to negotiate co-ordinated
plans of action. Integrating such extensions with the simplified agent model outlined in
this paper is an important direction for future research.

There are at least two other important extensions to be considered. One is to investi-
gate how several agents can be combined so that to an external observer they behave as
though they were a single agent. The other is to investigate how goal-oriented behaviour
can emerge as a property of the behaviour of a single agent or collection of agents.

It seems that much of the work needed for the first of these extensions has already been
done in the work on using meta-logic for combining theories Brogi et al. [BMPT94, BT95].
This needs to be developed further to take integrity constraints, goals, subgoals and
actions into account.

The second of these extensions seems to be related to the use of integrity constraints
to obtain the behaviour of condition-action rules. This, in turn, is related to logic pro-
gramming representations in which conclusions of implications represent goals. These re-
lationships need to be investigated further to take account of the properties that emerge
when agents interact in multi-agent systems.
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