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A NATURAL AXIOMATIZATION OF COMPUTABILITY
AND PROOF OF CHURCH’S THESIS

NACHUM DERSHOWITZ AND YURI GUREVICH

Abstract. Church’s Thesis asserts that the only numeric functions that can be calculated
by effective means are the recursive ones, which are the same, extensionally, as the Turing-
computable numeric functions. The Abstract State Machine Theorem states that every
classical algorithm is behaviorally equivalent to an abstract state machine. This theorem
presupposes three natural postulates about algorithmic computation. Here, we show that
augmenting those postulates with an additional requirement regarding basic operations gives
a natural axiomatization of computability and a proof of Church’s Thesis, as Gödel and
others suggested may be possible. In a similar way, but with a different set of basic oper-
ations, one can prove Turing’s Thesis, characterizing the effective string functions, and—in
particular—the effectively-computable functions on string representations of numbers.
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We can write down some axioms about computable functions
which most people would agree are evidently true.

It might be possible to prove Church’s Thesis from such axioms.

—Joseph Shoenfield (1993)

§1. Introduction: Effectivity. Church formulated the thesis bearing his
name to address a very fundamental issue in modern logic and mathematics.
1.1. Historical background. In the beginning of the twentieth century,
Hilbert famously introduced fundamental questions of decidability to math-
ematics:

[Problem] 10. Determination of the solvability of a Diophantine
equation. Given a Diophantine equation with any number of un-
known quantities andwith rational integral numerical coefficients:
To devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in
rational integers.1 [44]

TheEntscheidungsproblem [decisionproblem for first-order logic]
is solved when we know a procedure that allows for any given log-
ical expression to decide by finitely many operations its validity or
satisfiability. . . . The Entscheidungsproblem must be considered
the main problem of mathematical logic. . . . The solution of the

1“10. Entscheidung der Lösbarkeit einer Diophantischen Gleichung. Eine Diophantische
Gleichung mit irgend welchen Unbekannten und mit ganzen rationalen Zahlencoefficienten
sei vorgelegt: man soll ein Verfahren angeben, nach welchem sich mittelst einer endlichen
Anzahl von Operationen entscheiden läßt, ob die Gleichung in ganzen rationalen Zahlen
lösbar ist.”
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Entscheidungsproblem is of fundamental significance for the the-
ory of all domains whose propositions could be developed on the
basis of a finite number of axioms.2 [45, p. 73ff.]

Hilbert was looking for well-defined procedures that would solve each
instance of a problem, positively or negatively, by applying a finite number
of operations. He did not have a formal notion of which operations would
be reasonable in this context and which not, but clearly he was looking for
operations that could be carried out by amathematician actingmechanically,
sans ingenuity. “Weassume thatwehave the capacity toname things by signs,
that we can recognize them again. With these signs we can then carry out
operations that are analogous to those of arithmetic and that obey analogous
laws” (Hilbert, quoted in [95]).
With regard to numeric functions, that is, functions from the natural
numbers to the natural numbers,3 Church suggested in 1936 that the recursive
functions, which had been defined by Gödel earlier that decade (based on
a suggestion of Herbrand’s), adequately capture the intended concept of
function computable by a finite procedure.4 He adopted this identification
in the form of a definition of effectiveness, and wrote [23, pp. 346, 356]:

The purpose of the present paper is to propose a definition of
effective calculability which is thought to correspond satisfactorily
to the somewhat vague intuitive notion. . . .
We now define the notion . . . of an effectively calculable function
of positive integers by identifying it with the notion of a recursive
function of positive integers (or of a �-definable function of posi-
tive integers).

Church identified “the commonly used term ‘effectively calculable’” [22,
p. 40] in reference to a function, that is, the existence of “an algorithm” for

2“Das Entscheidungsproblem ist gelöst, wenn man ein Verfahren kennt, das bei einem
vorgelegten logischen Ausdruck durch endlich viele Operationen die Entscheindung über
die Allgemeingültigkeit bzw. Erfüllbarkeit erlaubt. Das Entscheidungsproblem muss als das
Hauptproblem der mathematischen Logik bezeichnet werden. . . . Die Lösung des Entschei-
dungsproblems ist für die Theorie aller Gebiete, deren Sätze überhaupt einer logischen
Entwickelbarkeit aus endlich vielen Axiomen fähig sind, von grundsätzlicher Wichtigkeit.”
3Nowadays (e.g., [82]) it is more common toworkwith the nonnegative integers, including

zero, though in the past (e.g., [23]) it was common to deal only with the positive integers.
The difference is immaterial for discussions of effectiveness of computation.
4Already in 1935, Church thought (in correspondence to Bernays, quoted in [94, p. 155])

that the “results of Kleene [regarding the �-calculus] are so general and the possibilities
of extending them apparently so unlimited that one is led to the conjecture that a formula
can be found to represent any particular constructively defined function of positive integers
whatever.” Kleene is reported [2, p. 185] to have said much later, “I would like to be able to
say that, at the moment of discovering how to lambda define the predecessor function, I got
the idea of Church’s Thesis. But I did not, Church did.” In retrospect, Kleene (see [51, p. 62])
and Rosser (see [84]) felt that the lambda calculus might have been a more appropriate basis
for characterizing effective computability.
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computing the value of that function for any arguments [23, p. 356], with the
specific requirement that there be recursion equations by means of which the
evaluation of the function can be effected. Only with such a formalization
of effectivity in hand could one prove “absolute” undecidability results,
namely, that no algorithmic solution whatsoever exists for some particular
problem—like the Entscheidungsproblem—as Church set out to show in his
papers.
Church was roundly criticized by Post [75, p. 105] for hiding a debatable
formalization of “effective calculability” behind a definition:

The work done by Church and others carries this identification
considerably beyond the working hypothesis stage. But to mask
this identification under a definition hides the fact that a funda-
mental discovery in the limitations of mathematicizing power of
Homo Sapiens has been made and blinds us to the need of its
continual verification.

For Post [76, p. 418], it “is not a matter of mathematical proof but of psy-
chological analysis of the mental processes involved in combinatory mathe-
matical processes”.
Turing, in his seminal 1936 paper [107], analyzed human computation
“from the bottom up”, building complex procedures from themost primitive
of operations on single symbols. He asserted that computation proceeds by
sequential symbol manipulation (“Computing is normally done by writing
certain symbols on paper”), and argued that any such computation can be
mimicked by a symbolic computation with the following characteristics:
• Deterministic behavior: “The behaviour of the [human] computer at
any moment is determined by the symbols which he is observing, and
his ‘state of mind’ at that moment.”
• Finitely many internal states: “If we admitted an infinity of states of
mind, some of them will be ‘arbitrarily close’ and will be confused. . . .
[T]his restriction is not one which seriously affects computation, since
the use of more complicated states of mind can be avoided by writing
more symbols on the tape.”
• A finite symbol space: “If we were to allow an infinity of symbols,
then there would be symbols differing to an arbitrary small extent. The
effect of this restriction of the number of symbols is not very serious.
It is always possible to use sequences of symbols in the place of single
symbols.”
• Finite observability and local action: “Let us imagine the operations
performed by the computer to be split up into ‘simple operations’ which
are so elementary that it is not easy to imagine them further divided. . . .
We may suppose that there is a bound. . . to the number of symbols or
squares which the computer can observe at one moment. If he wishes
to observe more, he must use successive observations.”
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• Linear external memory: “The two-dimensional character of paper is
no essential of computation. I assume then that the computation is
carried out on one-dimensional paper.”

When Church learned of Turing’s work,5 he conceded that Turing’s ma-
chines have “the advantage of making the identification with effectiveness in
the ordinary (not explicitly defined) sense evident immediately” [24, p. 43].
He responded to Post, saying: “To define effectiveness as computability by
an arbitrary machine, subject to restrictions of finiteness, would seem an
adequate representation of the ordinary notion” [25].
A few years later, Kleene, a student of Church, reformulated Church’s
contention that the recursive functions and the effective numeric functions
are one and the same as a “thesis” [48, p. 60], [49, p. 300]:6

[Church’s] Thesis I. Every effectively calculable function (effectively
decidable predicate) is general recursive.

Again, “effective” is meant in the “vague intuitive” sense of computable by
humans acting in an algorithmic fashion. In order to accurately match the
effect of computations, one must allow functions to be partial, as Kleene
subsequently did [49, p. 332]:7

[Church’s] Thesis I†. Every partial function which is effectively cal-
culable (in the sense that there is an algorithm by which its value can
be calculated for every n-tuple belonging to its range of definition)
is . . . partial recursive.8

1.2. Current status. Though Kleene spoke of this thesis as unprovable
(“Since our original notion of effective calculability . . . is a somewhat vague
intuitive one, the thesis cannot be proved” [49, p. 317]), he did present
evidence in its favor [49, Chaps. XII–XIII]. Three main lines of argument
have been adduced in support of Church’s Thesis (already in [49, pp. 319–
323]):
1. In years of experience, all the many effective computational models
that have been investigated (starting with the lambda calculus and
continuing on down to the latest programming languages) have been
shown to compute only partial recursive functions.

5Church was Turing’s official Ph.D. advisor at Princeton.
6The converse, namely, that all recursive functions are effectively computable, is almost

universally held. (Goodstein is an exception [36, n. 29]; Kalmár is not [6, n. 10].) Kleene
claims to have proved this (e.g., [50, p. 300]), though some (e.g., Folina in [31]) contend that
such an argument, inasmuch as it too involves the informal notion of effectiveness, should not
be designated a “proof”. Cf. Gödel’s assertion [38, p. 44] that primitive recursive functions
“can be computed by a finite procedure”.
7“Gödel points out that the precise notion of mechanical procedures is brought out clearly

by machines producing partial rather than general recursive functions.” Reported in [112,
p. 84].
8The omitted word is “potentially”, which is nowadays left unstated but understood.
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2. A vast number of computational models and a multitude of variants,
all yield the exact same class of functions. In particular, Turing [108]
showed that his machines computed the same functions as did the
lambda calculus. “The proposed characterizations of Turing and of
Kleene, as well as those of Church, Post, Markov, and certain others,
were all shown to be equivalent” (Rogers’BasicResult [82, pp. 18–19]).9

3. Turing’s analysis of “the sorts of operations which a human computer
could perform, working according to preassigned instructions” showed
that these can be simulated by his machines [49, p. 321]. Turing [108]
modestly wrote: “The identification of ‘effectively calculable’ functions
with [Turing-] computable functions is possibly more convincing than
an identification with the �-definable or general recursive functions.
For those who take this view the formal proof of equivalence provides
a justification for Church’s calculus, and allows the ‘machines’ which
generate computable functions to be replaced by the more convenient
�-definitions.”

The first, “heuristic” argument is relatively unconvincing (“heuristic” is
Kleene’s word). History is full of examples of delayed discoveries. Aris-
totelian and Newtonian mechanics lasted much longer than the seventy
years that have elapsed since Church proposed identifying effectiveness with
recursiveness, but still those physical theories were eventually found lacking.
As Barendregt writes [2]:

One may wonder why doubting Church’s Thesis is not a com-
pletely academic question. This becomes clear by realizing that
[Skolem in 1923] had introduced the class of primitive recursive
functions that for some time was thought to coincide with that of
the intuitively computable ones. But then [Ackermann in 1928]
showed that there is a function that is intuitively computable but
not primitive recursive.

The empirical second argument, from “confluence” of models, is also
weak, and has been deemed so by Kreisel [58, p. 144] and Mendelson [69,
p. 228, n. 4]. Clearly the notion captured by these equivalent models is a
robust one, but there still could be a class of effective algorithms not captured
by it. As Kreisel [58, p. 144] put it: “What excludes the case of a systematic
error?”
The third argument is by far the strongest, so strong, in fact, thatGödel [39,
p. 168] thought the idea “that this [the recursive functions] really is the correct
definition of mechanical computability was established beyond any doubt
by Turing”.10 For an analysis of Gödel’s opinion in this matter, see [98]; see,

9Even the solution sets of Diophantine equations are exactly the recursively-enumerable
subsets of the integers [67].
10So, too, Bernays in a letter to Church, quoted in [94, p. 169], “[Turing] seems to be very

talented. His concept of computability is very suggestive and his proof of equivalence of this
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also, Gandy [36, p. 72] in this connection. Turing’s analysis was qualitatively
different from those of his predecessors. Soare [104] goes so far as to write:
“It was Turing alone who . . . gave the first convincing formal definition of
a computable function . . . [and] proved that the informal notion coincided
with this formal one” (emphasis in the original). Still, though the grand
sweep of Turing’s argument is overwhelming, there remain weaknesses when
it comes to details. For example, the universality of Turing’s supposition
that “the number of states of mind which need be taken into account is
finite” is debatable. Also, how certain is it that each and every elaborate
data structure used during a computation can be encoded as a string, and
its operations simulated by effective string manipulations? In any event, it is
non-trivial to reduce Turing’s analysis to a few general axioms.
Subsequent models of computation did not add much force to Turing’s
arguments, with the possible exception of Kolmogorov’s model [56, 57],
which, according to Leonid Levin [personal communication],11 was inspired
by an analysis of computation in physical space-time. This model partly
addresses the issue of computations that compute with data other than mere
strings of symbols. But one can only guess at the analysis of computations
that was in Kolmogorov’s head. Kolmogorov machines, and other variants
of the pointer machine, do provide greater fidelity to algorithmic behavior
than do Turing machines; see [10]. But Kolmogorov’s published work does
not delve into philosophical motivations for, or implications of, his model.
In any event, an algorithm need not fit the constraints placed on the states
of Kolmogorov’s machines. (See Section 7.1.)
Hence, it remains of importance to provide a small number of convincing
postulates in support of Church’s Thesis. Indeed, Gödel has been reported
(by Church in a letter to Kleene cited by Davis in [28]) to have believed “that
it might be possible . . . to state a set of axioms which would embody the
generally accepted properties of [effective calculability], and to do something
on that basis”. As explained by Shoenfield (and partially quoted in the
opening tag line) [92, p. 26]:

It may seem that it is impossible to give a proof of Church’s Thesis.
However, this is not necessarily the case. . . . In other words, we
can write down some axioms about computable functions which
most people would agree are evidently true. It might be possible
to prove Church’s Thesis from such axioms. . . . However, despite
strenuous efforts, no one has succeeded in doing this (although
some interesting partial results have been obtained).

Kalmár [46] andRogers [82, p. 20] (and, more recently, Folina [31]) argued
against provability of the thesis, while Gandy [35] and Mendelson [69, 70]

notion with your �-definability gives a stronger conviction of the adequacy of these concepts
for expressing the popular meaning of ‘effective calculability’.”
11Levin was Kolmogorov’s student.
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(along with [88, 90, 60, 94, 6]) argued in favor of the possibility of axioma-
tizing effectivity. Kreisel described the discovery of “evident axioms about
constructive functions” as “one of the really important open problems” [58]
and “one of the more feasible problems at the present time” [59]. We pro-
pose just such an axiomatization of effective computation in the sections
that follow.
For more on the history of Church’s Thesis, see Kleene’s retrospective
[51], the historical remarks of Rosser in [84], and the article by Davis [28];
all three of the authors were students of Church.
1.3. Sketch of axioms. The first issue that needs to be addressed when
axiomatizing effective computation is: What kind of object is a “computa-
tion”? Once we agree that it is some sort of state transition system (Postulate
I in what follows), we need to formalize the appropriate notions of “state”
and of “transition”. To model states, we take the most generic of mathe-
matical objects, namely, logical structures (Postulate II). To ensure that each
transition step is effective, we require only that it not entail an unbounded
amount of exploration of the current state (Postulate III). Finally, we need
to make sure that a computation does not start out with any magical abilities
(Postulate IV). We will demonstrate that under these very natural and gen-
eral hypotheses regarding algorithmic activity, which certainly suffice for the
computation of all recursive functions, the recursiveness of the computed
function is in fact guaranteed.
More precisely, but still informally, the postulates say the following about
algorithms:

I. An algorithm determines a sequence of “computational” states for each
valid input.

II. The states of a computational sequence are structures. And everything is
invariant under isomorphism.

III. The transitions from state to state in computational sequences are gov-
ernable by some fixed, finite description.

IV. Only undeniably computable operations are available in initial states.

Postulates I–III are called the “Sequential Postulates” [42]. They axiom-
atize (deterministic, sequential) algorithms in general, not only those for
computable functions; they apply equally to algorithms dealing with com-
plex numbers, say, as to those for integers only. Postulate IV, which will be
fleshed out later, ensures that an algorithm is not endowed from the out-
set with uncomputable oracles, such as infinite precision operations on real
numbers, or a solvability decider forDiophantine equations. Wewill show in
this paper that Church’s Thesis provably follows from these four postulates.
In the next section, we formulate the three Sequential Postulates rigorously,
motivate each of them, and adduce support for them from the classical lit-
erature. In Section 3, we recall the definition of abstract state machines [41],
and the fact that they emulate any algorithm obeying those postulates [42].
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(See also [80].) These machines will play a central part in our proof. Then,
in Section 4, we turn Church’s Thesis into a precise mathematical statement
and explain why the fact that only the recursive functions can be calculated
by effective means follows provably from our four postulates. In the same
way, as shown in Section 5, it follows that relative effectiveness (modulo
oracles) and relative recursiveness are equivalent.
Church supplied examples to argue that a decision problem in a non-
numerical domain could also “be interpreted as a problem in elementary
number theory”, since properties in other domains “can be described in
number-theoretic terms” [23, p. 345]. Accordingly, in Section 6, we extend
our analysis to deal with such algorithms that manipulate additional objects,
besides numbers, like strings of symbols. There, we formalize what it means
to “be described”, without recourse to any intuitive notion of effectiveness
of encodings. Furthermore, individual steps can be as large as one wishes, as
long as they can be guaranteed to be effective. This analysis, turned around
so that everything is viewed in terms of strings, also yields an axiomatization
and proof of Turing’s Thesis, namely, that every effective string-to-string
(partial) function is Turing-computable.
1.4. Preliminary discussion. Turing’s analysis [107] and its subsequent
generalizations by Post [77] and Kolmogorov [56, 57] are on an informal
level. Gandy [35] was the first to attempt an axiomatization, and was fol-
lowed in this endeavor by Sieg [93, 94, 97, 96, 99, 100]; though their axioms
are formal, they are expressed on the level of a specific representation of
states (namely, hereditarily finite sets). In contrast, our axioms of effective
computation are, at the same time, formal and generic. They are formal in
the sense that they are precise mathematical statements about computation
sequences. Our postulates are generic, in that they are expressed in terms
of computation sequences with arbitrary states and arbitrary programmable
transitions. Each transition corresponds exactly to a single step in a given
algorithmic process. In these ways, our proposed axiomatization improves
upon its predecessors.
All attempts to axiomatize computation inevitably formalize the notion
of state as a mathematical object, and, as such, involve some measure of
abstraction from, and representation of, the physical realities of human or
machine computations. Indeed, science in general is impossible without
modeling. Mathematics, in particular, deals with mathematical objects, not
physical ones. To quote Kleene [53, p. 30]:

Mathematicians deal with idealized systems of objects, obtained
by extrapolating for the purposes of their thought from what peo-
ple encounter in the real world. They imagine the infinite sequence
0, 1, 2, . . . of the natural numbers, and thus get a beautiful theory
with an elegant logical structure, though in actual counting of
discrete objects we can never use more than finitely many of them.
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Regarding the modeling of solvable and unsolvable puzzles, for instance,
Turing wrote [110, p. 11]: “If one wants to treat the problem seriously
and systematically one has to replace the physical puzzle by its mathematical
equivalent.” So the right question is whether our representation goes beyond
what is absolutely necessary for formalization.
One abstraction, one that we inherit from all classical analyses, is that
transitions are discrete (Postulate I). An additional abstraction we make
is that states are structures. Our claim, expressed in the Abstract State
Postulate (Postulate II), is that using structures is the unavoidable, bare
minimum that is necessary for formalizing actual computational states.
There are strong arguments to support this claim. In the first place, the his-
tory of mathematical endeavor is on our side. Long experience supports the
contention that any static mathematical reality can be viewed as a structure,
without resorting to coding, translation, or the like. In this way, ourAbstract
State Postulate allows formal computational states to be as true to reality
as is mathematically feasible. Whatever the states of some algorithmic com-
putation “really” are (e.g., a piece of paper containing geometric drawings),
their reality is faithfully modeled by logical structures, the “least common
denominator” of all of mathematical modeling of static realities. No unnec-
essary properties of the real states (e.g., the thickness of the paper) appear in
the model, nor does the model introduce unneeded and unwanted attributes
(like the length of some particular textual representation of a triangle), as is
invariably the case when objects of one kind are encoded as objects of an-
other kind, be that numbers as strings, strings as graphs, graphs as matrices,
or matrices as nested sets. (Compare the foundational discussion in [14].)
By virtue of the generality of structures, every other model of (sequen-
tial) computation extant in the literature is a special case of ours. As one
would expect, the presentations of state are—from the mathematical point
of view—structures, in every case. Here is a sampling of structures used in
programming languages:

• Traditional arithmetic operates over natural numbers, having a “Pla-
tonic” existence. Numbers are endowed with elementary-school oper-
ations, like addition and multiplication, or with more complex func-
tionality, like primality tests.
• Common Lisp’s arithmetic operates over the infinite set of rational
numbers.
• Counter machines, at the other extreme, make do with very simple,
“neolithic” operations.
• In the classical random access (RAM) model of computation, memory
cells are arbitrary integers and memory content is a dynamic function
with an infinite address domain.
• The states of a pushdown automaton include a stack of symbols and
simple stack operations.
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• The Burroughs B5500 computer had a stack-based architecture with
hardwired stack operations and no programmer-addressable registers.
• In Lisp, nested list expressions are the basic datatype, with primitive
operations for adding and removing elements.
• The basic datatype in APL is arrays, including arrays of arrays. These
objects are endowed with a very rich repertoire of matrix operations.
• Infinite streams are the basis for the lazy programming paradigm used
in languages like Lucid and Haskell.
• Strings, with complex string operations, including matching and con-
catenation, are used for text processing in languages like Snobol and
Perl.
• Plain lambda calculus has lambda terms as its basic objects and �-
reduction as a basic operation.

All of these are straightforward instances of structures, and fit effortlessly
into our framework.
No previous approach has nearly the generality of the one espoused here.
For example, in Turing’s formalism, states are modeled by means of strings;
Kolmogorovmachines are based on labeled graphs; Gandy’s states are hered-
itarily finite sets. But strings, graphs and sets are all distinct from one an-
other and come with very different native operations. Nested sets are not
labeled graphs, nor are labeled graphs, nested sets. Neither can lay claim
to genericity. Hypergraphs, for instance, are not strings, graphs, or sets,
per se.
State structures can be quite intricate, involvingmany types of objects. For
example, a programming language can itself be thought of as an algorithm
(an interpreter) that takes a program as input and executes it on given
data. Its states would comprise a variegated domain and an abundance of
operations. To represent all structures used by programmers in terms only of
strings, or graphs, or sets would require a daunting amount of encoding. In
our setting, however, this poses no problem; witness the detailed structural-
representations of C and Java given in [43] and [105], respectively.
Even algorithms computing purely numeric functions or pure string func-
tions typically involve additional types of objects. So, to define effectiveness
of numerical calculations or of string calculations, one needs to consider the
effectiveness of operations over those auxiliary objects. But to show the ef-
fectiveness of a graph operation by applying standard notions of effectiveness
of strings, say, requires an appeal to intuition in support of the assertion that
the encoding of graphs as strings is effective. (Compare [72, pp. 430–431].)
This is because the encoding does not reside in either a pure string domain or
a pure graph domain, for either of which there is a standard effective model
of computation (Turing machines and Kolmogorov machines, respectively).
Rather, it is a function over a domain with both strings and graphs, for
which there is no direct, formal definition of effectiveness. In Section 6,
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we provide an alternative approach to effectiveness of basic operations over
non-numerical domains, requiring, instead, effectiveness of their numerical
homomorphic images.12

In contradistinction to Turing machines or any other model of compu-
tation with a limited repertoire of basic objects, using structures for states
makes it possible for an abstract state machine to provide a step-for-step em-
ulation of any algorithm, regardless of the complexity of its data structures
and primitive operations.13

These issues are discussed further in the concluding section.

§2. Stepwise effectivity. Church was striving to characterize the numeric
functions that are algorithmically computable. The question is how does one
know that all possible algorithms have been characterized, or as Post already
phrased the problem in 1921 [76]: one needs to capture “all the possible ways
in which the human mind could set up finite processes”.
Rogers, a student of Church’s, starts his classic book [82, pp. 1–2] with
the following elaboration on the informal notion of “effective procedure”
(italics in original):

Roughly speaking, an algorithm is a clerical (i.e., deterministic,
bookkeeping) procedure which can be applied to any of a certain
class of symbolic inputs and which will eventually yield, for each
such input, a corresponding symbolic output. An example of an
algorithm is the usual procedure given in elementary calculus for
differentiating polynomials. . . .
Several features of the informal notion of algorithm appear to
be essential. We describe them in approximate and intuitive terms.
*1. An algorithm is given as a set of instructions of finite size. . . .
*2. There is a computing agent, usually human, which can react to
the instructions and carry out the computation.
*3. There are facilities for making, storing, and retrieving steps in a
computation.

12Barendregt expresses the importance of transparent representations as follows [2,
pp. 188–189]: “Lambda definability was introduced for functions on the set of natural
numbers N. In the resulting mathematical theory of computation (recursion theory) other
domains of input or output have been treated as second class citizens by coding them as
natural numbers. In more practical computer science, algorithms are also directly defined
on other data types like trees or lists. Instead of coding such [inductive] data types as num-
bers one can treat them as first class citizens by coding them directly as lambda terms while
preserving their structure. Indeed, lambda calculus is strong enough to do this. . . .”
13Indeed, the experience of a wide range of abstract state machine applications [20] also

supports this claim: In all cases, it has been possible to specify software faithfully on the
precise proper level of abstraction, without introducing unnecessary details, or divulging in-
ternal details, thereby eliminating unwanted ambiguity, while—at the same time—preserving
any desired ambiguities.
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*4. Let P be a set of instructions as in *1 and L be a computing
agent as in *2. Then L reacts to P in such a way that, for any given
input, the computation is carried out in a discrete stepwise fashion,
without use of continuous methods or analogue devices.
*5. L reacts toP in such a way that a computation is carried forward
deterministically, without resort to random methods or devices, e.g.,
dice.
Virtually all mathematicians would agree that features *1 to *5,
although inexactly stated, are inherent in the idea of algorithm.

Rogers also goes on to say [82, p. 4] that there should be a “fixed finite
bound on the capacity” of the agentL, which would necessitateL’s using the
unlimited memory resource, alluded to in *3, to “keep track of . . . progress”
in the computation and remember “one’s place” in the program. In what
follows, we formalize these considerations of finite programand computation
that is stepwise-bounded and deterministic—without delineating the rôles
of program P and agent L. We base ourselves on the formalization of [42],
while elaborating and refining aspects that are important from the point of
view of effectiveness.
2.1. Sequentiality. We begin by characterizing computations, in general.
Computation, as opposed to the behavior of a physical process, is usually
conceived of as a sequence of discrete computational steps.14

This is what Kolmogorov presumably had in mind when he presented his
view of algorithms in 1953 [56]:15

We start with the following obvious ideas concerning algorithms:
(1) An algorithm Γ being applied to any “input” (= “initial
state”) A which belongs to some set (the “domain” of the
algorithm) gives a “solution” (= “final state”) B .

14Turing was explicitly interested in formalizing “discrete” machines, not continuous pro-
cesses [109]: “The nervous system is certainly not a discrete-state machine. A small error
in the information about the size of a nervous impulse impinging on a neuron, may make a
large difference to the size of the outgoing impulse. It may be argued that, this being so, one
cannot expect to be able to mimic the behaviour of the nervous system with a discrete-state
system. It is true that a discrete-state machine must be different from a continuous machine.
But if we adhere to the conditions of the imitation game, the interrogator will not be able to
take any advantage of this difference.” The first attempt, as far as we know, at characterizing
analogue computation is [72].
15Cf. Knuth in 1966 [54]: “Algorithms are concepts which have existence apart from

any programming language. . . . I believe algorithms were present long before Turing et al.
formulated them, just as the concept of the number ‘two’ was in existence long before the
writers of first grade textbooks and other mathematical logicians gave it a certain precise
definition. . . . A computational method comprises a set Q (finite or infinite) of ‘states’,
containing a subset X of ‘inputs’ and a subset Y of ‘outputs’; and a function F from Q into
itself. (These quantities are usually also restricted to be finitely definable, in some sense that
corresponds to what human beings can comprehend.) . . . In this way we can divorce abstract
algorithms from particular programs that represent them.”
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(2) An algorithmic process splits into separate steps of limited
complexity; each step consists of an “immediate transforma-
tion” of the state S obtained up to this moment into the state
S∗ = ΩΓ(S).

(3) The process transforming A0 = A into A1 = ΩΓ(A0), then
A1 into A2 = ΩΓ(A1), then A2 into A3 = ΩΓ(A2), etc. is
continued until the next step is impossible (i.e., the operator
ΩΓ is undefined on the current state) or a signal indicating
the appearance of the “solution” is received. It is possible,
however, that this process of transformations would never
stop (if we get no signal at all).

(4) The immediate transformation of S into S∗ = ΩΓ(S) is based
only on information about the limited “active part” of S and
affects this part only.

Much earlier, in 1922, Behmann [4, p. 166] expressed the stepwise nature
of algorithmic activity by saying (cited in [113]):16

A completely determined general [set of] instructions shall be
exhibited, according to which the correctness or falsity of an ar-
bitrary given claim, which can be formulated with purely logical
means, can be decided after a finite number of steps.

This is also what Kleene envisioned when he wrote [53, pp. 16–17] (emphasis
in the original):

Such a method is given by a set of rules or instructions, describing
a [decision] procedure that works as follows. After the procedure
has been described, if we select any question from the class, the
procedure will then tell us how to perform successive steps, so
that after a finite number of them we will have the answer to the
question selected. . . . After our performing any step to which the
procedure has led us, the rules or instructions will either enable us
to recognize that now we have the answer before us and read it off,
or else that we do not yet have the answer before us, in which case
they will tell us what steps to perform next.

Furthermore, we view computation as proceeding deterministically, “leav-
ing no place to arbitrariness” [66, p. 1]. As Rosser, also a student of Church,
puts it [83]:

“Effective method” is used here in the rather special sense of a
method each step of which is precisely determined and which is
certain to produce the answer in a finite number of steps. . . . An
effective method of solving certain sets of problems exists if one

16“Es soll eine ganz bestimmte allgemeine Vorschrift angegeben werden, die über die
Richtigkeit oder Falschheit einer beliebig vorgelegtenmit rein logischenMitteln darstellbaren
Behauptung nach einer endlichen Anzahl von Schritten zu entscheiden gestattet.”
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can build a machine which will then solve any problem of the set
with no human intervention beyond inserting the question and
(later) reading the answer.

Shoenfield adds [91, p. 107], “A method must be mechanical. . . . Methods
which involve chance procedures are excluded; . . . methods which involve
magic are excluded; . . . methods which require insight are excluded.”
Computations may, therefore, be formalized as a (deterministic) state-
transition system, comprising a set of states S, a subset I of which are initial,
and a (typically partial) transition function � on states, which determines
the next-state relation. States with no “next” state, namely, {� ∈ S |
¬ ∃ �.� � �}, will be, for us, terminal states.
Remark 2.1. ForKolmogorov [56], terminal states somehow“signal” their
appearance. In the original definition of abstract state machines [41], the
transition function is always total; intuitively terminal states are their own
next state. Since we are interested in the output of algorithms, we distinguish
between a terminal state that marks the end of a computational sequence,
and a non-terminating state that may be its own next state.

This understanding of computation as proceeding in discrete steps is en-
capsulated as follows:

Postulate I (Sequential time). An algorithm is a state-transition system.
Its transitions are partial functions.

Continuous (analogue) processes, transfinite computation sequences (in-
volving limits) [78, 40], nondeterministic transitions, and nonprocedural
input-output specifications are thereby excluded from consideration.
Classical algorithms, of the sort Church was considering, never leave room
for choices. For example, though segments of the evaluation of recursive
functions could, in principle, proceed in a nondeterministic fashion, or even
in parallel, when it came down to specifying their computation, a particular
order was always fixed in advance. Thus, Rogers [82, p. 7] writes, “We obtain
the computation uniquely by working from the inside out and from left to
right” (and, similarly, in [48, p. 45] and [91, p. 109]). Classical algorithms
also do not involve any sort of interaction with the environment to determine
the next step. For this reason, we are justified in restricting our attention to
fully deterministic algorithms.

Remark 2.2. Moschovakis [73, p. 919] claims that “algorithms are recur-
sive definitions while machines model implementations, a special kind of
algorithms”. We beg to differ. Algorithms, for us, are deterministic tran-
sition systems. This traditional viewpoint is in accord with that of most
students of computability—including those quoted above—and that of vir-
tually all computer scientists and engineers. Besides, recursive definitions by
themselves are open to more than one interpretation. Most programming
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languages in fact use an eager evaluation strategy and compute a function
that is, in general, less defined than the least fixed point. Recursive definition
have, besides their least fixed-point solution, a unique “optimal” (maximally
consistent) fixed point [65], which (though not necessarily computable) is,
in general, more defined than the least fixed point and could also be taken
as the intended semantics of the definition. Even after specifying that the
least fixed point is what is meant, as Moschovakis does, there is much room
for algorithmic variation. There can be significant algorithmic distinctions
and performance differences between reasonable methods of computing that
least fixed point, such as “call by name” and “call by need”. So, for us
(see [8]), recursion equations are a partial specification of desired properties
of the algorithm in question, not the algorithm itself. Nevertheless, if one
does acceptMoschovakis’s point of view, then it is the various “implementa-
tions” of such recursive definitions that we have set out to characterize here.
In [8], it is argued that such a machine-independent implementation does
not reduce the level of abstraction; in [7], it is argued that there is no “one
size fits all” notion of equivalence between algorithms—or between faithful
implementations of recursive definitions.

Remark 2.3. Though Turing’s (human) computers operate deterministi-
cally when computing functions, he did envision choice-machines, which wait
for an “arbitrary choice . . . by an external operator” before continuing (in
an exploration of proofs, say). The Sequential Postulates have been adapted
to admit the essential use of nondeterminism, as in modern distributed com-
putations; see [11, 12, 13] for an in-depth treatment.

2.2. Abstractness. Specificmodels of computation workwith specific data
structures. For example, Turing designed a model that works with tapes,
though he explained why such a one-dimensional medium suffices for what
is normally carried out by people in two dimensions [107]: “I think that it
will be agreed that the two-dimensional character of paper is no essential of
computation.” Kolmogorov–Uspensky’s model [57], and later variants of
the “pointer machine” (e.g., [85]), use graphs as a more free-form represen-
tation of state. Gandy [35] suggests hereditarily finite sets as a generic data
structure for the same purpose.
Since we are interested here in characterizing arbitrary algorithms, we
ought not limit the form of states a priori. Accordingly, we let the states
of state-transition systems be first-order structures with equality [106], first-
order structures being the most general thing mathematicians have in their
arsenal for representing discrete states. It will simplifymatters if the relations
(predicates) of a first-order structure are viewed as their characteristic, truth-
valued functions, but this is merely a matter of convenience.
Structures, like our states, whose vocabulary does not include relation
symbols are called algebras (in the universal algebra sense). We shall refer
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to state-transition systems with algebraic states as abstract transition systems
(ATSs).

Remark 2.4. If one chooses to forego the convenience of dealing with al-
gebras and work with states that are classical structures, with relations as
well as functions, then Boolean truth values and Boolean connectives need
not be an integral part of states. Instead, the semantics of Boolean op-
erations could be imparted by the “outside world”, whereas here Boolean
operations are an integral part of states. Cf. Remark 3.3. Both the logi-
cal structure-based approach and the programming-oriented algebra-based
approach yield precisely the same results on effectivity. The differences are
purely æsthetic.

As already indicated in Section 1.4, the justification for postulating that
structures or algebras are appropriate for capturing algorithmic states is
the enormous experience of mathematicians who have faithfully and trans-
parently presented every kind of static mathematical reality as a first-order
structure.
The reader should not be misled by the modifier “first-order”: Should
an algorithm make use of sets and/or higher-order functions, then sets and
functions should be incorporated in the domain (a.k.a. base set, universe,
underlying set, or carrier) of the structure, and the appropriate “higher”
operations can be included in the “first-order” structure.
We assume, furthermore, that the classes of states and initial states are
closed under isomorphism, and that transitions commute with isomor-
phisms, so that isomorphic states transition to isomorphic states. Closure
under isomorphism is justified by the intention that all essential information
about a state be given by the basic functions, as is usual in logic and algebra.
The individual nature of elements is unimportant; therefore, structures are
mere representations of isomorphism types. There should be nomore reality
to a domain element than what is observable from the structure.
This isomorphism constraint is what makes states “abstract”. It reflects
the fact that an ATS works at a fixed level of abstraction, and “lower-level”
representations do not matter. The relevance of insisting on closure under
isomorphism was underscored by Gandy [35, p. 128]. For more discussion,
see [42, Sect. 4.6].
All states of an algorithm should share the same fixed vocabulary. Fur-
thermore, transitions do not change the underlying domain. Whatever
vocabulary or domain elements may possibly be needed at some point in
a computation are included from the outset. Since, as we will see in the
next subsection, algorithms are finitely describable, we may assume that the
vocabulary is finite. See [42, Sect. 4.4–4.5] for more detailed considerations.
Usually, the states of an ATS include some static functions that are present
in initial states and are never changed by transitions. In particular, equality
and the Boolean operations are always static and inviolate. The values
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(interpretation) of any other (“defined”) functions, however, are dynamic
and may change from state to state. But in any case, all the functions of a
state are total, formally speaking.
Since a state is a structure, it “holds” a value for each function in its
vocabulary, applied to every possible combination of domain values. A
specific location in a state α is given by a function symbol f from the
vocabulary of α and by a tuple (a1, . . . , an) of elements of the domain
Dom α of α, where n is the arity off. Letfα signify the interpretation off
in state α. The value stored at location f(a1, . . . , an) is just fα(a1, . . . , an).
In this way, every state α assigns a value [[t]]α ∈ Dom α to each (ground,
that is, variable-free) term t over its vocabulary.
A domain might use a particular element to signify a singularity, or that
the arguments in question are for all practical purposes invalid, or that its
value has not yet been ascertained. For example, a state might contain the
datum, 3/0 = ⊥, where ⊥ is some particular domain element, to indicate
that the result of division by zero is undefined, and has no numerical value.17

Remark 2.5. Following [42], we will henceforth assume that the domain
of states includes an undefined value, ⊥, for this purpose. This is a mere
convenience; it is not an essential ingredient of abstract states.

Of course, each state must contain all the data required by the algorithm
for making the next step. As Turing [107, pp. 232, 253–254] explains:

At any stage of the motion of the machine, the number of the
scanned square, the complete sequence of all symbols on the tape,
and the m-configuration will be said to describe the complete con-
figuration at that stage. . . .
It is always possible for the computer to break off from his work,
to go away and forget all about it, and later to come back and go
on with it. If he does this he must leave a note of instructions
(written in some standard form) explaining how the work is to be
continued. This note is the counterpart of the “state of mind”. We
will suppose that the computer works by such a desultory manner
that he never does more than one step at a sitting. The note of
instructions must enable him to carry out one step and write the
next note.

So, to completely characterize the intermediate status of a Turing ma-
chine computation, while the computer is “out to lunch”, the abstract state
should include the condition of the control (Turing’s “state of mind” or “m-
configuration”), the complete contents of the tape, and the position of the
read/write head (what is called, nowadays, the “instantaneous description”
of an intermediate state of the machine).

17A non-terminating computation (denoted ⊥ in some other contexts) is something alto-
gether different, and corresponds to an infinite sequence of transitions.
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To sum up, we have:

Postulate II (Abstract state). States are structures, sharing the same
fixed, finite vocabulary. States and initial states are closed under isomor-
phism. Transitions preserve the domain, and transitions and isomorphisms
commute.

Since transitions do not change the vocabulary or the domain, it is only
the interpretation that a state gives to the symbols in its vocabulary that
changes from state to state.
Commutation here means that whenever there is a transition α � α′
and an isomorphism � from α to another state � = �(α), then there must
also be a transition � � � ′ from � to the corresponding isomorphic image
� ′ = �(α′) of α′. It follows that terminal states are also closed under
isomorphisms.
Infinitary operations, like taking limits, are excluded, since the vocabulary
is first-order, but—then again—operations that are not finitary cannot be
expected tobe evaluatable in a single algorithmic step. As alreadymentioned,
algorithms working with higher-order structures are not precluded, since
the domain may include sets and higher-order functions. Similarly, one can
have a limit operator operating on a whole sequence as a unity, along with
operations for building sequences provided as part of the state.
Note that we are not saying that the states of an algorithm can be somehow
“encoded” as (isomorphism-closed) structures. Rather, we are postulating
that, once formalized, states are essentially structures—whether or not the
author of the algorithm conceived of them that way. In other words, there
is always a set of relevant objects (which is the domain), and the salient
characteristics of the state are in fact relations or functions over those objects.
Post, according to his own testimony in [76, pp. 420, 426–429], had the
following intuitions about abstract representations of computational states
in 1922:

We are . . . to regard our symbols as without properties except
that of permanence, distinguishability and that of being part of
certain symbol-complexes.
We . . . give what is at least a first approximation to a definitive
solution of the difficulty of finding a natural normal form for
symbolic representation. . . .
We . . . assume [symbolic representations] to be finite and we
might say discrete. . . . Each symbolization can be considered to
consist of a finite number of unanalysable parts (unanalysable
from the standpoint of the symbolization) these parts having cer-
tain properties and certain relations with each other. . . . The ways
in which these parts can be related will be assumed to be specified
for the whole system of symbolizations. . . . The number of these
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elementary properties and relations used is finite and . . . there is
a certain specific finite number of elements in each relation. . . .
The symbol-complexes are completely determined by specifying
all the properties and relations of [their] parts. . . . Each complex
of the system can be completely described [by a conjunction of
relations]. . . .
Due to discreteness and finiteness we would thus have a finite
sequence of symbol-complexes representing the various stages in
the method.

Post is asserting here that computational states are completely determined
by the relations of a first-order structure.18

2.3. Boundedness. So far, nothing we have said guarantees that the behav-
ior of a transition system is effective. For effectivity, it must be possible to
express the rules for going from state to state in some finite fashion. Kleene
stresses this point repeatedly:

An algorithm in our sense must be fully and finitely described
before any particular question to which it is applied is selected.
When the question has been selected, all steps must then be pre-
determined and performable without any exercise of ingenuity
or mathematical invention by the person doing the computing.
[50, pp. 240–241n.]

The notion of an “effective calculation procedure” or “algorithm”
(for which I believe Church’s thesis) involves its being possible
to convey a complete description of the effective procedure or
algorithm by a finite communication, in advance of performing
computations in accordance with it. [52, p. 493]

An algorithm is a finitely described procedure. . . . In performing
the steps, we simply follow the instructions like robots; no ingenu-
ity or mathematical invention is required of us. Such methods as
I have described . . . have been called “algorithms”. [53, p. 17]

Turing analyzed the need for transitions to depend on only a finite segment
of the state, for his model, as follows [107, Sect. 9]:

The behaviour of the computer at any moment is determined by
the symbols which he is observing and his “state of mind” at that
moment. We may suppose that there is a bound B to the number
of symbols or squares which the computer can observe at one
moment. If he wishes to observe more, he must use successive
observations. We will also suppose that the number of states of
mind which need be taken into account is finite. The reasons for

18The idea of providing the basic operations of recursively-defined functions over arbitrary
domains by means of a logical structure also appears in [62].
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this are of the same character as those which restrict the number
of symbols.

This finiteness requirement is expressed in more general terms by Kol-
mogorov and Uspensky [57, pp. 6, 16]:

The mathematical notion of Algorithm has to preserve two prop-
erties. . . .
1. The computational operations are carried out in discrete
steps, where every step only uses a bounded part of the results
of all preceding operations.
2. The unboundedness of memory is only quantitative: i.e., we
allow an unbounded number of elements to be accumulated, but
they are drawn from a finite set of types, and the relations that
connect them have limited complexity. . . .
It seems plausible to us that an arbitrary algorithmic process
satisfies our definition of algorithms. We would like to emphasize
that we are talking not about a reduction of an arbitrary algorithm
to an algorithm in the sense of our definition, but that every
algorithm essentially satisfies the proposed definition.

To achieve this for arbitrary abstract transition systems, we demand the
following:

Postulate III (Bounded exploration). Transitions are determined by a
fixed finite “glossary” of “critical” terms. That is, there exists some finite
set of (variable-free) terms over the vocabulary of the states, such that states
that agree on the values of these glossary terms, also agree on all next-step
state changes.

Algorithms, by their nature, explain how to update states by manipulating
values stored at locations in the current state. For an algorithm to refer
to a particular location f(a1, . . . , an), it needs to specify the function f,
and also to identify each of the arguments ai . But how can the algorithm
specify domain elements ai in an abstract state? It can indirectly, bymeans of
locations. So, in the final analysis, terms provide a perfectly general means of
specifying locations and elements of states. Each critical term f(t1, . . . , tn)
“points” to the location f(a1, . . . , an), containing fα(a1, . . . , an), where
ai = [[ti ]]α is the value of the term ti in state α. Thus, this postulate
means that only a bounded number of locations need to be explored for the
algorithm to make a transition. Needing only a bounded number of critical
terms corresponds exactly to the ability to describe finitely how transitions
are effected, whatever the language or format of description. Additional
arguments in support of this postulate may be found in [42].
By an update, we will mean a triple, written as an “assignment”f(ā) := b,
indicating that the value b is to be assigned to location f(ā), changing the
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graph of function f. Let

∆(α) = {f(ā) := b | α � α′, f ∈ F , ai ∈ Dom α,fα(ā) �= fα′(ā) = b},
be the set of updates that transpire in a transition out of α. Bounded
exploration demands that whenever [[t]]α = [[t]]� holds for all critical terms
t in the glossary, then either α and � are both terminal states, or else
∆(α) = ∆(�), meaning that they both change in the same way.19 Together
with isomorphism preservation of transitions (Postulate II), the equality of
the ∆’s implies that any updated value b in ∆(α) is the interpretation of one
of the critical terms in the glossary [42, Lemma 6.2]. Bounded exploration
is what ensures that the step-by-step behavior of the procedure is effective,
since it implies that the algorithm can be described by a finite text [42], as
we will see in the next section.
Infinite programs, as well as individual steps that require examination of
unboundedly many locations within states, or which update unboundedly
many values in one fell swoop, are precluded by this postulate. To the extent
that an unbounded operation is effective on account of its having a bounded
schematic description, that schema should be incorporated in the state itself.
For example, a transition cannot be governed by an “instruction” like

n := 23
···n
,

as it refers to unboundedly many terms (depending on the value of n). One
would need, instead, a new operation for such an exponential tower. Nor
can the transition be something like

n := 3 ↑↑ · · · ↑︸ ︷︷ ︸
n times

n,

where the arrow is Knuth’s “uparrow” notation for iterated operations.20

This instruction is also unbounded, as it is really a schema for infinitely
many conditional assignments, each involving a different operation:

...
if n = 2 then n := 3 ↑↑ 2
if n = 3 then n := 3 ↑↑↑ 3
if n = 4 then n := 3 ↑↑↑↑ 4
...

Toobtain the equivalent effectwould require some formof iteration involving
a long sequence of state transitions, or a new ternary operation a ↑n b.
Similarly, a bounded quantifier, like ∃ i<n.f(i)=f(n), which refers to an
19This definition of Bounded Exploration takes into account the possibility of the transi-

tion function being partial, along the lines of [11].
20A single ↑ is ordinary exponentiation, ↑↑ is tetration (repeated exponentiation), ↑↑↑ is

“pentration” (repeated tetration), and so on.
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unbounded number of values of f, is actually an operation in its own right,
taking the predicate � i,n.f(i)=f(n) as an argument.
As explained in the previous subsection, each abstract state is meant to
explicitly incorporate all information needed for the continuation of the com-
putation from that point on. To determine the next state only a bounded
amount of that information needs to be explored. With Bounded Explo-
ration, an algorithm computes in “steps of limited complexity”, as demanded
by Kolmogorov [56] (quoted above). This postulate, thereby, goes straight
to the heart of Kolmogorov’s implicit question: What does it mean to bound
the complexity of each individual step?

§3. Abstract state machines. An abstract state machine, or ASM, is a
state-transition system in which algebraic states store the values of func-
tions, in other words, their “graphs”, and each transition updates a finite
number of locations of the current state. Transitions are programmed using
a convenient language based on guarded commands for updating individual
locations in states. ASMs capture the notion that each step of an algorithm
performs a bounded amount of work, whatever domain it operates over, so
are central to our development.

Definition 3.1 (ASM [42]). An abstract state machine (ASM) is given
by:21

• a set (or proper class)22 S of algebraic states, closedunder isomorphism,
sharing a vocabulary F ,
• a set (or proper class) I ⊆ S of initial states, closed under isomorphism,
and
• a program P, consisting of finitely many commands, each taking the
form of a guarded assignment

if p then t := u,

for terms t and u over F and conjunction p of equalities and disequal-
ities between terms.

At each step of a computation, all assignments in P whose guards hold true
in the current state are executed in parallel so as to give the next state. More
precisely, given a state α ∈ S, program P defines the following set ∆+(α) of
updates:{

f([[s̄]]α) := [[u]]α
∣∣ (if p then f(s̄) := u) ∈ P, [[p]]α = True},

21What is defined here is what are called “small-step” (or “sequential”) ASMs, but since
that is the only kind of ASM used in this paper, the modifier “small-step” will be omitted. A
richer and more liberal language for small-step ASMs is provided in [42], but the simplistic
form given here suffices for our purposes.
22See [42, fn. 2]
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where True is Boolean truth and the valuation given by state α is extended
to tuples s̄ in the obvious way. A set of updates is inconsistent if it contains
two updates, f(ā) := b and f(ā) := b′, with b �= b′. If ∆+(α) is empty or if
it is inconsistent, then α is a terminal state. Otherwise, α has a next state α′,
with the same vocabulary and domain as α, and with its valuations updated
as follows:

fα′(ā) =

{
b if (f(ā) := b) ∈ ∆+(α),
fα(ā) otherwise.

Remark 3.2. In [42], there was no need to deal with the output of algo-
rithms, so there was no need to single out terminal states. Since we need
to do just that here, we have slightly modified the behavior of ASMs, so
that a state α has no next state when an ASM performs no updates (rather
than have α also be the next state, as in [42]). On the other hand, when
there are only trivial updates, assigning the same value to each location as it
already has, the result is an infinite, nonterminating computation. Despite
this minor difference (which is but a small part of the ASM enhancements
made in [11, 12, 13]), the proof in [42] of Theorem 3.4 below goes through.

Remark 3.3. Note that guards are essentially propositional formulæ. If
one prefers to view states as traditional structures, having both functions and
relations, then one needs to extend the valuation provided by states to also
give propositional formulæ their usual meaning. From this more traditional
viewpoint, truth values and propositional connectives need not be an actual
part of states, but get their meaning from the “outside”.

Obviously, everyASM satisfies the three postulates of the previous section,
collectively referred to as the Sequential Postulates. Moreover, any process
that satisfies the Sequential Postulates provably behaves just like some ASM:

Theorem 3.4 (ASM Theorem [42]). For every process satisfying the Se-
quential Postulates, there is an abstract state machine in the same vocabulary
(and with the same sets of states and initial states) that emulates it.
We use the term “emulate” for step-by-step simulation.23 The proof is
based in large part on the ability to use critical terms to express all transitions
of abstract states.
This emulation is effective, in that the abstract state machine provides an
effective means of computing each state of a computation sequence from its
predecessor, provided the latter is finitely representable. So, whenever initial
states can be represented effectively—a notion that will be axiomatized in
Sections 4 and 6—the whole computation becomes effective.

23“Emulate. To duplicate the functions of one system with a different system, so that
the second system appears to behave like the first system.” American National Standards
Institute [1].
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Methods satisfying the Sequential Postulates include: (1) the classical al-
gorithm for greatest common divisor—whichEuclid applied to both rational
and irrational values, and which can be applied more generally to Euclidean
rings; (2) the ancient “rectangular array” method for solving linear equa-
tions (from the two-millennia old Chinese classic, Jiuzhang suanshu [47]);
and (3) the very similar method of Gaussian elimination, even when the field
(or division ring) over which it is applied is unspecified. On the other hand,
the postulates exclude underspecified methods (like, “Guess a solution to a
system of linear equalities”), and non-algorithms (“Try all numbers to see
whether or not there is a solution to a system of linear equalities” or “. . . to
a Diophantine equation”). They are also meant to exclude nondeterministic
methods (like “pivot on any non-zero element”), randomized algorithms
(like multiplying by a random matrix prior to performing Gaussian elimi-
nation), probabilistic methods (like Rabin’s algorithm for testing primality),
modern distributed processes (like Internet routing), or massively parallel
DNA computations (for the traveling salesman problem, say).24

Up to this point, we have established conditions under which an algorithm
is effective to the extent that the operations in the initial state are. In addition,
it is universally required that states have constructive representation. “We
are”, Kleenewrites [52, p. 493], “dealingwith discrete objects (the arguments
and the result included) – it is digital, not analog, computing.” Uspensky
and Semenov [111, p. 9] write that, “We insist . . . that algorithms can deal
directly only with constructive objects but not with finite objects not being
constructive ones.”
As Knuth writes [55, p. 6]:
An algorithm is also generally expected to be effective. This means
that all of the operations to be performed in the algorithmmust be
sufficiently basic that they can in principle be done exactly and in
a finite length of time by a man using pencil and paper. [Euclid’s
Algorithm] uses only the operations of dividing one positive inte-
ger by another, testing if an integer is zero, and setting the value of
one variable equal to the value of another. These operations are
effective, because integers can be represented on paper in a finite
manner, and because there is at least one method (the “division
algorithm”) for dividing one by another. But the same opera-
tions would not be effective if the values involved were arbitrary
real numbers specified by an infinite decimal expansion, nor if the
values were lengths of physical line segments (which cannot be
specified exactly).

Indeed, if all initial states of an ATS are finitely-representable objects,
then Bounded Exploration ensures that all subsequent states also are, and

24Large classes of such non-classical algorithms are covered by the generalizations of the
ASM Theorem in [9, 13, 16, 37].
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theASM formalism effectively computes the ensuing sequence of states, until
a terminal state is obtained—if ever. But, the Sequential Postulates do not, in
and of themselves, guarantee that an algorithm computes a computable func-
tion, since they allow initial states to be pre-endowed with non-computable
functionalities (something that can be necessary for general algorithms,
which may operate over domains like the real line or a Hilbert space).
This issue is taken up next.

§4. Arithmetical effectivity. Since we are interested in the computation of
functions, we may suppose that the vocabulary of an ATS includes (nullary)
symbols Out for the output and In1, . . . , Inn, for n ≥ 0 input values. (Con-
stants are treated as nullary functions.)25 Furthermore, we should insist
that there is exactly one initial state, up to isomorphism, for each n-tuple of
input values. An ATS operating over a domain D may be said to compute
the following function:

{([[In1]]α, . . . , [[Inn]]α) �→ [[Out]]� | α ∈ I, � ∈ O,α �∗ �},
where I and O are the sets of initial and terminal states with domain D,
respectively, and�∗ is the reflexive-transitive closure of its transition func-
tion �. This input-output relation is a partial function over D, since
α �∗ � ∈ O is a partial function, by virtue of � being undefined for
terminal states.

Remark 4.1. It is often convenient to distinguish between successful and
unsuccessful termination of algorithms. So, it is natural to declare that
a terminal state in which the value of Out is ⊥ constitutes failure, while
obtaining a defined value for the output is deemed a success. This distinction
is of no consequence in the development that follows.

Church was interested in formalizing numerical algorithms, that is, al-
gorithms that apply arithmetic operations to the natural numbers. So we
should endow our states with basic arithmetic abilities.
4.1. Arithmetical states. The choice of basic functions is somewhat flex-
ible, as we will see. But the standard “grade school” operations are what
one typically has in mind. Menabrea,26 in his 1842 description of Babbage’s
Analytical Engine, wrote [68]:

We must limit ourselves to admitting that the first four opera-
tions of arithmetic, that is addition, subtraction, multiplication
and division, can be performed in a direct manner through the
intervention of the machine. The machine is thence capable of

25Neither constants, nor functions, are guaranteed to maintain their values, because their
value may vary from state to state, which is what would make it awkward were we to talk
about “variable constants”.
26Luigi Federico Menabrea, an engineer, later became prime minister of Italy.
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performing every species of numerical calculation, for all such cal-
culations ultimately resolve themselves into the four operations we
have just named.

Babbage’s design also included a conditional branch on zero; see, for exam-
ple, [36].

Definition 4.2 (Arithmetical state). Up to isomorphism, an arithmetical
state is as follows: Its domain includes the natural numbers N, as well as
the two (distinct) Boolean truth values, True and False, and some (other)
distinguished value⊥ signifying “undefined”. Its operations include some or
all of the “grade school” operations of arithmetic, namely, zero (0), successor
(+ 1), addition (+), subtraction (−), multiplication (·), integer quotient (÷,
which ignores any remainder), equality (=), and inequality (>), as well as
logical constants and standard operations for the Booleans. Besides symbols
for all these operations, the vocabulary of an arithmetical state may also have
various symbols for dynamic functions.

So that these arithmetic functions are all total, we let m − n = 0 when
n > m (this is “proper” or “natural” subtraction for the natural numbers)
and let n ÷ 0 = ⊥ for all n. Arithmetic and Boolean operations are “typed”
and “strict”, so applying an arithmetic operation to a non-number or a
Boolean operation to anything but truth values results in ⊥.
Dynamic operations act as “variables” in the programming sense; their
values may be updated by the algorithm in the course of a computation.
When all dynamic operations in a state, other than the inputs Ini , are com-
pletely undefined—that is, are assigned the value ⊥ for all arguments—we
say that the state is blank. This will be the case initially.
To capture the fact that Church’s Thesis is dealing specifically with numer-
ical calculations, we need the following additional postulate:
Postulate IV (Arithmetical state). Initial states are arithmetical and
blank. Up to isomorphism, all initial states share the same static operations,
and there is exactly one initial state for any given input values.
This postulate will be considerably weakened in Section 6 to allow richer
domains than the purely numeric.
4.2. Arithmetical machines. Our goal is to characterize everything that is
effectively computable, starting with arithmetical states. Accordingly, we are
interested in the following class of machines:

Definition 4.3 (Arithmetical ASM). An arithmetical ASM is an ASM
satisfying the Arithmetical State Postulate (IV).

To begin with, since transitions do not change the domain, vocabulary, or
static operations, we obviously have the following:
Proposition 4.4. All states of an arithmetical ASM are arithmetical.
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The following characterization is the main point of this section:
Theorem 4.5. A numeric function is partial recursive if and only if it is
computable by an arithmetical ASM.
Proof. It is well-known that counter (Minsky) machines can compute
any partial recursive function [71]. And any counter machine (which only
uses 0,=0,+1,− 1) can be directly emulated by an arithmetical ASM, with
nullary symbols for each counter (which include the inputs Ini and output
Out), plus another “program counter” to keep track of the current counter-
machine instruction. The ASM commands take the following forms:
• Initialization instructions:

if p = ⊥ then p := 0 (initialize program counter p)
if c = ⊥ then c := 0 (initialize non-input counter c).

• Increment instructions:
if p = i then c := c + 1 (increment counter c)
if p = i then p := i + 1 (move to next instruction).

• Decrement instructions:
if p = i then c := c − 1 (decrement counter c)
if p = i then p := i + 1 (move to next instruction).

• Branch instructions:
if p = i ∧ c = 0 then p := j (branch on zero)
if p = i ∧ c �= 0 then p := k (branch on non-zero).

The program counter p and non-input counters c are initially ⊥; 0 and ⊥
in the above commands are the nullary symbols for those values; i , j and k
are (instruction) numbers; numbers appearing in commands are written in
successor notation (0 + 1 + · · ·+ 1).27
On the other hand, it is also clear that any arithmetical ASM can be
programmed in a standard programming language,28 by storing the current
non-⊥ values of all dynamic functions (and possibly some ⊥ values, as
well) and interpreting the ASM’s conditional updates step-by-step. Such
programs, of course, can compute only partial recursive functions.29

27For details of counter-machine ASMs, consult [17].
28By “standard programming language”, we mean the “idealized” version of existing

languages, in the sense that programs are allowed to be arbitrarily large and complex, the
namespace is unlimited, and arbitrarily large numbers can be manipulated. The textbook,
[29], describes one such idealized language in detail.
29This implicit appeal to the formal effectiveness of standard programming techniques

(viz. what can be programmed in any formalism can be expressed as general recursion) is
sometimes also referred to as an invocation of Church’s Thesis (cf. [82, pp. 20–21]), but
the omitted details could be fleshed out in what amounts to no more than a programming
assignment for an undergraduate course. Shoenfield [91, p. 121] refers to such uses of the
thesis as “very convenient”, but “not really essential”. Kripke [60, p. 13] explains: “If a
recursion theorist is given an informal effective procedure for computing a function, he or
she will regard it as proved that that function is recursive. However, an experienced recursion
theorist will easily be able to convert this proof into a rigorous proof which makes no appeal
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In Lisp, for example, one can simply maintain an associative list (an
“environment”) that records the values of all dynamic functions as location-
value pairs 〈(f, a1, . . . , an), b〉. Initially, only the input values are placed on
this list. At that stage, all other dynamic functions have undefined (⊥) values
for all arguments, so their location-value pairs are not listed. Simulating a
step of the ASM involves using equality tests to search for values in the list,
in order to evaluate all the expressions in the ASM program’s commands.
Anything not in the list is presumed to be undefined. If an attempt is made
to perform a basic arithmetic or Boolean operation on⊥, the result is also⊥;
otherwise, native Lisp operations are applied to the arguments. The updates
for assignments whose guards evaluate to true are computed using the old
values stored in the list, before prepending all the new values en masse to
the list, so that the effect corresponds to the parallel execution of the ASM’s
commands. (Values closer to the head of the list take precedence, so there is
no need to erase old, stored values.) If no update is performed, or if a clash
is detected between the values assigned by different updates, the program
halts, and outputs the value of Out. 

4.3. Church’s Thesis. It follows from Theorem 4.5 that:
Corollary 4.6. Every numeric function computed by a state-transition sys-
tem satisfying the Sequential Postulates, and provided initially with only basic
arithmetic, is partial recursive.
Proof. By the ASM Theorem (Theorem 3.4), every such algorithm can
be emulated by an ASM whose initial states are provided only with the basic
arithmetic operations. By Theorem 4.5, such an ASM computes a partial
recursive function. 

Definition 4.7 (Arithmetical algorithm). A state-transition system satis-
fying the Sequential and Arithmetical Postulates is called an arithmetical
algorithm.

The above corollary, rephrased, is precisely what we have set out to estab-
lish, namely:
Theorem 4.8 (Church’s Thesis). Every numeric (partial ) function com-
puted by an arithmetical algorithm is (partial ) recursive.
The converse also follows fromTheorem4.5, since arithmeticalASMs—by
their very nature—satisfy Postulates I–IV:
Proposition 4.9. Every partial recursive function can be computed by an
arithmetical algorithm.
4.4. Recursive oracles. There is nothing very special about the particular
set of arithmetic operations allowed in arithmetical states. It canbe seen from
the proof of Theorem 4.5, and the fact that three counters suffice to compute

whatsoever to Church’s Thesis. So working recursion theorists should not be regarded as
appealing to Church’s Thesis in the sense of assuming an unproved conjecture.”
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all recursive functions,30 that it would be enough if states had just zero,
successor, equality, and a handful of dynamic nullary operations—serving
as counters—for all recursive functions to be computable. (Predecessor of
a positive integer can be computed from zero, successor, and equality.) In
fact, the (partial) functions computed by all arithmetical ASMs with n ≥ 1
inputs plus three additional dynamic nullary symbols (including Out) are
precisely the (partial) recursive functions of arity n.
At the other extreme, effectiveness is maintained no matter how many
additional recursive functions are permitted in arithmetical states. Since our
algebraic states always include the Boolean truth values, True and False,
and the undefined value, ⊥, we extend the notion of recursiveness to cover
functions that may also involve these values.
In what follows, we apply any unary function, say �, to n-tuples x̄, so �(x̄)
will serve as shorthand for (�(x1), . . . , �(xn)).
Let B⊥ stand for {True,False,⊥} and let � be the following bijection from
N to N � B⊥:

�(x) =

{
⊥,False,True if x = 0, 1, 2, respectively,
x − 3 if x > 2.

We say that a function f of arity n over N � B⊥ is (partial) recursive if its
numeric conjugate � ◦ f ◦ �−1 is (partial) recursive in the ordinary, purely
numeric sense. Our terminology is sensible, since a numeric function can be
recursive in both senses, or partial recursive in both senses, or else it is not
partial recursive in either sense.
The quotient operator (÷) in arithmetical states, for instance, which is
only partially defined, is recursive in this wider sense:

m ÷ n =
{
⊥ if n = 0,
�m/n� if n > 0.

A divisibility predicate defined as

n | m =


⊥ if n = 0,
True if n > 0 and n × (m ÷ n) = m,
False otherwise

is also recursive in this sense.
The proof of Theorem 4.5 holds fast even when initial states incorporate
many such recursive functions (because they are all programmable like basic
arithmetic is). Later, we will make use of the following variant of Corol-
lary 4.6, which uses this slightly more general notion of recursive function
and which allows for arbitrarily many recursive oracles:

30See [3] (also [86]) for the fundamental weakness of a two-counter machine, as compared
to a machine with three counters or more.



NATURAL AXIOMATIZATION OF COMPUTABILITY 329

Corollary 4.10. Every partial function computed by a state-transition sys-
tem satisfying the Sequential Postulates, whose states are arithmetic and whose
initial states only have recursive (possibly partially defined ) operations, is par-
tial recursive.
Recall that the operations of algebraic states are always total, formally
speaking, though they need not be numeric. So, when this corollary speaks
of a partially-defined function f as being recursive, it means that the total
function f, whose range includes ⊥, is recursive (not just partial recursive)
in the expanded sense given above.
The partial function computed by such an algorithm, on the other hand,
may be only partial recursive, since the algorithm might not terminate for
some inputs. For example, there is an algorithm that satisfies the conditions
of the above corollary and which interprets Turing machines that act on
string-representations of the natural numbers. The interpreter computes the
following partial recursive function:

TM(m, n) =


z if machine number m on input n

terminates with numeric output z,
⊥ if machine number m on input n

aborts or terminates with non-numeric output.

Whenmachine numberm does not terminate at all on input n, the algorithm
also does not terminate, and TM(m, n) returns nothing, not even ⊥.
In Section 6, we will see how to incorporate richer domains than mere
arithmetic.

§5. Relative effectivity. Church provided some justifications for his claim
that “every function, an algorithm for the calculation of the values of which
exists, is effectively calculable” by means of recursion [23, p. 357]. But, as
Sieg [94, p. 78] clarifies, Church’s argument lacked a formal analysis of the
recursiveness of the individual steps in the performance of an algorithm, a
point regarding which Church was quite aware. (See also [103, p. 291].) So,
as Shoenfield [91, pp. 120–121] also makes clear, it all boils down to the
effectivity of the operations that are applied at each step of a computation.
We have seen in the previous section that effectiveness is guaranteed by the
Sequential Postulates and the Arithmetical State Postulate. We also saw that
additional recursive functions in initial states do not increase computational
power: Bounded Exploration guarantees that each single step is in fact
effective, because it allows only a bounded number of applications of those
initial functions to values derived in the same fashion during the preceding
finitely many steps. Adding non-recursive functions to the initial state, on
the other hand, is a different story, taken up next.
A (partial) function f is said to be (partial) recursive relative to a set
of functions B if its values can be inferred by equational reasoning from
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a set of (true) equations involving B. This is equivalent to stating that f
can be obtained by composition, primitive recursion, and/or minimization
from the oracles B. See [49, §63]. We assume that B always includes zero,
successor, and equality. The ordinary recursive functions are just those that
are defined in this way from only zero, successor, and equality.

Theorem 5.1. A numeric function is partial recursive relative to “oracular”
functions B if and only if it is computable by an ASM operating over domain
N�B⊥ and initial functionsB (containing at least zero, successor, and equality),
but no other functions defined in its initial state.
Proof. It is an ordinary programming exercise to show how to obtain an
ASM for the composition of the functions computed by two given ASMs,
or for primitive recursion, given ASMs for the zero and non-zero cases, or
for iterating to look for the minimal input value (if there is one) such that a
given ASM returns zero. So, by induction on the construction of a function
that is partial recursive in B, we know that there is an ASM that computes
any such function, given oracles for B.
On the other hand, one can write an interpreter for such ASMs, which
can be programmed in any standard programming language,28 except for
calls to the oracles. Such an interpreter can in turn be implemented in
terms of the functions in B, using composition, primitive recursion, and
minimization.29 

Clearly, ASMs necessarily satisfy the Sequential Postulates, so any rel-
atively recursive function can be computed by a process satisfying those
postulates. By Theorems 3.4 and 5.1, the converse is also true:
Corollary 5.2. The only numeric functions that are algorithmically com-
putable by a process satisfying the Sequential Postulates are those that are
partial recursive relative to the initial functions.
We have, then, what Kleene [49, p. 332] (paraphrased) refers to as:

Thesis I∗†. Every (partial) function which is effectively calculable
relative to some initial functions is (partial) recursive relative to
those functions.

This version of Church’s Thesis follows from the Sequential Postulates
alone, without Arithmetical State. The clause “relative to some initial func-
tions” means that the algorithm is allowed to apply “black box” primitive
operations B. The results of the previous section are obtained whenever B
is a subset of the recursive functions.
In the development so far, all functions operate over numbers or truth
values. But one can add as many non-numerical values to the domain as
one wishes to more naturally mimic human “notations” to keep track of
things while in the midst of arithmetic calculations. Moreover, one may
incorporate algorithmic operations on strings of symbols, or on other kinds
of objects, as shown in the next section.
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§6. Arithmetized effectivity. We consider now algorithms that operate
over larger domains than just natural numbers, domains that may include
rationals, vectors, matrices, strings, lists, graphs, etc. To work with such
objects, an algorithm would be provided with operations like division of
rationals, vector addition, matrix multiplication, string concatenation, list
sorting, or graph complementation.
6.1. Arithmetizable states. Indeed, one might naturally employ non-
numerical capabilities in the process of computing what is a strictly numeric
function. The object domain of such an algorithm would include elements
besides numbers and truth values, and its initial states would include opera-
tions over those auxiliary domains and operations connecting those domains
with the natural numbers, in addition to purely arithmetic operations.
As we are only interested in effective computations, it is necessary to limit
the initial repertoire of operations to what is undeniably effective. Anything
more complicated should be programmed, just as sophisticated arithmetic
operations are.
Let the enriched object domain of an algorithm be D ⊇ N � B⊥ and let
� : D → N � B⊥ be an injection of that domain into the natural numbers
that preserves the special elements B⊥ = {True,False,⊥}. We will use �N to
denote the restriction � � N of � to the natural numbers in D.
We will say that a function f of arity n over D is �-recursive if there exists
a recursive function f̂ over N � B⊥ of the same arity such that f̂(�(x̄)) =
�(f(x̄)) for all x̄ ∈ Dn, that is, if � ◦ f̂ = f ◦ �. In other words, f is
�-recursive if there is some recursive extension f̂ of the function f̃ over the
image �(D) whose graph is {(�(x̄), �(y)) | (x̄, y) ∈ f}. Recursiveness of
the witness f̂ is meant in the expanded sense of Section 4.4. Note that the
witness is not necessarily unique, since � need not be onto; what exactly f̂
produces for arguments not all in �(D) is immaterial.
We adopt a generous version of the presumption that initial operations
are effective:

Postulate IVb (Arithmetizability). Initial states are blank. Up to isomor-
phism, all initial states share the same domain and static operations, and there
is exactly one initial state for any given numerical input values. There is an
encoding � whose restriction �N to the natural numbers is recursive (in the
ordinary sense), and via which all static operations of the initial states are
�-recursive.

The completely undefined dynamic functions of blank states are trivially�-
recursive for any encoding � (they are witnessed by a completely undefined
function), as are the nullary input operations (witnessed by their images
under �). Note that this postulate places no demands on the dynamic
functions that evolve over the course of a computation, only on the static
operations of initial states.
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Remark 6.1. It is quite natural to demand that an encoding and its inverse
be “effective” in some informal sense (cf. [82, p. 27]). We demand less: only
that the encoding �N of the natural numbers N within the domain D be
effective. Indeed, as long as the successor function s on the natural numbers
is �-recursive, then �N is in fact recursive, since �(0) is some constant and
�(s(n)) = ŝ(�(n)), where ŝ is the recursivewitness for successor (cf. [81, 18]).
A similar approach to effectiveness in non-numerical domains D is taken in
the field of computable algebra, namely that operations on D are tracked
by homomorphic images in N (e.g., [34, 64, 79]), but our conditions on the
encoding are noticeably weaker.

Remark 6.2. When, in addition to �N being recursive, the image �N(N) it
gives of the natural numbers is recursive (as in [64, 79]), then the inverse of
�N is also (formally total and) recursive:

�−1N (x) =

{
min n. �(n) = x if x ∈ �(N),
⊥ otherwise.

In that case, every recursive function f over N � B⊥ is automatically �-
recursive, since its conjugate �−1N ◦ f ◦ �N by �N is its recursive witness.
However, Lemma 6.8 and Theorem 6.4 below hold even when �N has a
perversely non-recursive image. So, wedonot impose this otherwise perfectly
reasonable requirement on encodings. See the discussion in Section 6.4.

6.2. Arithmetized algorithms. Wewill say that an algorithm (and its set of
static operations) operating over a domain D is arithmetizable if there is an
encoding � of D such that the conditions of the Arithmetizability Postulate
are fulfilled.
We generalize now the notion of arithmetical algorithm (Definition 4.2)
to allow for basic operations over other domains:

Definition 6.3 (Arithmetized algorithm). A state-transition system sat-
isfying the Sequential and Arithmetizability Postulates is called an arithme-
tized algorithm.

This gives the following variation on Church’s Thesis (Theorem 4.8) for
enriched domains:
Theorem 6.4. Every numeric (partial ) function computed by an arithme-
tized algorithm is (partial ) recursive.
The special case when the object domain is not enriched (D = N � B⊥)
was already dealt with in Section 4.
We will make use of several easy lemmata.
Lemma 6.5. Suppose α �∗ α∗ by a computation of an ATS A, and let
� = �(α) for some isomorphism �. Then one also has � �∗ �∗ via A, where
�∗ = �(α∗). Furthermore,

[[t]]�∗ = �([[t]]α∗),
for all (ground ) terms t over the vocabulary of A.
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Proof. To begin with, by the nature of isomorphisms, [[t]]� = �([[t]]α) for
all t. By virtue of the Abstract State Postulate (II), the isomorphism � is
preserved by every transition ofA, fromwhich it follows that [[t]]� ′ = �([[t]]α′)
whenever α � α′ and � � � ′ = �(�). The result follows by induction on
the computation α �∗ α∗. 

Let D ⊆ D̂ for domains D and D̂, and suppose that algebras α and �
have domains D and D̂, respectively, and share the same vocabulary. Then
α is called a subalgebra of � , denoted α ⊆ � , if the operations of � are
closed on the subdomain D and every operation fα of α is the restriction
f� � D of the corresponding operation f� of � . This implies, of course,
that [[t]]α = [[t]]� ∈ D for all (ground) terms t over their joint vocabulary.
Lemma 6.6. Suppose an ASM M with states S has a transition α � α′

for states α and α′ with domain D ⊆ D̂. Suppose further that α ⊆ � , where
Dom � = D̂. Then anASM M̂ with exactly the same vocabulary and the same
program asM , but with extended states {� | ∃ϕ ∈ S. ϕ ⊆ �} (closed under
isomorphisms), engenders the corresponding transition � � � ′ ( for extended
states �, � ′), where α′ ⊆ � ′.
Proof. All the extra elements introduced by the enlarging of the domainD
of α are inaccessible in � (i.e., there is no ground term t over the vocabulary
for which [[t]]� ∈ D̂\D), and, therefore, those extra domain elements have no
influence on transitions. Specifically, the update set ∆(α) forM is identical
to ∆(�) for M̂ whenever α ⊆ � . 

Let � : D → D̂ be an injection from domainD to domain D̂, and suppose
that algebras α and � have domains D and D̂, respectively, and share the
same vocabulary. Then one says that α is embedded in � via �, written as
α ↪→ � , if �̃(α) ⊆ � , where �̃ is the bijection obtained by restricting � to its
image �(D) ⊆ D̂. This implies (using Lemma 6.5) that

[[t]]� = [[t]]e�(α) = �̃([[t]]α) = �([[t]]α) ∈ �(D),
for all (ground) terms t over their joint vocabulary. For any collection S of
abstract states, let the corresponding collection Ŝ (for the embedding �) be
{� | ∃ϕ ∈ S. ϕ ↪→ �}, closed under isomorphisms.
Combining the above lemmata, we get the following:
Lemma 6.7. Suppose an ASMM with states S has a computation α �∗ α∗
for states α and α∗ with domain D. Suppose further that α ↪→ � via some
injection � : D → D̂. Then an ASM M̂ with exactly the same vocabulary
and the same program as M , but with states Ŝ, engenders the corresponding
computation � �∗ �∗ (�, �∗ ∈ Ŝ), where α∗ ↪→ �∗. Furthermore,

[[t]]�∗ = �([[t]]α∗),

for all (ground ) terms t over the vocabulary ofM .
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Proof. By Lemma 6.5, M also has a computation �̃(α) �∗ �̃(α∗), and,
by repeated application of Lemma 6.6, M̂ has a computation � �∗ �∗, with
�̃(α∗) ⊆ �∗, for any � such that �̃(α) ⊆ � . In other words, � �∗ �∗ ←↩ α∗,
when� ←↩ α �∗ α∗. Accordingly, we alsohave [[t]]�∗ = [[t]]e�(α∗) = �([[t]]α∗),
for all terms t. 

Lemma 6.8. If ĝ : N→ N is a partial recursive function and �N : N→ N is
a recursive injection, then �N ◦ ĝ ◦ �−1N is also partial recursive.
Proof. Since the injection �N is recursive, its inverse �−1N (x) =
min n. �(n) = x is partial recursive. Its composition with other partial
recursive functions is partial recursive. 

Proof of Theorem 6.4. Suppose A is the arithmetized algorithm operat-
ing over the rich domain D and � : D → N � B⊥ is the postulated injective
encoding. By the ASM Theorem (Theorem 3.4), algorithm A (which sat-
isfies Postulates I–III) is emulated by an ASM M that computes the same
numeric function g as doesA overD. Up to isomorphism,M has one initial
state for every possible combination of numeric inputs.
Consider an ASM M̂ with the same vocabulary and program as M , but
with states Ŝ, and with initial states in which every static symbol f is inter-
preted as its witness f̂, each dynamic symbol other than the input symbols
is completely undefined, and input symbols take all possible values in N.
Modulo isomorphism, all states of M̂ have domain N � B⊥. Restricting
an initial state α̂ of M̂ to �(D) gives a state α̃ that is isomorphic by � to
an initial state α of M , since the restriction f̂ � �(D) of each witness f̂ is
isomorphic to the original static operation f ofM .
Static arithmetic operations ofM are reinterpreted as their witnesses in M̂ ,
but Boolean operations and equality remain intact. By the Arithmetizability
Postulate, M̂ ’s initial states provide recursive functions only. Since Defini-
tion 4.2 does not require arithmetical states to have any specific operations,
other than equality and Boolean connectives, M̂ does in fact satisfy the
requirements of Corollary 4.10, and must compute a recursive function ĝ.
Consider any computation α �∗ α∗, where α is an initial state of M
and α∗ is a terminal state. The ASM M̂ has an initial state α̂ such that
α ↪→ α̂, and wherein [[Ini ]]bα = �([[Ini ]]α) for each input Ini . By Lemma 6.7,
there is a corresponding computation α̂ �∗ α̂∗ for M̂ , such that α∗ ↪→ α̂∗.
Furthermore, by that lemma, ẑ = �(z), where ẑ = [[Out]]α∗ is the output of
M and z = [[Out]]bα∗ is the output of M̂ .
By construction, x̂ = �(x̄), where x̄ = [[In]]α are the inputs to M and
x̂ = [[In]]bα are the inputs to M̂ . By convention, z = g(x̄) and ẑ = ĝ(x̂) are
the output values computed byM and M̂ , respectively. It follows that

�(g(x̄)) = �(z) = ẑ = ĝ(x̂) = ĝ(�(x̄)),
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for all x̄, or, put another way, g ◦ � = � ◦ ĝ.
Recall that �N is postulated to be recursive and that the partial function
g computed by A is numeric. Hence, it follows from Lemma 6.8 that g =
�N ◦ ĝ ◦ �−1N must also be partial recursive, as claimed. And if g is total, it
is recursive. 

Remark 6.9. Suppose we wish to arithmetize a many-sorted domain D =
D0 � D1 � · · · � Dm � {⊥}, m ≥ 1. Specifically, we are assuming that the
domain is partitioned intom+1 disjoint sorts: the natural numbersD0 = N,
zero or more auxiliary domains D1, . . . , Dm−1, and the Booleans, Dm. (The
undefined value, ⊥, is part of the domain but does not belong to any of
the sorts.) It may be convenient to arithmetize such a D, sort by sort: Let
N be stratified into m disjoint parts Nj , 0 ≤ j < m, via m stratification
injections �j : N → N, such that �jNj ⊆ N and �j(N) ⊆ Nj for each j.
Then, given individual embeddings �j : Dj → N, and letting �0 : N → N
and �m, �m : B⊥ → B⊥ all be identity maps (so that the natural numbers
and the Boolean truth values are preserved), we can define the encoding
�(x) = �j(�j(x)) for x ∈ Dj , and �(⊥) = ⊥. Let �(x) = �j(x) for x ∈ Dj
and �(⊥) = ⊥. The restriction �N of such a � to N is recursive as long as
the given stratification function �0 for encoded natural numbers is recursive.
If �−10 is also recursive, then all purely numeric functions over D are in fact
�-recursive, as explained in Remark 6.2. Compare [5].

Example 6.10. One convenient stratification mapping is obtained by par-
titioning the natural numbers into m residue classes Nj modulo m, corre-
sponding to the m sorts of D. The mappings and their inverses are easily
computable, as follows:

�j(x) = mx + j,

�−1(x) = x ÷m,
for each j, 0 ≤ j < m, where ÷ gives the integer quotient. Since this
�−1 does not depend on the stratum, we have omitted the subscript j. The
classification function

κ(x) = x mod m

is also effective. This regimen is tantamount to the standard type-tagging
scheme used in programming languages, and is clearly recursive.

Example 6.11. As an example of such a stratified encoding, consider an
algorithm that uses finite strings over some alphabet Σ, in addition to the
natural numbers. It is not hard to conjure up a mapping that encodes finite
strings from the auxiliary domainD1 = Σ∗ as natural numbers. For example,
if Σ is a binary alphabet, then the injection �1(uv) could be 2i (2j+1), where
u is the prefix of all leading zeroes, i is the length of u, and j is the binary
value of the suffix v. Composing this with the stratification mappings �
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of the previous example gives the following family � of domain encodings:
�0(n) = 2n for numbers n; �1(w) = 2�1(w) + 1 for strings w.

Remark 6.12. When all the operations (save equality) of an ATS are sim-
ply typed, the condition needed for arithmetizability can be simplified by
ignoring the stratification. A simple type takes the shape S1× · · · ×Sn → S0
(n ≥ 0), where every Si is one of the sorts Dk of the domain D, meaning
that f(x1, . . . , xn) yields an element of S0 or ⊥ whenever xi ∈ Si for all the
arguments xi , and that f(x1, . . . , xn) yields ⊥, otherwise. Let �j and �j be
as described inRemark 6.9; suppose the �j and their inverses are recursive as
in Example 6.10; and let � be the composite encoding defined in that remark.
Consider a function f with result sort S0 = Dj and input sorts S̄ having
indices ı̄. Define the tuple-mapping �ı̄ applied to a list of arguments x̄ to be
the result of applying the corresponding functions �ıi to each component xi
of x̄. With this machinery, a functionf is �-recursive if it is �-recursive, since
if f̃ is the witness of �-recursiveness, then f̂ = �−1ı̄ ◦ f̃ ◦ �j is a recursive
witness of �-recursiveness. To wit,

� ◦ f̂ = � ◦ �ı̄ ◦ �−1ı̄ ◦ f̃ ◦ �j = � ◦ f̃ ◦ �j = f ◦ �j ◦ �j = f ◦ �.
Note that we are not insisting that the encodings �j are effective in any sense;
it is enough that the stratification � is effective for the requirements of the
postulate to be met.

Example 6.13. To manipulate strings, Post’s tag machines [77] use the
following all-powerful set of basic string operations:
• Read: Σ∗ → Σ (read first letter);
• Delete: Σ∗ → Σ∗ (delete first letter);
• Add: Σ∗ × Σ→ Σ∗ (add letter to end).

The encoding �1 of Σ∗ given in Example 6.11 turns these basic string op-
erations into combinations of addition, multiplication, exponentiation, and
taking remainders. For example, R̃ead(n) would return 2 = �1(0) if n is
even, and 3 = �1(1) if it’s odd.

Remark 6.14. When the types of operations are the union of simple types
(like the “overloaded” > operator in many programming languages, which
compares strings as well as numbers and returns a Boolean value in both
cases), it is enough if there are recursive witnesses for every combination
of input types, since operations can be “dispatched” to the appropriate
witness based on the sorts of the arguments. (By “union” we mean that
the graph of the function on correctly-typed arguments is the union of the
graphs of simply-typed functions on their correct types.) For example,
suppose a domainD includes three sortsD0,D1, andD2, and some function
f : D → D is the union of two simply-typed unary functions f1 : D1 → D0
and f2 : D2 → D0. Suppose further that there are witnesses f̃1, f̃2 : N→ N
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for some �i as in the previous remark. Then we can use the stratification
scheme � of Example 6.10 and note that the recursive function

f̂(n) =


�0(f̃1(�−1(n))) if κ(n) = 1,
�0(f̃2(�−1(n))) if κ(n) = 2,
⊥ otherwise

is a witness that f is �-recursive for �(x) = �j(�j(x)), as in Remarks 6.9
and 6.12.

Remark 6.15. When operations have generalized types and return results
of more than one sort (as can list operations in Lisp), �-recursiveness with
respect to a more complicated encoding � of all the sorts of elements of D,
as in Remark 6.9, is called for.

6.3. Turing’s Thesis. As a byproduct of the ASMTheorem (Theorem 3.4)
and the above result (Theorem 6.4), one obtains a straightforward method
of showing that other deterministic models of computation cannot compute
more than the partial recursive functions.
Consider, by way of example, Markov’s normal algorithms [66], which
repeatedly apply a series of substring-replacement rules of the form u → v
to a given input string. To connect effectiveness of normal algorithms with
that of the recursive functions, one needs to show that the operations of
testing for the occurrence of a substring u in a string w and of replacing
the first such occurrence (of u in w) with another substring (v) are both
arithmetizable. This is quite easy with an encoding � in the style of that
given in Example 6.11 above. By the ASM Theorem, issues of control—like
that of determining the first applicable rule, if any, in aMarkov program, and
of terminating as soon as one of the rules that aremarked “final” is applied—
can always be handled effectively, using numbers to represent control states.
As a consequence of the previous theorem, one may conclude that regardless
of how numerical inputs are given as strings to normal algorithms (whether a
number n is represented by a string of nmarks in “tally” notation, or—more
compactly—in decimal notation, or using any other convention), as long
as the homomorphic image under � of that number-representation function
is recursive, one can be sure that only partial-recursive functions can be
computed.
Just as we have shown above that the recursive functions are the only nu-
meric functions that can be computed by an effective algorithm, we could
likewise have shown that Turing machines compute all effective string func-
tions, by adopting some basic set of primitive string operations, like Post’s
(see Example 6.13), and postulating that initial states of string algorithms are
endowed with nothing additional. In other words, the exact same approach
as that taken above gives an axiomatization and proof of Turing’s Thesis
regarding string-based effective computation. We have seen how to enrich
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an arithmetic model with strings. Bymapping numbers to strings, instead of
strings to numbers, one gets the analogous enrichment of string-based ma-
chines, empowering them to compute all recursive number-theoretic func-
tions.
6.4. Significance. Theorem 6.4 and its proof demonstrate the full strength
of Church’s Thesis: No matter what additional data structures an algorithm
has at its disposal, it cannot compute any non-recursive numeric functions,
since essentially the same computations can be performed over the natural
numbers. The ASM Theorem was crucial in this argument, enabling us to
cover all possible algorithms, regardless of the data structures employed.
To axiomatize effectiveness of algorithms operating over such domains,
we have formalized requirements for domain encodings. Church [23, p. 345]
asserted that non-numerical domains “can be described in number-theoretic
terms”. Particular encodings (like Gödel numberings) are used all the time;
some are more “natural” than others. Rogers [82, p. 27] demands the
following of such encodings:

The coding is chosen so that (a) it is itself given by an infor-
mal algorithm in the unrestricted sense; and (b) it is reversible;
i.e., there exists an informal algorithm (in the unrestricted sense)
for recognizing code numbers and carrying out the reverse “de-
coding” mappings from code numbers to nonnumerical entities.
Furthermore, it is stipulated that a coding shall be used only when
(c) an informal algorithm exists for recognizing the expressions
that constitute the uncoded, nonnumerical class.

Demanding the existence of “informal algorithms” for the encoding and
decoding of the additional data structures, however, is problematic. And
there is no accepted formal sense of effectiveness that covers operations over
arbitrary domains. (See [72, 88, 19] for discussions of this problem.) Instead,
we have insisted only that—under some representation—the homomorphic
images of the basic native operations, which track the native operations on
the natural numbers, be effective in the technical, recursive sense, and that
the mapping �N of the natural numbers alone be recursive. We propose that
such encodings be deemed “reasonable”; they provide just the right amount
of effectiveness. With this approach, recourse to informal considerations is
not needed.
As Ada Lovelace asserted in 1843 [68]:

Many persons who are not conversant with mathematical studies
imagine that because the business of [Babbage’s Analytical En-
gine] is to give its results in numerical notation, the nature of its
processes must consequently be arithmetical and numerical rather
than algebraical and analytical. This is an error. The engine can
arrange and combine its numerical quantities exactly as if they
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were letters or any other general symbols; and in fact it might
bring out its results in algebraical notation were provisions made
accordingly.

§7. Conclusion. Our goal in this work has been to remedy the situation
described thus by Montague [72, p. 432]: “Discussion of Church’s thesis has
suffered for lack of a precise general framework within which it could be
conducted.” We have shown how the Sequential ASM Postulates provide
just such a framework, and how Church’s Thesis follows from them, plus the
postulate that nothing uncomputable is given ab initio.
We saw in the introduction that Gödel surmised that Church’s Thesis
may follow from appropriate axioms of computability. But, as far as we
can ascertain, no complete axiomatization has previously been presented
in the literature. In fact, the challenge of proving Church’s Thesis is first
in Shore’s list of “pie-in-the-sky problems” for the twenty-first century [21].
WhereasKripke [60, p. 14] feels that it is “a very difficult task”, Friedman [33]
predicted that sometime in this century, “Therewill be anunexpected striking
discovery that any model of computation satisfying certain remarkably weak
conditions must stay within the recursive sets and functions, thus providing
a dramatic ‘proof’ of Church’s Thesis.”
Our axiomatization provides a small number of principles that imply
Church’s Thesis, and focuses attention on the axioms. Thus, to the extent
that one might entertain the notion that there exist non-recursive effective
functions, one must reject one or more of these postulates.31 The need for
“continual verification” of the legitimacy of Church’s identification of recur-
siveness with effectivity, to which Post [75, p. 105] referred, can now center
around the universality of the individual axioms.
7.1. Previous analyses. Turing long ago dissected the essentials of com-
putation. (See Section 1.2.) As Gödel [38, p. 72] commented: “Turing’s
work gives an analysis of the concept of ‘mechanical procedure’ (alias ‘al-
gorithm’ or ‘computation procedure’ or ‘finite combinatorial procedure’).
This concept is shown to be equivalent with that of a Turing machine.” See
also Kleene in [53, p. 30]:

Computation, theoretically considered (to be performable for all
possible values of the independent variables), is idealized. Turing’s
analysis takes this idealized aspect of it into account. A Turing
machine is like an actual digital computing machine, except that

31For one well-known example of the claim that there is an “effective” mode of reasoning
that computes a non-recursive function, see Lucas [63]: “One can feel confident without
having an effective method within the meaning given to effective—i.e., programmable into a
Turing machine. . . . It is not necessary that all reasoning must in this sense be effective. And
in the sense in which reasoning might be necessarily effective, effectiveness does not imply
computability.”
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(1) it is error free. . . , and (2) by its access to an unlimited tape
it is unhampered by any bound on the quantity of its storage of
information or “memory”.

Turing [107] stressed the finite limitations on exploration of state by an
“idealized” human computer, but his analysis was on an informal level,
and related only to two-dimensional symbolic manipulations, though his
interests extended into higher dimensions [110]. Turing analyzed human
reckoning, but there are many things that modern computers (let alone
future computers) can do that are very hard or even impossible for a human
computer to imitate.
Kolmogorov [56] generalized Turing’s analysis, insisting on the “limited
complexity” of operations and on the locality of information needed to
determine the next state, but he too gave no precise characterizations. Kol-
mogorov and Uspensky [57] and Sieg and Byrnes [101] proposed sufficient
conditions on labeled graphs to ensure boundedness of complexity and local-
ity of action for Kolmogorov-like machines, but their conditions are overly
restrictive, and cannot characterize effective computation, in its generality.
Gandy [35] proposed postulates for human and machine effectivity. He
defined a model, “Gandy machines”, whose states are described by hered-
itarily finite sets. Effectivity of Gandy machines is achieved by bounding
the rank (depth) of states, insisting that they be unambiguously assemblable
from individual “parts” of bounded size, and requiring that transitions have
local causes. Gandy’s ideas have been expounded and simplified by Sieg and
Byrnes [102].32 Gandy admitted that his model cannot emulate all compu-
tations [35, p. 146]: “Despite the liberality advertised . . . there is a limit to
what a machine can do in a single step.”33

An alternative approach to proving Church’s Thesis has been suggested by
Kripke [61], based on “Hilbert’s Thesis” that “any mathematical argument
. . . can be formalized in some first-order language”, and—in particular—
arguments about the effects of applying the instructions of an algorithm can
be so formalized.
7.2. This work. Unlike all previous formalizations of effectiveness, the
postulates proposed here apply to transition systems with arbitrary struc-
tures as states. Our abstract states can hold one-dimensional tapes (as in
Turing’s original work [107]), two-dimensional arrays (as extended in [93]),
bounded-degree graphs (as in Kolmogorov machines [56, 57]), or bounded-
rank hereditarily finite sets (as in Gandy machines [35, 102]). But, in fact,
states can also be multi-dimensional grids, or unbounded-degree graphs, or
sets with unbounded rank, so long as the program satisfies the Bounded Ex-
ploration Postulate. In this sense, we are truer to the claim of Kolmogorov

32The explicit bound on rank is removed in Sieg’s more recent work [96, 97, 99, 100].
33Indeed, the algorithm in [30] (determining the “parity” of certain graphs) cannot be

naturally encoded as hereditarily finite sets of bounded rank, as shown there.
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and Uspensky [57, 16]: “We . . . are talking not about a reduction of an arbi-
trary algorithm to an algorithm in the sense of our definition, but [contend]
that every algorithm essentially satisfies the proposed definition.”
Our postulates of effectivity relate to these arbitrary structures—without
encoding complete states as numbers, strings, or graphs. Moreover, we
place no restrictions on state transitions, other than the respecting of iso-
morphism and Bounded Exploration. We do not straitjacket transitions to
follow any particular format—as, for example, in Turing’s formalism. The
critical restriction, the one that makes individual steps effective, is Bounded
Exploration.
Abstract states are what allow this crucial Bounded Exploration Postu-
late to be phrased at the abstract level of algorithms, rather than on some
particular representation level. Our analysis culminated in Theorem 6.4,
which is Church’s Thesis expressed so as to allow algorithms to employ arbi-
trary non-numerical auxiliary domains, while placing no restrictions on the
effectiveness of the encoding of those domains as numbers.
On account of their abstractness, our postulates apply equally well to all
sequential machine models in the literature. The three Sequential Postulates
apply as is; the fourth axiom, that initial states include only undeniably
effective operations, would need to be expressed in terms of the domain and
primitive operations of the specific computational model.
Some might aver that convoluted structures can be encoded linearly or
graphically, and that complex transitions can be decomposed into smaller
steps, and then effectiveness of the encoded operations can be established.
But it is far from evident that computational power is not increased or de-
creased by particular representations. It can be the case that the implemen-
tation f′ of what is an intuitively effective function f over some rich domain
D does not satisfy axioms of effectivity expressed on the level of the domain
D ′ in which it is implemented—simply because the choice of encoding is not
ideal. In fact, there is no a priori reason to believe that there always is a rea-
sonable encoding such that everything that can be done effectively (in the in-
tuitive sense) in one domain can be done effectively in another. On the other
hand, it may be that f is uncomputable in one model of computation, but—
having been encoded—its implementation f′ becomes computable over D ′.
Given a sufficiently malevolent encoding, one can “effectively” compute
blatantly uncomputable functions. (See [89, 18, 81] for discussions of this
point.) It is, therefore, imperative to deal with effectiveness in the same
terms as those in which the algorithm operates—as undertaken here.
7.3. Related issues. Some of Gandy’s considerations were motivated by
physical limitations ofmachines, like “the finite velocity of propagation of ef-
fects and signals” [35, p. 135]. We, on the other hand, are not concerned at all
with what Gandy calls “ThesisM” (also called the “Physical Church–Turing
Thesis”), namely, that whatever can be calculated by a physical machine can
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be computed by a Turing machine, a claim regarding limitations that physics
may, or may not, place on physical computing devices.34 As already pointed
out, our analysis is not specific to a computational model operating over
hereditarily finite sets, but applies to arbitrary state-transition systems with
arbitrary structures for states. For a recent critique of Gandy, see [87]. For
another set of (informal) physical postulates, see [32].
We should point out that, nowadays, one deals daily with more flex-
ible notions of algorithm, such as interactive and distributed computa-
tions. To capture such non-sequential processes and non-classical algo-
rithms, additional postulates are required. For these developments, see
[9, 10, 11, 12, 13, 15, 16, 37].
We also do not address the question of the computational capabilities of
the human mind, what Shagrir [87, p. 223] refers to as “The Human ver-
sion of the Church–Turing Thesis” (more generally called the “AI [Artificial
Intelligence] Thesis”), that (idealized) humans cannot compute any un-
computable function. Nevertheless, it does follow from our axiomatization
that any state-transition mechanism that computes a non-recursive function,
whether physical or biological, must violate (at least) one of the Sequential
Postulates, and/or must include at least one non-recursive function in its
initial states.
See [74, pp. 101–123] and [26] for discussions of these and other variants
of Church’s Thesis.
Finally, the question of what effectiveness means for computations over
arbitrary, non-numerical domains is taken up in [64, 62, 17, 19], and else-
where.
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[The Sliced Bread Thesis:]
“Turing machine = coolest idea since sliced bread”

Even a rabid fan of the Turing machine concept, who firmly believes the
Sliced Bread Thesis, would not claim that the Sliced Bread Thesis is

formalizable in ZFC (or whatever).
Possibly one could come up with an axiomatic definition of “effective
algorithm” that is not trivially equivalent to the definition of a Turing

machine, and then one could formalize
Church’s Thesis and ask for a proof of it.

Shoenfield worked on this for a while, I am told,
but didn’t get very far.

—Tim Chow, Foundations of Mathematics (FOM) Forum
(January 12, 2004)

34Copeland [26] argues against the all too common misconstrual of Turing as having
himself asserted such a physical claim.
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Boston, MA, 1994, pp. 375–441.
[77] , Formal reductions of the general combinatorial decision problem, American

Journal of Mathematics, vol. 65 (1943), no. 2, pp. 197–215, available at doi:10.2307/
2371809.
[78] Hilary Putnam, Trial and error predicates and the solution to a problem ofMostowski,

The Journal of Symbolic Logic, vol. 30 (1965), no. 1, pp. 49–57.



348 NACHUM DERSHOWITZ AND YURI GUREVICH

[79]Michael O. Rabin, Computable algebra, general theory and the theory of computable
fields, Transactions of the AmericanMathematical Society, vol. 95 (1960), no. 2, pp. 341–360.
[80]Wolfgang Reisig,OnGurevich’s theorem on sequential algorithms, Acta Informatica,

vol. 39 (2003), no. 5, pp. 273–305, available at http://www.informatik.hu-berlin.de/
top/download/publications/Reisig2003 ai395.pdf (viewed Nov. 28, 2007).
[81]Michael Rescorla, Church’s Thesis and the conceptual analysis of computability,

Notre Dame Journal of Formal Logic, vol. 48 (2007), no. 2, pp. 253–280.
[82] Hartley Rogers, Jr., Theory of recursive functions and effective computability,

McGraw-Hill, New York, 1967, reprinted by MIT Press, Cambridge, MA, 1987.
[83] J. Barkley Rosser, An informal exposition of proofs of Gödel’s Theorem and Church’s
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