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Abstract—This paper describes an agent-based method for
modeling and simulation of the cerebellar cortex of nervous
system in particular and for complex systems in general. By
modular and hierarchical model design, this method allows
us to enhance the system model under study without having
to rebuild the whole model. We also discuss how well our
agent-based method is sound for the study of these systems
and how to represent agents’ behavioural dynamics of sim-
ulation models by DEVS formalism (Discrete Event System
Specification) from Zeigler. Conceptualization of such sys-
tems is shown in terms of how agents and simulation models
may interact with one another.

Keywords— Cerebellar cortex, complex system, DEVS,
agent-based simulation.

I. Introduction

For some years now, researchers have been developing
models, both in hardware and in software, that mimic a
brains’ cerebral activity in an effort to produce an ultimate
form of artificial intelligence.

The theory of automata with a finite number of states
has greatly contributed to the field of neuroscience, par-
ticularly in the study of artificial neural networks (ANN).
These networks are relatively simple since their organiza-
tion does not extend beyond two levels: the neuronal level
and the level of network of neurons. The neuron is defined
as a mathematical entity and neural network consists of an
interconnected set of these entities. The neuron functions
based on synaptic modification according to specific law of
learning [7].

In contrast to artificial neural networks, modeling a real
one raises more difficult problems because of the structural
and functional complexities involved. The learning rules
are not externally imposed as in the case of ANN, they are
constructed on the basis of internal molecular mechanisms
[7].

In this paper we will study the use of an agent-based
method for studying cerebellar cortex’s behaviour. It relies
on three important notions: S-propagator ([4], [5]), DEVS
[22] and multi-agents system. More precisely, we will try to
solve the questions related to the representation of system
behavioural dynamics by DEVS on one hand and its dy-
namics simulation by agent-based techniques on the other
hand.

For automatic simulators generation purpose, the Zei-
gler’s DEVS formalism seems suitable for representing com-
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ponent dynamics aspect. In addition, modular and hierar-
chical construction gives us the possibility to easily extend
the model under study.

The paper is organized as follows. Section 1 is dedicated
to a short presentation of cerebellar cortex and the need of
simulation in order to observe its evolution facing to envi-
ronmental changes. In section 2, cerebellar cortex structure
and the related study are presented. We summarize here
some important concepts in integrative physiology and the
use of our modeling method for nervous systems. DEVS
and agent-based method are described in section 3. Fi-
nally, conclusions are drawn and future works are outlined
in section 4.

We will begin this paper by a brief resume of cerebellar
cortex system and its properties.

II. Cerebellar cortex

The cerebellar cortex plays an essential role in movement
control and in the coordination of movement which allows
reaching a target [8]. The cerebellar cortex is organized into
three layers of neurons: the molecular layer, Purkinje cell
layer and granule cell layer ([12], [16]). They join to one
another through the neurons’ synapses. Neurons can re-
spond to stimuli and conduct impulses because membrane
potential is established across the cell membrane. We try
to model the neurones’ behaviours and their relationship
in order to study the whole system behaviours.

A. Cerebellar cortex study

A.1 From classical simulation methods . . .

Biological processes are modeled mathematically by a set
of equations. Since the biological system involves multiples
elements that can be modeled in various levels, the global
equation depends not only on others global variables but
also on local variables. Thus, these equations are some-
times too complicated for an analytical solution.

In general, models can be basically viewed at two lev-
els - one at a micro level and the other at a macro level.
Traditional modeling and simulation methods offer just the
vision of macro level behaviours; they do not provide in-
sight views of micro level. Macro level involves modeling
the general aspects of system like the average of ”aver-
age glucose concentration in blood”, ”the amount of CO2

produced in a respiration cycle ”, etc. Modeling of system
from this view results in losing some of the detailed aspects
of the system. As a result, the diversity of the biological
system can not be studied with equation-based method.

In addition, once the system changes, the whole model
has to be rebuild completely.
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In integrative physiology ([4], [5]), while the model is de-
signed with reusability purpose, without distributed com-
putation the size of systems under study is still limited by
the computer capacity. Moreover, as in any equation-based
method, the micro level relationship can not be explored.

These limitations restrict the efficiency of such models
and encouraged us to a new modeling approach based on
the interaction analysis of individual entities.

A.2 . . . to DEVS and agent-based simulation

A micro level simulation implies modeling each entity in-
volved in the system, i.e., giving each component a set of its
own characteristics. The overall behaviour can be viewed
as a collective behaviour of individual entities. Agent based
modeling is a way of studying the interaction of large num-
bers of individuals, and the macro scale consequences of
their interactions.

Furthermore, one of the principal properties of a biologi-
cal system is its time scale: certain physiological processes
are slow (several hours), on the contrary others are very
fast (a few milliseconds). That means we will observe the
same variation on a state variable of a slow process at the
end of several hours and of the fast one at the end of a few
seconds. This property allows us to partially separate slow
and fast processes. For example, given two processors X1
and X2 in which X1 varies at each second while X2 has a
significant variation only at the end of 100s. Two solutions
for simulating these two processes in interaction are given:
calculate X1 and X2 at each second, or calculate X1 at
each second and calculate X2 all 100s. The second solution
saves a lot of calculation cost with a light loss of precision,
and gives us a possibility to simulate a large scale system
in a reasonable time [10].

If the calculation of a state variable at a given moment
is regarded as an event then it is possible to apply dis-
crete events simulation methods. It allows us to manage
naturally differences timescale phenomena [9].

In addition, agent-based simulation method does not re-
place traditional method in biological field. It can be com-
bined with equation-based methods because, within an in-
dividual agent, behavioural decisions may be done by equa-
tions evaluation ([11]). The system level behaviour is then
determined by running the equations describing the inter-
actions among agents.

As mentioned by Chauvet in [7], one of the main problem
encountered in the neurosciences is that of extending cur-
rent theory of automata, used in the study of ANN, to real
neural networks. The difficulty arises because automata
theory fails to take into account multiple levels of biological
organization involved in nervous activity [[7]]. Hopefully,
the S-propagator framework from Chauvet G. ([3], [8], [7],
[9], . . . ) is born with ambition to take into account the
hierarchy of these systems.

Now we will summarize some important points in inte-
grative physiology.

B. Neural field equation

In the integrative physiology conceptual frame, an el-
ementary functional interaction is formally defined by a
triplet (source, product, sink) and an equation for a field
variable (the product) driven by a time-space field opera-
tor that describes the action through time and space of the
source on the sink.

Each functional interaction has its own field variable
with its own dynamics, formalized by an equation sum-
ming three terms and referring to source, sink, time and
space in the S-propagators formalism.

*
Pi0[Ψs] = P0ΨsPi

Fig. 1. Graph and Equation describing S-propagator (from Chauvet,
1999)

The first term of the equation describes the local diffu-
sion of the product in the physical space around the source.
The second one is strictly speaking S-propagator, and rep-
resents the non-local interaction due to structural discon-
tinuity. And the third one represents the source, i.e. the
internal local mechanisms that lead to the generation of
the product emitted by the source.

For instance, S-propagator of the nervous tissue activity
can be found at ([8], [7], [9]).

In biological modeling point of view, DEVS (Discrete
Event System Specification) of Zeigler [22], is to our knowl-
edge, the best suited attempt to simulate complex hierar-
chical systems. The next section is dedicated to a brief
presentation of Zeigler’s modeling and simulation theory.

III. DEVS and Agent-based simulation

A. DEVS

DEVS is a formalism introduced by Zeigler in 1976. This
formalism is based on a mathematical object called system,
which can be approximated with an automaton. Basically,
a system is described by a time base, input, state, output
and function for determining the next state and output
for a given state. Two types, atomic and coupled, were
described.

A.1 Atomic model

Fig. 2. Internal structure of atomic models (Uhrmacher 1998)
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Atomic model is the basic element of DEVS, it has the
following structure:

A =< X,Y, S, δint, δext, λ, ta >

• X : input set which is the value of input events;
• Y : set of output value;
• S : set of state;
• δint : internal transition functions. It is used to describe
state transition due to internal events;
• δext : transition functions due to external events;
• λ : output function which generate external events at the
output;
• ta : time advance function;

Similar to finite state automaton, atomic DEVS models’
dynamic behavior is defined by state sets and state transi-
tion and output functions. DEVS distinguishes two type of
events: internal event are time scheduled and handled by
the internal transition function, external event occur upon
the arrival of inputs at the input ports and are handled by
the external transition function.

At any time, the system is in state S. In the absence
of external event, system remains on current state during
the time given by the time advance function ta. On the
contrary, it receives external event X by its input port.
The external transition function δext will then specify how
system changes due to this effect. Then, an event Y which
is generated by output function λ is sent to output port.
Based on current state, value of external event and the one
of time advance function, next state is computed. That
means

On arriving of external event x
Execute the event by external transition func-
tion
Change state
Schedule next internal event

Internal event
Execute output function
Execute internal transition function
Change state
Schedule next internal event
Inform to parent

However, a biological system does not contain only such a
simple component. In fact, it is composed of many complex
components which in turn are constructed by a set of sub-
components organized in many levels. Atomic model is not
suitable to describe such a component. Fortunately, Zeigler
introduced also another one: coupled model.

A.2 Coupled model

In DEVS modeling, complex models are built by coupling
together atomic building blocks, i.e., connecting the ports
of well defined input and output interfaces. Models can be
built in a hierarchical manner, i.e., coupled models again
can serve as components in more complex coupled models
([21], [17]).

Fig. 3. Coupled models

Coupled model has the following structure:

C =< X,Y,N,Md|d ∈ N,EIC,EOC, IC, Select >

• X : set of input ports and values;
• Y : set of output ports and values;
• N : subcomponents list;
• Md : for each d ⊂ N , Md is a component described in
form of atomic model;
• EIC : external input coupling connect external input to
component input;
• EOC : external output coupling connect component out-
put to external output;
• IC : internal coupling connect component output to
component input;
• Select : the tie breaking function to arbitrate the occur-
rence of simultaneous events;

Let us consider a coupling component which consists of
a set of atomic components Md where d ⊂ N . At time
t, an atomic component d is in state Sd since ed (time
passed since the last change state of d). The time dur-
ing which each component d must remain in state Sd if no
external event occurred is tad(Sd). As a result, a compo-
nent d will stay at Sd for σd = tad(Sd) − ed. An inter-
nal event δint is scheduled for the component d at t + σd.
Suppose that ta is the time scheduled for the first inter-
nal event then ta is the smallest value of all tad(Sd), that
means ta = Min{(tad(Sd))/d ⊂ N}. The priority list
Select allows us to choose among various components hav-
ing the same σd. The atomic component chosen, executes
its output function and sends the result to all its influenced.
Then, this component starts the internal transition func-
tion δint, and changes state. We can explore the effects of
an arriving external event on an atomic model in the same
way. These behavioral components are inter-connected to
exchange information through their input/output ports (or
one may use the term detectors and effectors ([13], [15]).
For example, the coupled model G of figure 2 comprises two
atomic models A,C and a coupled model B which consists
of two atomic models B1 and B2.

This type of component can be considered in turn like a
basic element in a larger model. The model is created in a
recurrent way.

Thus, we have chosen DEVS modeling and simulation
approach as the modeling framework. Discrete Event Sys-
tem Specification formalism allows us to express structural
and behavioral features of dynamic systems. DEVS model
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characterizations in terms of events and states make it suit-
able for agent technology and thus suitable for studying
large scale system.

B. Agent-based simulation

Integration of those concepts allows the automatic gen-
eration of a simulator from the model, as defined in the
DEVS formalism. Furthermore, we can reference agent in-
ternal structure as well as reaction rules to DEVS mod-
els. Internal ports are mapped into agent sensors, external
ports are mapped into agents’ effectors. The agent may
order its simulation model to execute primitive actions,
which are mapped into external events understandable by
the DEVS simulation models [19]. The simulation model,
in turn, informs the associated agents about its state and
environment. The lowest level of detailed tasks is known as
primitive actions are executed by DEVS atomic model. All
inferred information, sensory data collected from the simu-
lation will be stored in agent’s memory. The integration of
well-known approaches (DEVS) together with agents gives
us a mean to study dynamics evolution of systems made up
of a number of defined interacting parts in a natural way.

C. Neurons dynamics

The neurons can be considered as a ”black box” model.
We try to describe each process intervening in operation of
this organization by identifying input ports, output ports,
transformation function and transfer function.

Fig. 4. Neuron dynamics

We turn now on reception and emission process of action
potential of neuron u. The neuron u receives a product X
via its synapses. Then, neuron u transforms this product
into others ones. The transformation is continuous. The
last one is then emitted to others neurons via its output
ports.

S-propagator ([8], [3], [10], . . . ) of Chauvet is taken to
describe action potential propagation between two neurons.

We now describe briefly neuron dynamics by S-
propagators. For details information, refer to [10].

C.1 Presynaptic release and diffusion in the synaptic cleft
P1 and P2

A0(r, t) =
{
Am if ψp(r, t) > ψth
0 if ψp(r, t) ≤ ψth

∂Acleft
∂t

(r, s, t) = Dcleft
∂2Acleft
∂s2

(r, s, t)− pAcleft(r, s, t)

C.2 Neural transmitter propagation: Trans-operator P3

and P4 (Postsynaptic binding to the receptor and pas-
sive conduction of the postsynaptic currents)

Trans-operator P3 (Postsynaptic binding to the receptor)

Fig. 5. Functional interaction propagation, Chauvet 2002

dR

dt
(r, t) =

k−4Rd(r, t) + k−1RA(r, t)− (k4 + k1Apost(r, t))R(r, t)

dRd
dt

(r, t) =

k4R(r, t)+k−3RdA(r, t)− (k−4 +k3Apost(r, t))Rd(r, t)

dRA

dt
(r, t) =

k1Apost(r, t)R(r, t) + krRdA(r, t) + kcC(r, t)
−(k−1 + kd + k0)RA(r, t)

dRdA

dt
(r, t) =

k3Apost(r, t)Rd(r, t)+kdRA(r, t)− (k−3 +kr)RdA(r, t)

dC

dt
(r, t) = k0RA(r, t)− kcC(r, t)

Trans-operator P4 (Passive conduction of the postsynap-
tic currents)

Rm(z)Cm(z)∂ψm

∂t (r, z, t) = λ(z)∂
2ψm

∂x2 (r, z, t)
− (ψm(r, z, t)− Vrest) + Rm(z)

2πa(z)Isource(r, z, t)

C.3 The source term Γ

Γ (ψ, t; r) = 1
rmcm

Vs(r, t) +
∑
ions

∆gion

cm
(ψe,ion − ψ(r, t))

Presynaptic release and diffusion in the synaptic cleft is
interpreted as transition function, postsynaptic binding to
the receptor and passive conduction of the postsynaptic
currents as transfer function and the source term as trans-
formation function.

The S-propagator formalism appears as an efficient mean
for representing the hierarchical nature of physiological
phenomena. S-propagators give us a mathematical tool
for mapping from complex biological system to DEVS and
agent-based framework.
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D. Neuron’s behavioral description by DEVS
Each neuron is represented by an atomic DEVS model

in which state variable is neuron’s action potential.

class Neuron {
public:

Input in;
Output out;
StateVar state;

StateVar delta int ()
{

Reset membrane potential value.
}

StateVar void delta ext (event x)
{

Transformation (the source term in the previous section)
Compute membrane potential
Compare with threshold value (P1 and P2)
If it is equal or greater
{

Compute propagation time (P3 and P4)
Create out-msg() with occurrence time equal to propagation

time.
}

}
void lamda(void)

{
Send corresponding product to output port.

}
Time ta()

{
Compute next occurrence time.

}
. . .

}

Adopting the abstract simulator concept of DEVS, the
model is executed by sending typed messages between sim-
ulator agents. Simulators are associated with atomic mod-
els and coordinators with coupled models [19].

We now take a closer look on agent structure.

E. Agent-based simulation

Agent is defined as an ”active object” that is: au-
tonomous, perceptive, pro-active and communicative [20].
Typical agent objects are composed of two parts: an inter-
nal state and behaviour. In brief, agents are implemented
to have internal data representation (memory or state).
They possess means for modifying their internal data rep-
resentation (perception) and for modifying their environ-
ment (behaviour).

This point is illustrated by the following pseudo-code
extracted from [1].

Agent object:
private states:

preferences;
wealth 1; /* private wealth */
. . .

private behavior:
compare choices;
compute internal valuations;
communicate with(Agent i)
draw;
. . .

end.

The external transition function encodes the reaction of
the agent to incoming events in terms of state changes. The
time advance is set to the reaction time, the time an agent
needs to produce its output [19].

Part of the agent’s activities is communicating actions
to other models. The output function takes the first of the
intentions and charges its output ports with effects directed
to the environment [19].

The internal transition completes the activity by updat-
ing the agent’s state [19].

The discrete initiation of events can easily be interpreted
as activities, and the exchange of information via message
passing as the communication between agents ([18]). Ac-
cording to external perturbations (messages), the agent
changes its internal state. Since any component of a biolog-
ical system is modeled by a component in DEVS formalism,
when being referred as an agent then this one possesses all
mathematical methods to show up a behaviour facing to
events received from their environment.

Accordingly, an agent’s ”output” activities are decou-
pled from receiving external events. Both, the perception
of events and the reaction directed to the environment, in-
teract via state and the time advance function. Agent’s
first reaction to external perturbations is a change of its
internal state. For each state, there is a time advance func-
tion associated. It determines the time of the next internal
event and output, e.g., the time an agent needs for reacting
to external perturbation. External events might shorten or
lengthen the time period until the next output, e.g. some
external events might require an agent’s immediate reac-
tion which is achieved by setting the time-advance close to
zero. Besides, modeling the temporal aspect of agent’s re-
action facing to external events, the time-advance function
allows agent proactive behavior to be modeled since out-
puts depend on agent’s current state and are triggered by
time. Thus, an agent does not require any external event
to become and stay active [19].

Running such a model consists of instantiating an agent
population, letting the agents interact, and monitoring
what happens [18]. We have a typical agent-oriented pro-
gram presented by Axtell in [1]:

program typical agent model;
initialize agents;
repeat:

agents interact;
compute statistics:

until done;
end.

Agent-based simulation method does not replace tradi-
tional method in biological field [11]. It can be combined
with equation-based methods because, within an individual
agent, behavioral decisions may be done by the evaluation
of equations. The system level behavior is then determined
by running the equations describing the interactions among
these agents.
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Furthermore, agent-based method is not targeted for a
given physiological system. So we can apply this method
for other problems that have an emergent behaviour pro-
duced by a complex set of connected individual interac-
tions.

IV. Conclusion

The paper presents a generic agent based simulation ap-
proach taking into consideration requirements deemed nec-
essary for agent/simulation architecture. An agent based
simulation environment accepts the simulation model as
its environment. The agent reacts to the events happening
in the simulation environment and further may behave in
proactive ways.

With this proposal, we hope to extend our simulation
model aimed to incorporate Purkinje cell model, as well
as other neurons in the cerebellar cortex to study hip-
pocampus. These models will be closely based upon known
structural and physical properties of this region of the cere-
bellum and will produce neuron-like outputs that can be
compared to data from actual physiological experiments.
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