
The Ego Machine: a Computational Phenomenal Model

Eric Schulte

May 9, 2011

1 Introduction

The self is fundamental to human experience. Every

conscious moment necessarily includes both the per-

ceived external world and an internal embodied per-

ceiver. Despite this pervasiveness, philosophical and

neuro-scientific models of the self are wide ranging and

grossly underdeveloped showing more influence from

folk wisdom than scientific experimentation.

Recent neuro-scientific advances especially in brain

imaging technologies are making possible for the first

time a truly scientific and objective investigation of the

phenomenon of the self. These changes are leading

to a “disenchantment of the self” [2] analogous to We-

ber’s “disenchantment of the world” which followed the

enlightenment [1]. The functional models of conscious-

ness resulting from these advances, especially Thomas

Metzinger’s phenomenal self model (PSM) promise to

provide a coherent scientifically verifiable description of

consciousness and self-hood.

Surprisingly, many of the functional roles of the PSM

are analogous to practical concerns in the construction

of modern computational systems. These include the

coordination of heterogeneous parallel components,

managing system-wide global state and the offloading

of computationally expensive functions into specialized

sub-components.

This work proposes to further investigate Metzinger’s

PSM through computational experimentation. A com-

putational implementation of a PSM which aligns PSM

functionality with real computational problems such as

those mentioned above can be used to test the logical

consistency and completeness of Metzinger’s PSM, to

gain experiential knowledge of the workings of a PSM,

and to perform experimentation on a PSM which would

be impossible, impractical or immoral to perform on a

living system.

In this proposal Metzinger’s PSM is described with a

special focus on those aspects relevant to the proposed

computational implementation (Section 2). The com-

putational implementation is described and a detailed

work plan for its construction is presented (Section 3).

Metzinger addresses the morality of implementing arti-

ficial consciousness [2], expressing deep concern that

such an act would be unethical. This concern is ad-

dressed in section 4 in which we present a moral jus-

tification for this work. The proposal concludes with a

discussion of the implications of such a computational

model on our understanding of both consciousness and

computational systems (Section 5).

2 Background

Thomas Metzinger is a materialist and an analytical

philosopher of the mind who is working to build a

functional model of conscious experience. Metzinger

works closely with neuro-scientists and takes care to

ensure his work incorporates data from basic scientific

investigation as well as often ignored “edge-cases” of

consciousness such as out-of-body experiences, deep

meditation and drug induced hallucination.

The PSM model of consciousness proposed by Met-

zinger is a biological tool which is a product of natural

selection and is generated by the brain to perform a

number of functions which increase our ability to act in

the world. Under this model the perception of self-hood

is a trick we play on ourselves in order to better commu-

nicate, synthesize phenomenal experience and coordi-

nate action. This model makes claims about the logical

structure of the PSM as well as the physical brain states

through which it arises.

1



The remainder of this section borrows heavily from

Metzingers book The Ego Tunnel: The Science of the

Mind and the Myth of the Self [2].

2.1 Historical roots of consciousness

In different historical eras the term consciousness has

taken on varied meanings, and has been used to re-

fer to both a moral role such as a guiding conscious,

and a phenomenal role such the experience of con-

sciousness. The following four aspects of conscious-

ness cover many of the essential properties of con-

sciousness.

group knowledge From the latin roots cum meaning

“together” and scire meaning “to know” conscious-

ness has been seen as a form of group knowledge

which is only possible as part of a community.

moral Such communal knowledge is most often used

in the context of moral knowledge, in this sense

conscious is seen as an internal perfect moral

observer which has access to our PSM and can

apply normative judgment to our actions. Under

such a conception the fundamental role or our con-

scious lives may have been moral.

certainty With Descartes the term takes on a sense

of immediacy which separates first-person con-

scious experience from all other forms of knowl-

edge. Conscious experience becomes the only

knowledge of which we can be certain, and to

which we have direct access.

unity An essential aspect of all conceptions of con-

sciousness seems to be that of unity, that is a sin-

gle indivisible conscious experience of a single self

existing in a single world.

2.2 Humanity and self-consciousness

It seems plausible that many animals including all

mammals and most birds implement some form of con-

scious experience. Metzinger suggests that part of

what may make humans exceptional among animals is

the inclusion of ourselves as reasoning agents into our

PSM.

by representing the process of representation

itself, we can catch ourselves – as Antonio

Damasio would call it – in the act of knowing.

This in turn enables the communication and coop-

eration which is the foundation of human culture and

“allow[ed] biological evolution to explode into cultural

evolution”.

The computational implementation of consciousness

proposed below will be maximally simple and will not

rise to the level of “self-consciousness”. The represen-

tation of the self in the PSM not contain any state, thus,

rather than the complex cultural consciousness of hu-

mans the computational consciousness described be-

low will be more akin to the simplest animal conscious-

ness – a direct consciousness of an environment.

2.3 The PSM

Metzinger introduces the concept of a virtual organ

which is a functional unit implemented by the body. Ex-

amples given of virtual organs include the immune re-

sponse (which is only present during an infection) and

emotional states such as fear or courage which can be

implemented by the body to aid in dealing with specific

situations.

The PSM is an instance of such a virtual organ which

is produced by the brain whenever a subject reports be-

ing conscious, and is absent during unconscious states

such as deep sleep or during sedation.

The PSM serves to synthesize the many outputs of

disparate functional modules of the brain into a single

phenomenological model which is of much lower di-

mension than either the actual physical world, or the

raw sensory input into the brain. The contents of this

phenomenological model are then made (through the

PSM) globally available across the entire brain. Phe-

nomenological experience can be seen as a biologi-

cal data type through which information is stored and

shared in the brain.

This conception is compatible with the dynamic core

concept of consciousness [4] in which the dynamic core

is the neural correlate of consciousness, and is defined

as a group of neurons which are both:

integrated meaning that the group of neurons

achieves sustained high levels of correlated firing

2



over hundreds of milliseconds (the time scale of

conscious experience).

differentiated as indicated both by high values of

complexity (where “complexity” is a measure of

the mutual information between all bi-partitions of

the group of neurons) and by spatial distribution

through the brain.

2.3.1 Properties of the PSM

The remainder of this section will attend to specific

properties of the PSM which are relevant to the

proposed computational implementation of conscious-

ness. In the next section each of these properties

will be revisited in the context of the proposed

computational PSM.

coherence and re-entry In the human visual system,

the result of high-level processing (e.g., I am look-

ing at a chair) can re-enter lower levels of visual

processing, informing the formation of lower level

features such as simple edges.

In the same way that the higher level representa-

tions of perceived objects may re-enter the lower

levels of perception, so too consciousness can be

seen as the continuous large-scale re-entry of our

prior knowledge to our current situation. Through

the global availability of the contents of the PSM

across all aspects of the brain, the PSM can in-

fluence the lower level processes which provide

the raw material of consciousness and can directly

influence the subsequent contents of conscious-

ness, leading to continuity through time.

temporal concurrency Many studies have shown that

the synchronous firing of groups of neurons may

be the relevant to what neuronal activity gains ac-

cess to consciousness. When disparate groups of

neurons fire synchronously it is more likely that the

contents of their output will become incorporated

into the PSM and become conscious. Such syn-

chrony seems to also be relevant to defined atomic

elements of conscious experience. To adapt an

example from Metzinger [2] – when you read this

paper you are aware of both the visual appearance

of the written text, as well as the tactile feel of the

paper (or possibly your computer keyboard). As

these visual and tactile neurons fire in synchrony,

the contents of their output (namely this paper) are

incorporated into the active PSM as a single entity.

serial global control The brain is largely a heteroge-

neous collection of processing centers specializ-

ing in different tasks (e.g., visual processing, mem-

ory). These centers run concurrently and in paral-

lel, however conscious experience appears to us

as a serial linear series of experiences. The PSM

is responsible for organizing the information from

these many disparate centers in the brain into a

single series of experienced moments.

global state The contents of consciousness are glob-

ally available throughout the brain. When a sensa-

tion is consciously attended, its contents become

globally available across the brain. This is thought

to enable the flexible creative responses which are

only possible through conscious thought.

general processing As just mentioned novel situa-

tions often require conscious attention to form ap-

propriate reactions. This is because of the greater

flexibility of conscious states which may draw upon

and coordinate disparate elements of the brain.

Once a task becomes route (e.g., riding a bike) its

performance may no longer require conscious at-

tention. In experiments, such novels tasks were

characterized by global activation of the brain,

however when subjects report learning a task to

the point where its performance does not require

conscious attention, the pattern of activation is lim-

ited to a small portion of the brain.

3 Preliminary Implementation &

Work Plan

This computational implementation of a PSM will seek

to align real computational problems with the functional

aspects of the PSM model of consciousness. Through

applying the PSM in such a practical manner, new in-

sight may be gained into the PSM model. Additionally

3



the functionality of the PSM may provide effective solu-

tions to existing computational problems such as global

control and coordination between disparate parts, and

generalized processing in the face of novel stimulus.

Our computational environment will consists of a

world composed of a frictionless 2D plane containing

both an agent which can cause itself to move, and a

number of balls which move with momentum. The goal

of the agent will be to avoid proximity to the balls – con-

tact not being possible as both the agent and the balls

are points with no extension.

Both the world and the content of the PSM will be

visualizable, specifically the PSM will consist of a circle

of scalar values (indicating the nearness of balls to the

agent in each angular direction), thus the visualization

of the PSM through time could in fact be viewed as an

“ego tunnel”.

In addition to the PSM, the agent will consist of a

number of heterogeneous concurrent functional units

intended to correspond to functional subsets of the

brain. These units will both determine the content of

the PSM and receive information from the PSM.

3.1 Artificial World

The agent is embedded in a simple frictionless finite

circular 2D physical world. In order to keep the agent

and all objects within the borders of the world, at

a certain distance from the center of the world ob-

ject begin to accelerate back towards the world cen-

ter. A snapshot of a world with six balls and no

agent is show in Figure 1, and the corresponding video

is available at http://cs.unm.edu/∼eschulte/notes/ego-

machine/empty-world.mp4.

3.2 Agent

The external body of the agent in the world consists

of a single point which, like the balls, has position and

velocity. In addition the body of the agent includes a

single eye which can perceive balls in a cone expand-

ing from the agent in the direction of the eye and a set

of short whiskers which can detect balls within a short

range of the agent. Additionally the body of the agent

has two actuators, the first of which can affect the ve-

0 5 10 15

Figure 1: A world containing 6 balls and no agent.

locity of the agent, and the second of which can rotate

the agent effectively changing the direction of the eye.

The computational mind of the agent is composed

of a single PSM which coordinates many concurrently

executing heterogeneous modules, each of which im-

plements a specific function (Figure 2).

Figure 2: Architectural overview of the Agent

4

http://cs.unm.edu/~eschulte/notes/ego-machine/empty-world.mp4
http://cs.unm.edu/~eschulte/notes/ego-machine/empty-world.mp4


3.3 Modules

Modules are analogous to functional sections of the

brain. Modules accept input from the PSM and possibly

from external sensors and send output to the PSM and

possibly to external actuators. All inter-module coor-

dination occurs exclusively through the contents of the

PSM. A sensor module with connections is shown in

Figure 3.

Figure 3: Module with sensor and PSM connections.

A minimal set of modules for successful avoidance

behavior are presented below. Given the extremely

loose coupling the addition of new modules in either

an engineered or an automated evolutionary manner

would be trivial.

visual Receives sensory input from a single eye in the

form of a set of polar coordinates. Each coordinate

corresponds to a ray extending from the agent in-

side the cone of vision, the angle indicates the po-

sition inside of the code and the length indicates

the length to the nearest ball in that direction (or 0

if no balls are intersected by that ray).

This information along with the contents of the

PSM is interpreted by the visual module and the

results are sent to the PSM in a manner which may

be easily incorporated into the phenomenological

data of the agent (namely the circle of scalar val-

ues).

tactile Can detect balls in close proximity to the agent.

Like the visual system, the tactile system also has

access to the contents of the PSM and it reduces

its combined input into a form which can be incor-

porated into the phenomenological model of the

agent.

rotation Takes the phenomenological content of the

PSM as input and rotates the agent in response.

movement Takes the contents of the PSM as input,

and as output can change the velocity of the agent.

3.4 PSM

The PSM (Figure 4) shares information across com-

putational modules, and provides a single global serial

ordering to the phenomenological states of the agent

analogous to a stream of consciousness.

Figure 4: Phenomenological Self Model

The PSM is composed of an input area into which

the output of the various modules is collected and an

area which holds the current contents of the PSM. Both

of these contain the same data structure, namely a

circle of polar coordinates which roughly correspond

to the ball-proximity in each direction away from the

agent. In the absence of input the contents of both ar-

eas degrade with time.

As the functional modules run they may add their out-

put to the input of the PSM. When sufficient information

has accumulated in the input area, the PSM copies the

input area into the contents area. This generates a con-

scious moment for the agent. When the contents area

is not empty the agent can be said to be conscious,

when the contents area is empty the agent can be con-

sidered to be in a state analogous to sleep.

5



The phenomenological contents of the PSM are

available to all functional modules, and it is in response

to these contents that the agent moves.

An agent in a world with 6 balls is shown in Figure

5. The green lines extending from the agent display the

contents of the agents PSM indicating that the agent is

conscious of the presence of balls in three directions.

Video of the run form which this snapshot was taken

is available at http://cs.unm.edu/∼eschulte/notes/ego-

machine/full-world.mp4.

0 5 10 15

Figure 5: A world containing 6 balls and an agent with

the PSM shown in green.

3.5 Preliminary Implementation & Short-

comings

The preliminary implementation [3] used to generate

the results shown in Figures 1 and 5 and whose source

code is available in the appendix is merely a proof of

concept. It remains insufficient to investigate the PSM

model in the following important ways.

neural networks All of the modules in the current

implementation are hand-coded to exhibit simple

reasonable behavior. A more biologically plau-

sible neural network (NN) module implementa-

tion would allow evolution and adaptation of the

modules, and would introduce generality, enabling

many of the following points of refinement.

coherence and re-entry The initial model does not

implement any re-entry of the contents of the PSM

into the sensing modules. The use of hierarchi-

cal NN sensory modules would allow the contents

of the PSM to be naturally incorporated back into

sensory input.

temporal concurrency In the current implementation

all modules execute in lock-step once per world-

second. This does not allow for sympathetic firing

of modules sensing related aspects of the exter-

nal world. A NN implementation of sensing mod-

els which explicitly includes adjustable firing rates

would allow modules to synchronize when sensing

related external phenomena.

serial global control In the current implementation all

modules execute in a single thread. A trivial exten-

sion separating each module into its own thread

would allow testing of the organizational facilities

of the PSM.

global state The PSM does provide global state in the

current implementation, however due to the small

number of modules and the serial module evalu-

ation interesting race conditions do not arise. An

extended model would be required to test the co-

ordination facilities of the PSM.

general processing Every module in the current

implementation is assigned an explicit functional

role, and there is no room for the introduction

of new modules or recruitment of modules to

new tasks. Because of this the process of

learned tasks dropping out of consciousness

is not testable. A much more general system

of flexible modules would be required for such

experimentation.

3.6 Work Plan

The following work plan addresses the shortcoming of

the current implementation, expanding it into a genuine

computational platform for experimentation.

6

http://cs.unm.edu/~eschulte/notes/ego-machine/full-world.mp4
http://cs.unm.edu/~eschulte/notes/ego-machine/full-world.mp4


1. Parallelization of the module execution.

2. Replacement of modules with biologically plausi-

ble neural network architectures.

3. Uniform module interface allowing modules to

change roles.

4. Embedding of agent system into a Genetic Algo-

rithm framework allowing the process of natural

selection to be used to select new functionality.

4 Ethics Review

Metzinger explicitly addresses the morality of imple-

menting an artificial consciousness with an integrated

and dynamical world model which organizing its infor-

mation flow in such a way as to result in an experiential

now. To Metzinger such machines only become “ob-

jects of moral concern” when they include a “transpar-

ent internal image of itself” into their phenomenal real-

ity [2]. This is explicitly not the case in the proposed

implementation performed as part of this work, as the

content of the PSM is restricted to a circle of external

scalars and includes no internal state.

It is interesting to note however that by Metzinger’s

description many modern operating systems may be

considered both conscious and self conscious and thus

“potentially able to suffer ”.

5 Discussion

Recent developments in both applied computer science

and in experimental neuro-science and philosophy of

the mind have decreased the distance between the

subject mater of both fields. The topics of concern to

computer scientists may already overlap the areas of

study of consciousness researchers. If this is not the

case already it will certainly be the case in the near fu-

ture.

Through increasing the awareness of overlap be-

tween these fields, an explicit computational investiga-

tion into functional models of consciousness will help

each fields to benefit from the other’s work, and will

highlight potential areas of moral concern before harm

is done.

References

[1] B. B. Koshul. The postmodern significance of Max

Weber’s legacy. Palgrave Macmillan, 2005.

[2] T. Metzinger. The Ego Tunnel: The Science of the

Mind and the Myth of the Self. Basic Books, 1 edi-

tion, March 2009.

[3] E. Schulte. Ego machine, May 2011.

http://gitweb.adaptive.cs.unm.edu/ego-machine.git.

[4] G. Tononi and G. M. Edelman. Consciousness and

complexity. Science, 282(5395):1846–1851, dec

1998.

7



;;; ego-machine.lisp --- A Computational Phenomenal Self Model

;; Adapted from the description in Thomas Metzinger’s

;; _The Ego Tunnel_ Basic Books, 1 edition, March 2009

;; Copyright (C) 2011 Eric Schulte

;;; License:

;; This program is free software; you can redistribute it and/or modify

;; it under the terms of the GNU General Public License as published by

;; the Free Software Foundation; either version 3, or (at your option)

;; any later version.

;;

;; This program is distributed in the hope that it will be useful,

;; but WITHOUT ANY WARRANTY; without even the implied warranty of

;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

;; GNU General Public License for more details.

;;

;; You should have received a copy of the GNU General Public License

;; along with GNU Emacs; see the file COPYING. If not, write to the

;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,

;; Boston, MA 02110-1301, USA.

;;; Code:

(defpackage #:ego-machine)

(in-package :ego-machine)

;;; world

(defvar *field-radius* 10)

(defvar *max-init-vel* 0.1)

(defvar *field-acel* 0.001)

(defconstant tau (* 2 Pi) "tau=2Pi is a more natural constant to use than Pi.")

(defclass polar ()

((r :initarg :r :accessor r)

(theta :initarg :theta :accessor theta)))

(defmethod print-object ((polar polar) stream)

(format stream "#polar(~a,~a)" (r polar) (theta polar)))

(defun rand-polar (&key (r-max *field-radius*))

(make-instance ’polar

:r (random (float r-max))

:theta (random tau)))

(defmethod to-rect ((polar polar))

(with-slots (r theta) polar

(make-instance ’rect

:x (* r (cos theta))

:y (* r (sin theta)))))

(defmethod add ((a polar) (b polar))

(to-polar (add (to-rect a) (to-rect b))))

(defmethod sub ((a polar) (b polar))

(to-polar (sub (to-rect a) (to-rect b))))

(defclass rect ()

((x :initarg :x :accessor x)

(y :initarg :y :accessor y)))

(defmethod print-object ((rect rect) stream)

(format stream "#rect(~a,~a)" (x rect) (y rect)))

(defmethod to-polar ((rect rect))

(with-slots (x y) rect

(make-instance ’polar

:r (sqrt (+ (* x x) (* y y)))

:theta (handler-case (atan y x) (error nil 0)))))

(defmethod add ((a rect) (b rect))

(make-instance ’rect

:x (+ (x a) (x b))

:y (+ (y a) (y b))))

(defmethod sub ((a rect) (b rect))

(make-instance ’rect

:x (- (x a) (x b))

:y (- (y a) (y b))))

(defclass ball ()

((place :initarg :place :accessor place)

(vel :initarg :vel :accessor vel)))

(defmethod print-object ((ball ball) stream)

(format stream "#ball(~a->~a)" (place ball) (vel ball)))

(defun rand-ball ()

(make-instance ’ball

:place (rand-polar)

8



:vel (rand-polar :r-max *max-init-vel*)))

(defmethod move ((ball ball))

;; update the ball’s velocity

(when (> (r (place ball)) *field-radius*)

(setf (vel ball)

(add (vel ball)

(with-slots (r theta) (place ball)

(make-instance ’polar

:r (* *field-acel* (- (r (place ball)) *field-radius*))

:theta (+ (theta (place ball)) Pi))))))

;; update the ball’s position

(setf (place ball) (add (place ball) (vel ball))))

;;; agent

(defvar *cone-width* (/ tau 8))

(defvar *whisker-length* 2)

(defvar *agent-acel* 0.001)

(defvar *agent-friction* 0.9)

(defvar *agent-rotate-speed* 0.025)

(defvar *psm-degrees* 8)

(defvar *agent-arrow-length* 1)

(defvar *psm-threshold* 2)

(defvar *psm-fade* 0.75)

(defvar *num-balls* 6)

(defvar *balls* nil)

(defclass agent (ball)

((angle :initarg :angle :accessor angle)

(psm :initarg :psm :accessor psm)

(modules :initarg :modules :accessor modules)))

(defclass psm ()

((input :initarg :input :accessor input)

(phenom :initarg :phenom :accessor phenom)))

(defmethod add ((psm psm) (polar polar))

(with-slots (input) psm

(let ((theta (mod (theta polar) tau)))

(incf (r (nth (mod (round (/ theta (/ tau 8))) 8) input))))))

(defmethod add ((psm psm) nothing)

(declare (ignorable psm nothing)))

(defun in-cone (tip from to)

"Return the offsets of all balls in the cone."

(remove nil

(mapcar (lambda (offset)

(when (and (< from (theta offset)) (< (theta offset) to))

offset))

(mapcar (lambda (ball) (sub tip (place ball))) *balls*))))

(defun visual (agent)

(with-slots (place angle psm) agent

(let ((width (/ *cone-width* 2)))

(add psm (first (sort (in-cone place (- angle width) (+ angle width))

#’< :key #’r))))))

(defun tactile (agent)

(dolist (offset (mapcar (lambda (ball) (sub (place agent) (place ball))) *balls*))

(when (< (r offset) *whisker-length*)

(add (psm agent) (make-instance ’polar

:r 1

:theta (+ (theta offset) Pi))))))

(defun movement (agent)

(when (phenom (psm agent))

(let (max)

;; set max to greatest value in phenom

(dolist (polar (phenom (psm agent)))

(when (or (not max) (> (r polar) (r max)))

(setf max polar)))

(setf (vel agent)

(add (vel agent)

(make-instance ’polar

:r (* *agent-acel* (r max))

:theta (+ (theta max) Pi)))))))

(defun rotation (agent)

(setf (angle agent) (mod (+ *agent-rotate-speed* (angle agent)) tau)))

(defmethod run ((agent agent))

;; slow down

(when (> (r (vel agent)) 0)

(setf (r (vel agent)) (* *agent-friction* (r (vel agent)))))

;; update the psm

(flet ((fade (obj)

(setf obj (mapcar (lambda (el) (setf (r el) (* (r el) *psm-fade*)) el)

obj))))

(fade (phenom (psm agent)))

(when (> (apply #’+ (mapcar #’r (input (psm agent)))) *psm-threshold*)

9



(setf (phenom (psm agent)) (copy-seq (input (psm agent)))))

(fade (input (psm agent))))

;; run all modules

(dolist (module (modules agent))

(funcall module agent)))

;;; Run with gnuplot

(defvar *steps* 250)

(defvar *agent*

(make-instance ’agent

;; start in the middle

:place (make-instance ’polar :r 0 :theta 0)

:vel (make-instance ’polar :r 0 :theta 0)

:angle 0

:psm (let ((input (loop for theta to tau by (/ tau *psm-degrees*)

collect (make-instance ’polar :r 0 :theta theta))))

(make-instance ’psm

:input #+ccl (butlast input) #+clisp input

:phenom nil))

:modules (list #’visual #’tactile #’movement #’rotation)))

(setf *balls* (loop for n from 1 to *num-balls* collect (rand-ball)))

(defun gnuplot (step &key (stream t) (to-file nil))

(format stream "set title \"~d:~6f\"~%unset arrow~%"

step

(apply #’+ (mapcar #’r (input (psm *agent*)))))

;; set output to a file

(when to-file

(format stream (concatenate ’string

"~&set output \"~a/~d.png\"~%"

"set term png transparent large~%") to-file step))

;; agent

(when *agent*

(let ((rect-tip (to-rect (add (place *agent*) (make-instance ’polar

:r *agent-arrow-length*

:theta (angle *agent*)))))

(rect-agent (to-rect (place *agent*))))

(format stream "~&set arrow from ~f,~f to ~f,~f~%"

(x rect-agent) (y rect-agent)

(x rect-tip) (y rect-tip))))

;; psm

(when (and *agent* (psm *agent*))

(dolist (dir (phenom (psm *agent*)))

(let ((beg (to-rect

(add (place *agent*)

(make-instance ’polar :r 0 :theta (theta dir)))))

(end (to-rect

(add (place *agent*)

(make-instance ’polar :r (r dir) :theta (theta dir))))))

(format stream "~&set arrow from ~f,~f to ~f,~f nohead ls 2~%"

(x beg) (y beg) (x end) (y end)))))

;; balls

(format stream "~&plot ’-’ notitle~%~T~{~a~%~T~}e~%"

(mapcar (lambda (place) (format nil "~f~T~f" (theta place) (r place)))

(mapcar #’place *balls*))))

(defun run-w/o-gnuplot ()

(do ((step 0 (1+ step)))

((= step *steps*))

(run *agent*)

(mapcar #’move (cons *agent* *balls*))))

(defun run-w/gnuplot (&key (to-file nil) (stream t))

;; setup gnuplot

(format stream (concatenate ’string

"~&set polar~%"

"set grid polar 20~%"

"unset border~%"

"unset param~%"

"unset xtics~%"

"unset ytics~%"

"set size square~%"

"set xrange [~f:~f]~%"

"set yrange [~f:~f]~%"

"set trange [-p1:p1]~%"

"set rrange [~f:~f]~%")

(- 0 (* 1.5 *field-radius*)) (* 1.5 *field-radius*)

(- 0 (* 1.5 *field-radius*)) (* 1.5 *field-radius*)

0 (* 1.5 *field-radius*))

(do ((step 0 (1+ step)))

((= step *steps*))

(run *agent*)

(mapcar #’move (cons *agent* *balls*))

(gnuplot step :to-file to-file :stream stream))) ; plot with gnuplot

;;; ego-machine.lisp ends here

10


	Introduction
	Background
	Historical roots of consciousness
	Humanity and self-consciousness
	The PSM
	Properties of the PSM


	Preliminary Implementation & Work Plan
	Artificial World
	Agent
	Modules
	PSM
	Preliminary Implementation & Shortcomings
	Work Plan

	Ethics Review
	Discussion

