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Abstract—Selective breeding is considered as a communication
channel, in a novel way. The Shannon informational capacity of
this channel is an upper limit on the amount of information that
can be put into the genome by selection: this is a meaningful
upper limit to the adaptive complexity of evolved organisms.
We calculate the maximum adaptive complexity achievable for
a given mutation rate for simple models of sexual and asexual
reproduction. A new and surprising result is that, with sexual
reproduction, the greatest adaptive complexity can be achieved
with very long genomes, so long that genetic drift ensures that
individual genetic elements are only weakly determined. Put
another way, with sexual reproduction, the greatest adaptive
complexity can in principle be obtained with genetic architectures
that are, in a sense, error correcting codes. For asexual reproduc-
tion, for a given mutation rate, the achievable adaptive complexity
is much less than for sexual reproduction, and depends only
weakly on genome length.

A possible implication of this result for genetic algorithms is
that the greatest adaptive complexity is in principle achievable
when genomes are so long that mutation prevents the population
coming close to convergence.

I. INTRODUCTION

Complex organisms become intricately adapted to their en-
vironments after long eons of natural selection. In some sense,
natural selection creates genetic information that specifies the
structure of the organism. Most of this information is encoded
in the genome; in each generation, the information is degraded
by mutation, and restored or increased by selection.

We will pose and answer some natural and basic questions
about the amount of genetic information that can be produced
by selection.

We will partially answer these questions for a simple model
of evolution, variants of which have been independently stud-
ied by many people. In population genetics it is the standard
model of linear selection with full linkage equilibrium, as
described in classic population genetics texts such as, for
example, [5] and [9]. Similar models have been studied in
machine learning by [7] and as a simplified form of genetic
algorithm by [3]; in the genetic algorithms (GA) community
they have been studied by [2], [10], and others.

It has long been known that under certain assumptions
sexual reproduction can be evolutionarily advantageous: an
early study was [6]; [3] and [11] are more recent analyses.
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[11] (chapter 20) defines a measure of the rate of acquisition
of information of a species from selection, but that definition
of information is different from the one developed here.

In contrast to previous studies, we quantify the advantage
of sexual over asexual reproduction in terms of the maximal
amount of information that can be maintained in the genome.
We also compare the amount of information that can be
maintained using both compact and highly distributed genetic
codes: for sexual reproduction, it turns out that there is an
enormous potential advantage in using highly distributed codes
over long genomes.

It is not straightforward to define a suitable notion of the
amount of information in the genomes of a population that is
the result of selection rather than genetic drift. The notion we
will next describe is very similar to the notion of “physical
information” that was introduced by [1]. We motivate the
definition with two thought-experiments, and we argue that the
appropriate way to consider achievable adaptive complexity is
as the informational capacity of a communication channel:
informational channel capacity is a standard concept in infor-
mation theory, as described in numerous texts such as [4] and

[11].

II. A THOUGHT EXPERIMENT: SELECTIVE BREEDING AS
COMMUNICATION

The key question is how to define the information that is in
the genomes of a species as a result of selection. Not all parts
of the sequence of a genome are informative: many features of
real genomes are determined by “random genetic drift” rather
than by selection. But genetic drift is nothing but random
selection: how can one distinguish the effects of random
selection from “real” selection? A direct way to make the
distinction to consider selective breeding as a communication
channel, in the following way.

Suppose that Alice and Bob are two geneticists: Alice is
to be imprisoned, and wishes to send messages to Bob from
her cell. The only possible method is for Alice to capture wild
Drosophila, and to breed them selectively for many generations
in her cell. She must encode her message in the flies’ genomes
by means of selective breeding alone (we suppose that direct
modification of genomes by genetic engineering is against the
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prison rules). The message that Alice sends corresponds to the
criterion that she uses to select flies as she breeds them. On a
previously appointed day, she releases her final generation of
flies. The faithful Bob, waiting outside, catches one of them,
sequences its genome, and decodes Alice’s message according
to the encoding system they agreed to use before Alice was
sent to prison. How much information can Alice send, and
what code should Alice and Bob agree to use? This is a
concrete and practical, though fanciful, question that deserves
an answer.

It is important that we require that Bob should capture only
one fly. All the flies that Alice releases should therefore carry
her message. This requirement corresponds to the intuition that
the information to construct a member of a species is present
in the genome of each member of the species. If, instead,
Bob were allowed to capture a large number of flies, then
Alice could encode her message in the population structure:
this could be done within a single generation, rather than
by producing a new variety of fly over many generations.
With such a “population code”, each individual fly would
carry only a tiny part of the message, so that this manner of
transmitting information would not be relevant to explaining
the evolution of complex organisms, which is our goal. We
will not, therefore, consider population codes further.

Any information that Alice can send to Bob in this way
must be the result of Alice’s selections of which flies to breed.
The capacity of this communication channel, therefore, is a
conservative measure of the amount of information that Alice
can put into her flies’ genomes by selective breeding.

One possible method for Alice and Bob to use would be
to have a code-book of distinct varieties of fly, each of which
Alice could reliably produce by selective breeding. Each time
Alice set out to breed a particular variety, she would produce
a detectably different final population — an achievable variety
would need to be defined sufficiently broadly to ensure that
Alice could produce it by following a prespecified selection
policy. The amount of information that could be sent in this
way would be the log of the number of distinct achievable
varieties in the code-book. Although the notion of a code-
book of distinct, achievable varieties is concrete and intuitively
attractive, the notion of channel capacity is formally more
convenient, and will be used below.

From the point of view of the flies, the channel capacity
measures the variety and precision of the fly population’s
possible responses to selection. The structural adaptation of
an individual fly to its environment is limited by the amount
of information from selection that is stored in its genome.
In principle, the greater the number of distinct achievable
varieties, the more precise and well-specified the fly can be,
both in body and innate behaviour, and the greater the range
of possible responses to environmental challenge.

A. A formal framework for describing selective breeding

In a more formal model, we view the breeding population
as a collection of genomes, and consider selection to be
performed directly on known genome sequences. We will

first set up a general framework that can be applied to many
computational models of evolution, and we will then consider
two specific models.

Let the (finite) set of all possible genomes be G. A breeding
population of genomes, which will be called a collection of
genomes, is denoted as ¢ = (x!,...,x™). Three operations
are defined on collections: selection, breeding, and mutation.

A selection rule s assigns a weight to each genome in a
collection: that is, s(c) = w, where w = (wy,...,w,) and
w; > 0 and >, w; = 1. We suppose that there is a set S of
possible selection rules that a breeder can apply.

A breeding system b is a stochastic function that constructs
a new collection from an existing weighted collection: C' =
b(c, w), where C' is a random variable ranging over the set of
possible collections.

A mutation function m modifies the genomes in a collection
by incorporating mutations. m is also a stochastic function, in
the sense that, for a collection ¢, m(c) is a random variable
ranging over all possible collections of the same size as c.

Given a selection rule s and a starting collection CP, we
may construct a sequence of collections C*,C?,...,C%, ...,
such that for t = 1,2,..., T, C**1 = m(b(C*, wt)), where
w! = s(C*). Note that the same selection rule s is used
for all T' generations. We also define an associated sequence
X0 X1 ..., XT such that X* ~ (C*,w'): that is, X* is
sampled from C* according to the probabilities wt. C! is a
Markov sequence, but X? is in general not Markov.!

We define an evolutionary system (ES)
(G,8,b,m,C% n,T), consisting of a set G of possible
genomes, a set S of possible selection rules, a breeding
system b, a mutation function m, a starting population C°
(which may be a random variable), population size n, and a
stopping time 7.

An ES may be viewed as a communication channel in the
following sense. The message sender chooses a selector s € S:
s is the “message” that is “sent”. Starting with a collection
distributed as C°, a sequence of collections C' L...,CT, each
of size n, is generated, such that C¥T1 = m(b(C*, s(C*k))).
Finally the sample X7 ~ (CT,w7) is the message that is
“received”. The receiver of the message may then infer some
information about s by examining X7 . All characteristics of
the system, including the stopping time 7' are known to the
receiver: the receiver is ignorant only of the sender’s choice
of s.

The channel capacity I of an ES is defined using a “send-
ing” probability distribution ) over S, so that the selection
rule used is a random variable S € S and such that S ~ Q.
The channel capacity I is defined in the standard way as:

I= max {H(S) - H(S|XT)} = max {H(XT)-H(XT|9)}
(1

where H is the entropy function and conditional entropy is
defined in the standard way.

'In fact X1, ..., X7 is a sequence of observations from a hidden Markov
model, but standard tools of HMM estimation turn out not to be needed for
the analysis given below.
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III. A SIMPLIFIED GA MODEL

We use a model identical to that of [3]: very similar models
have been used by others such as [7], and by [5] for the case
of truncation selection with reversible mutation in full linkage
equilibrium.

The set of possible genomes G = {0, 1} for some chosen
genome length L (we will consider the effect of varying the
choice of L).

A. Selection Rules

We consider selection rules based on the Hamming distance
from an “ideal genome” z: the set S consists of one selection
rule based on each of the 27 possible values of z. Define
the level of agreement between a genome x and and “ideal”
genome z as f(x,z) = +#{i : ; = 2}, which is the
fraction of indices at which they agree. Given a collection
C = (x',...,x"), let us define f; = f(x%,z). Let o be a
permutation of (1,..,n) such that fo1y > -+ > fo(). Let
sz € S be the selection rule based on ideal genome z, and,
assuming n to be even, define

2 if1<i<? )
We(3) = .
© 0 ifg<i<n

In other words, we select for breeding the 50% of genomes
in a collection that agree best with the “ideal genome” z.
By symmetry, H(X7|s,) will be equal for all s, € S, so to
compute the channel capacity we need consider only the case
where z = (1,1,...,1) and let us define f(x):= + 7 ;.

B. Model of Sexual Reproduction

We model sexual reproduction as follows. A child genome
x’ is constructed by selecting each element z; from the
corresponding element of a genome x of the parent population,
where x ~ (C,w), and x is sampled afresh and independently
for each z. Each element of the child genome x’ may be
drawn from a different parent genome, therefore. This might
be termed “hypersexual reproduction”, since each child is a
mixture of the alleles of the entire parent population, instead
of having just two parents. This model of reproduction ensures
that the elements of a child genome are independent Bernoulli
variates.

This “hypersexual” model is simple to analyse but not
fully biologically realistic. It is equivalent to the simplifying
assumption of linkage equilibrium, often used in population
genetics.

C. Model of Mutation

Finally, mutation is modelled by inverting each element
of each genome with probability u, independently of other
elements and other genomes. The parameter v is the mutation
rate, and is typically small.

D. Channel capacity of sexual breeding

We will estimate the channel capacity of the evolutionary
system defined in the previous section, when the stopping
time 7" is large enough for the collections to have reached
mutation-selection equilibrium. We write X := X7 as a
genome observed when the process has reached equilibrium.

Let p := E[f(X)], the expected fraction of Is in the
selected population at equilibrium. The maximum entropy
distribution of X for a given value of p would be the factorial
distribution in which the elements of X7 are independent
Bernoulli variables, such that P(XI = 1) = p for all i.
The entropy of this distribution is Lh(p) where h(p) :=
—plogy p— (1 —p) log,(1 —p). The actual entropy of X must
be less than equal to this.

As H(X]|s,) is the same for all s, € S, the maximal
channel capacity is achieved when the sending distribution )
is the uniform distribution over all s,, in which case, without
the conditioning on S, X is uniformly distributed over G, so
that H(X) attains its maximal possible value of L bits. The
channel capacity is therefore

I = H(X)-H(XI|S) 3
2 ( h(p)) @)
= @L( p=3)"+0(p-3)" 5)

using the Taylor series for h(p) (measured in bits) expanded
at % To compute the channel capacity, it remains to estimate
the equilibrium value of p.

E. Channel Capacity with Small Genomes

For small L, the equilibrium selected population may consist
of identical genomes. The mean number of elements of a
genome that are inverted by mutation is Lu; using a Poisson
approximation of the number of elements of a genome that
are inverted, the probability that no element of a genome is
inverted — that is, the probability that a genome is unchanged
by mutation — is approximately e~ %%

If more than half of the genomes are unchanged by mutation
— that is, if e7%* > § — then in equilibrium 50% truncation
selection can maintain a selected collection that with high
probability consists of identical genomes. Each selection rule
Sz can maintain a selected collection of genomes that are with
high probability all equal to z. This implies that H(X|S) = 0,
and therefore the channel capacity I = L bits, provided that
L < IC’%Q. Hence

<282 (6)

for a regime in which the selected collection consists of
identical copies of a single genome.

The result of equation (6) was derived by [8], in their
investigation of the possible origins of life. Eigen et al. argued
that an early replicator would have been inaccurate, with some
relatively large mutation rate w, and that the mutation rate
would set a limit on the possible length of the genetic sequence
of such a proto-organism. If such an organism required, for
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its specification, an accurate genetic sequence longer than
approximately %, it would suffer an “error catastrophe”, as
more errors accumulated in its sequence than could be feasibly
eliminated by selection.

E Channel Capacity with Large Genomes

In contrast to short genomes, we now consider the case
of long genomes, so long that in equilibrium, the selected
collection will have a value of p only slightly larger than
%. Clearly, such genomes will be underdetermined by the
selection rule, and they will have a low density of information
— but on the other hand, the genomes are long, and so may
contain a large amount of information at low density.

To determine the channel capacity, we estimate p at equilib-
rium as follows. At equilibrium, the fraction of 1s introduced
by selection in each generation will equal the fraction of 1s
removed by mutation. Mutation changes the fraction of 1s by
—2u(p — 3).

The increase in the fraction of 1s as a result of se-
lection depends on the intra-collection variance of v
EcrVar(fi,..., fn). Assuming that the f; are approximately

normally distributed, the expected fraction of 1s in selected

half of the population is p + \/?

=4/v since the mean deviation
of a normal variate from the mean is \/ga. As stated above,
the exact method of selection is not important: let us suppose

that the effect of selection is to increase the fraction of ones by

an amount /v, where « is \/g for 50% truncation selection.
The equilibrium equation is therefore

)= avo )

It remains to estimate the expected variance v of the
fractions of 1s Var(fy,..., f,) of genomes in the collection.

Let 0 = (04,...,01) be the marginal frequencies of 1s in
C. That is, let 0; = % > orey x¥. The breeding system ensures
that the values of each element of each genome are statistically
independent, so:

2u(p — %

L
1
v=75Ec) 0:(1-0) ®)
i=1
By symmetry, for 1 <i < L
Ecfi =p—2u(p - 3) ©)
=p—2up+u (10)

For sufficiently large collection size n, each 6; will with high
probability be close to its expected value p — 2u(p — ). It
follows that for large collections

> 2p(1-p) 12

We are most interested in the case where u is small, so that
v R %p(l —p), and we will proceed using this approximation.

The equilibrium equation is

1—
2u(p—3) =« M (13)
which implies
1
. S— (14)
2/ HLu? +1
For L > % the channel capacity is
a? 1 1
=— — — 15
8In2 w? O(Lu4> (15)
hence for large L and n,
1
I — (16)
U

Equation (16) is a remarkable result. The mutation rate
u is typically small, so that the maximal channel capacity
is achieved with large, ill-determined genomes, and is much
larger than the channel capacity with small genomes of size
O(d).

u
G. How large a population is needed?

An important question is how large the population size n
needs to be to approach this channel capacity. A standard
result of population genetics (given in [5]) is that the expected
variance of the fraction of 1s with symmetric mutation and
near-neutrality at individual loci, which is achieved with large
L, is given by
1 Nu
T L 4Nu+1

This implies that I u% for N greater than approximately
1

v a7

E.
IV. A MODEL OF SELECTIVE BREEDING FOR ASEXUAL
ORGANISMS

To model asexual reproduction, we need alter only the
breeding system b. To produce a new collection C’ asexually
from an existing weighted collection (C, w), we sample each
element x’* of C’ independently from (C,w). In this model
of asexual reproduction, genomes do not recombine, so that
each element of C’ is a copy of some element of C. Mutation
is the only source of new genetic variety.

A. Channel capacity of asexual breeding: strong selection
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Equation (7) remains valid for asexual breeding, but v is
not easy to estimate for truncation selection as the distribution
of (f1,...,fn) is no longer normal.

Instead of seeking to compute the channel capacity for
truncation selection, we will bound the capacity of asexual
breeding with a population of size n for any type of selection.

In asexual breeding, the “children” are cloned from the
parent, and differ only in the mutations they accumulate. The
expected fitness of a child, therefore, increases monotonically
with the fitness of the parent. It follows that the fittest possible
child population is obtained by breeding the entire child
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generation C’ from fittest genome in C. That is, the selection
rule — that we term strong selection — which gives the
highest expected fitness of the child population is to set w;
to 1 where x; is a maximally fit genome in C, and to set the
weights of the rest of the genomes in C' to zero.

In equilibrium, the expected fraction of 1s in the best child
should be equal to the fraction of 1s in the parent. For large
L, the distribution of the fraction of 1s in the children will be
approximately normal, so that

u(l — u)
=" = 18
v 7 (18)
~ % when w is small (19)

The mean fraction of 1s in the children will be p —2u(p—1).

The maximum of N samples from a normal distribution is
O(o+/log N) above the mean. It follows that

2u(p— 1) =0 (s/“k’LgN> (20)
so that
I=0 (IOgN) @1
u

Hence the channel capacity for asexual breeding is much
lower than for sexual breeding for low mutation rates. The
difference is large: to achieve a channel capacity comparable
to sexual breeding with a population size of 4%, the size of an
asexual population needs to be exp(O(1)), which is infeasible

for small u. b

V. DISCUSSION

Although the analysis has been quite abstract, the informa-
tional advantage of distributed encodings for sexual breeding
is in principle so large that it seems plausible that such
encodings occur in nature. Well known aspects of the genetics
of eukaryotic organisms may make sense from this point of
view. The (sexual) eukaryotes usually have large genomes,
consisting mostly of “junk”, while the genomes of (asexual)
prokaryotes are generally smaller with a higher proportion
of genes. Although the classical triplet genetic code is the
same in both kingdoms, the genome decodes much information
other than protein sequences. The encoding of regulatory and
developmental information would be informationally efficient
if it were diffuse. “Junk” DNA is produced by many processes:
once it exists it will accumulate genetic variety as mutations
occur, and this genetic variety provides potential channel
capacity. Where channel capacity exists, it is likely to be used.

Eigen et al in [8] argue that a primitive genome must be
limited in length to O(2) because otherwise errors would
accumulate that would prevent the genome from replicating
properly, so that there would be an “error catastrophe” for
genomes of excessive length. We take a different view. There
are no doubt parts of the genome that must be accurate for an
organism to be viable, and for basic components of cells to
function properly. The length of these parts of the genome is

indeed limited, by Eigen et al’s argument, to O(%) However,
for complex organisms, the mechanisms of regulation of
gene expression, and the processes of development, could
conceivably be influenced by very many loci, and might be
robust enough to ce able to interpret a code of low information
density. The adaptive structural complexity of an organism
is necessarily limited by the amount of genetic information
available to the organism’s developmental processes, and the
largest amount of information may be supplied by diffuse,
low-density codes.

For genetic algorithms, these results imply that more in-
teresting behaviour and better adaptation may occur if the
algorithms use diffuse encodings on long genomes, long
enough so that “convergence” of the population to a single
genome never occurs because of mutation and drift. We do not
yet know how to devise suitable diffuse encodings, or under
what circumstances such encodings may spontaneously arise.

The next unanswered question is whether highly distributed
genetic codes that enable high channel capacity tend to evolve
spontaneously. The channel capacity is the maximum possible
maintainable information in the genome under an encoding
that enables the most favourable type of fitness function.
We do not know whether such stable highly distributed and
favourable codes can evolve and themselves be stable under
natural selection.
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