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Complex networks comprised of large-scale distributed heterogeneous systems are everywhere,
for example, in brains, networks of social and economic interactions, and the Internet. Often these
systems have surprising common properties, such as power-law degree distributions, which occur in
networks as different as metabolic networks and co-authorship patterns in scientific publications.
Many mathematical and computational models have been developed over the past decade that
attempt to explain emergent properties at a macro-level. However, understanding more detailed
structure and behavior of complex networks has required the incorporation of more domain-specific
features, for example, incorporating spatial distributions and business relationships into models of
the Internet. In this proposal, we focus on the Internet, and Internet-like systems.

The Internet is one of the largest and most complex human artifacts ever created, and operates
on many different scales, from the slow expansion of new autonomous systems, to the speed-
of-light propagation of data. The Internet involves a multitude of heterogeneous systems and
organizations around the world, including many within the purview of the Department of Energy
(DOE). Although the DOE directly administers networks such as ESNet, much of the information
flow in “open science” depends on the Internet and is outside the direct control of the DOE. The
Internet also resembles many systems within the purview of the DOE, and can serve as a model
for a wide variety of technological networks. There are many excellent data sets available for the
Internet, allowing careful model validation.

We have developed a preliminary version of an agent-based model of Internet-like systems,
known as ASIM, and shown that by considering traffic, geography and economics, we can model
existing networks more accurately than previous models. We propose studying the effects of po-
tential regulatory policies, more realistic traffic models, geographic country-level boundaries, and
preplanned systems (such as ESNet), by extending ASIM. Our goal is to enhance understanding of
complex networks, particularly with respect to predicting emergent properties and understanding
the impact of different policies. We will also study the impact of malicious behavior on complex
networks, particularly the dynamic interplay between security countermeasures and attacks. We
propose to extend ASIM to include models of common classes of malicious behavior (such as botnets
and worms), and the economic burden of security countermeasures. The ASIM software will be
released through open-source licensing, so that it can readily be used by the research community.

Our proposal addresses the area of interest in the LAB 09-23 call related to modeling and
simulation of large-scale complex systems. In particular, ASIM will enable realistic and large-scale
simulations at multiple time scales and levels. The ASIM extensions that incorporate attacks
and countermeasures will enable us to explore the robustness of complex networks in adversarial
environments. Finally, we will address the issue of rigorous validation by expanding our already
comprehensive set of real-world data, and comparing it to the simulated data generated by ASIM.
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1 Narrative

Complex networks formed by large-scale distributed interconnected systems appear in a wide variety
of biological, social, and technological systems, for example, brains, networks of social and economic
interactions, and the Internet [51]. Networks such as these are often characterized by their topology,
including measures such as degree distribution, node centrality, and shortest path calculations. The
flow of data through such systems, however, is often as important as the topological structure, a
feature known as network dynamics. A further complication arises when we consider how complex
networks grow and evolve through time, by adding or deleting nodes and links (sometimes referred
to as graph dynamics). This proposal focuses on the modeling and simulation of large Internet-
like networks, studying how topology, flows, growth and other emergent properties are affected by
different factors, such as economics, geography, traffic patterns, regulatory and security policies,
and malicious attacks.

As one of the most complex human artifacts ever created, the Internet provides an excellent
example of the kind of network we propose to study. In the Internet, dynamic processes of different
time scales operate simultaneously, from the slow expansion of new autonomous systems to the
speed-of-light propagation of data. The Internet involves a multitude of heterogeneous systems
and organizations around the world, including many within the purview of the Department of
Energy (DOE). Although the DOE directly administers and controls networks such as ESNet [50],
much of the information flow in “open science” depends on the Internet and is outside the direct
control of the DOE. Not only does the Internet have profound effects on systems within the purview
of the DOE, but it also bears many similarities to those systems, and can serve as an exemplar for
a wide variety of technological networks. Furthermore, there are many data sets available for the
Internet [56, 14, 57, 38], allowing careful model validation.

Over the past ten years many mathematical and computational models have been developed
to characterize complex networks [52, 26, 51]. Although this work has revealed many interesting
features about networks, it has emphasized generic network models to explain topological features
(such as degree distribution) at the macro-level. To understand and explain complex networks
in more detail, including higher-order characteristics (such as radial structure [35]) and growth
dynamics, requires incorporating more domain-specific knowledge in the models, such as spatial
distributions in models of the Internet [65]. In previous research, we developed a preliminary agent-
based model of the Internet at the autonomous systems (AS) level, called ASIM, and showed that
by considering traffic, geography and economics, we can model existing networks more accurately
than previous models [36].

In agent-based modeling [10], entities in the model are represented explicitly; for example, each
individual economic agent is represented rather than each different type or class of agents, as is
common in other modeling approaches, notably differential equations. An essential feature of agent-
based models is the ability to observe how behavior at different spatial and temporal scales arises
from local mechanisms. This requires studying interactions among large numbers of components,
and to accomplish this agent-based models exclude much real-world detail by design. The research
challenge is to define the model components at the proper level of abstraction, neither including
irrelevant or incorrect detail, nor leaving out essential features. Components and interactions of the
model are encoded as computer programs, allowing researchers to incorporate experimental findings
and hypotheses in the model, even those not easily characterized as mathematical equations.

We propose extending ASIM so that we can study how Internet-like systems are affected by
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regulatory policies, geographic country-level boundaries, and preplanned systems (such as ESNet).
This will enable us to explore a variety of questions, such as, how do government regulations like
censorship affect network growth and traffic flows? What are the best policy approaches to influ-
encing network growth? Our goal is to enhance understanding of complex networks, particularly
with respect to predicting emergent properties (such as higher-order structures) and understanding
the impact of different policies.

We propose further extensions to ASIM so that we can study how malicious behavior affects
complex networks, particularly the dynamic interplay between security countermeasures and at-
tacks. We will include models of common classes of malicious behavior (such as botnets and worms),
and a simple economic model of security countermeasures in ASIM. We believe this will be the first
model to study the technological and economic impact of cyber-attacks on network growth, topol-
ogy and dynamics. We will explore different aspects of the model, including simulations of “what
if” scenarios, for example: if attacks are infrequent, does the drive towards economic competi-
tiveness force organizations to spend less on security and so leave the system as a whole open to
catastrophic failure? Are networks actually more robust when attack frequency is higher? If so,
what are the implications for policy-making?

A central aspect of the proposed research is model validation. In previous work, we validated
ASIM by comparing the topologies and traffic patterns generated by the model to real-world data,
using statistical fitting techniques to evaluate degree distributions and radial structure [35]. We
found that the radial structures generated by the model closely fit those of the Internet, even though
we did not explicitly model the hierarchical structure of the Internet and used very simple models
of traffic patterns. We will explore whether modeling more complex patterns of traffic flow and the
incorporation of explicit hierarchies through business-level agreements between ASes will improve
the accuracy of the model.

We propose to use a variety of mathematical techniques both to validate the model and to
investigate new emergent properties and phenomena in complex networks. We will analyze traffic
flows generated by the ASIM traffic model in more detail, exploring the application of techniques
from network calculus [11] and stochastic processes [40]. We will comprehensively validate the
spatial model, for example, using techniques from fractal geometry [43, 29]. We propose to use
mathematical tools from data-mining [33], such as clustering techniques, to help extract higher-
order structures from the topology. We will investigate the dynamics of network growth using ideas
from metabolic scaling theory [47, 48, 64] and others (for example, dynamical systems theory [61]
and percolation theory [20]). We will also investigate the applicability of ideas in predation theory
to the interaction between attacker and defender [1].

In addition to the research, our proposal involves developing ASIM into a mature software
modeling platform. It will be released through open-source licensing, so that it is available to the
scientific community, and where possible, we will also make all our data sets available.

1.1 Background

Considerable effort has been devoted to the modeling and analysis of complex networks, using both
simulations and the tools of statistical mechanics and graph theory [52, 2, 26, 51]. Advances have
been made in understanding common properties exhibited by broad range of real-world networks,
from ecological webs to social networks to the electric power grid [51].
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1.1.1 Network Models

One of the most common properties exhibited by real-world networks is power-law correlations in
many observables. Of particular interest has been the degree distribution, P(k), defined as the
probability of randomly choosing a vertex with degree k from a graph G. The power-law degree
distribution P(k) ~ k~%, has been shown to hold for many different networks, for example citation
networks (a = 3) [54], the Internet (o = 2.5) [19, 30], and metabolic networks (a = 2) [39]. These
networks are known as scale-free, because the functional form f(z) ~ z does not change when
rescaling x, i.e. f(ax) = bf(z). In effect, there are no characteristic length scales in the degree
distribution (although there often are in other measures).

An important property of scale-free networks is that the nodes are all close together, in the
sense that the shortest path between any pair of nodes is small. The shortest path length (mean
geodesic distance), d has been shown to scale as d ~ InN/Inln N for & = 3, as d ~ Inln N for
2<a<3,and d ~ InN for a > 3 [22]. This relates to the well-known “small world” property [63]:
even for very large networks, the shortest distance between arbitrary pairs of nodes is small, for
example, the mean mean geodesic distance has been calculated at 2.5 for the Internet [19, 30] and
16.2 for the World Wide Web [12].

In their seminal work, Barabasi and Albert [7] (BA) showed that a simple model of random
network growth, called preferential attachment, produces topologies that exhibit power-law degree
distributions. The BA model grows the network from a small set of initial nodes by iteratively
adding new nodes, and connecting to each existing v; with a probability II that is dependent on
the degree k; of v;, I(k;) = k;/>_; k;. The networks that evolve from the BA model exhibit a
time-invariant state for the degree distribution that satisfies a power-law with exponent o = 3.

The BA model is appealing for its simplicity and broad applicability to degree distributions,
but preferential attachment is only likely to be part of the cause of the kinds of network structure
we see. Statistics other than degree distribution can reveal additional structure in networks not
accounted for by the BA model. For example, neither the degree correlation or clustering coefficient
of the Internet are predicted by the BA model [51, 52]. To model accurately specific networks such
as the Internet in more detail requires models that capture more realistic features of the real world.

1.1.2 The Internet

There has been a lot of research aimed at understanding and modeling the Internet [52]. The
Internet is intriguing because its complexity and size preclude comprehensive study. It comprises
millions of individual end nodes connected to tens of thousands of Internet service providers (ISPs)
whose relationships are continually in flux and only partially observable. One way to cope with
these complexities is by analyzing a single scale of Internet data, for example, a local office network
of computers and their interconnections, or a network of email address book contacts, or the network
formed by URL links on the World Wide Web, or the interdomain autonomous system (AS) level.
In previous work we have focused on the the graph of the AS-level, which exhibits power-law degree
distributions (see figure 1). The vertices in the graph are themselves computer networks; roughly
speaking, an AS is an independently operated network or set of networks owned by a single entity.
Edges represent pairs of ASes that can directly communicate.

The AS-level Internet has been modeled by extending the simple preferential attachment models
to include more realistic details, such as geography. The notion of spatial distribution (geography)
was introduced by the BRITE topology generator [44], which models nodes distributed across a grid,
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connected via preferential attachment rules, but with the probability of a connection decreasing
with distance between nodes on the grid. More realistic spatial distributions have been achieved by
distributing nodes to form a fractal set [65], similar to the spatial distribution of Internet routers.

Another approach to Internet modeling uses multi-objective optimization, rather than prefer-
ential attachment, to obtain the characteristic power-law distributions. For example, Fabrikant
et al [28] (FKP) proposed a version of the Highly Optimized Tolerance (HOT) [16] model where
new nodes are randomly placed in the unit square and connections are established in a way that
minimizes the conflicting objectives of connecting to the nearest nodes and connecting to the most
central nodes, where the “centrality” of a node v; is defined, for example, as the closeness central-
ity, C; = (1/n—1) >, >, d(i,j), where d(i, j) is the geodesic distance between vertices v; and v;.
Although the FKP model gives rise to characteristic power-law degree distributions, like the BA
model, it fails to reproduce the higher order structures of the Internet, such as the high degree
of clustering of nodes [52]. More accuracy has been achieved by extending the HOT model to
incorporate economics and geography [17], modeling agents as spatially extended objects [6], and
incorporating peer-to-peer decision processes at the AS-level [18].

Our proposed work is based on the ASIM model [36]. The ASIM model is similar in scope to
the more advanced HOT models, but differs in the details, most importantly by adding explicit
economics in the form of cost. Other differences include accounting for population density, sim-
plifying the treatment of traffic flow, and not assuming a HOT framework (the ASIM model is
described in detail in section 1.2). With the ASIM model, we have shown that we can accurately
model higher-order structures (such as radial distributions [35]), as well as geography and traffic
dynamics (see section 1.2).

1.1.3 Resilience of Networks

The resilience of random networks has received a great deal of attention, beginning with the work
of Albert and Barabasi [3], who studied the impact of node deletion on network connectivity.
They found that for scale-free networks, iterative deletion of randomly selected nodes had almost
no impact on the mean geodesic distance, whereas targeted deletion (the iterative removal of the
highest degree node), resulted in a linear increase in mean geodesic distance (see figure 2). From
this they concluded that scale-free networks are highly resistant to random failure, but vulnerable
to targeted attack, a property that has been termed the Achilles Heel of the Internet [62].

The deletion of nodes not only impacts the mean geodesic distance, but can also result in the
appearance of disconnected subgraphs [3]. This aspect of resilience has been studied [15, 21] using
percolation theory, which can be used to determine the phase transition to systemic failure, where
a network with a giant component becomes a fragmented network of disconnected subgraphs. It
has been shown that with random deletions on a scale-free network, there is no phase transition
to systemic failure, whereas targeted deletions result in phase transitions to systemic failure, for
example, in the Internet the giant component disappears with the deletion of as few as 4.7% of the
nodes [52].

In networks that experience flows, such as the Internet and the power-grid, a single failure can
lead to a cascade of failures as load gets redistributed and overwhelms remaining nodes, for example
route flap storms [42] and power-blackouts [25, 4]. Cascading failures can be analyzed [37, 49, 46]
by assuming that the capacity of a node v; is proportional to its betweenness centrality [31], B; =
> st 0i(s,t)/0(s,t), where oy(s,t) is the number of geodesic paths between nodes vs and v; that
run through v; and o(s,t) is the total number of geodesic paths between vs and v;. When a node’s
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Figure 2: Mean geodesic distance d versus
Figure 1: Degree distribution of the Internet fraction f of nodes removed. The round sym-
at the autonomous systems level. P(k) follows a bols (upper line) is targeted deletion, and the
power-law distribution with exponent o = 2.5. square symbols (lower line) is random deletion.
Figure reproduced from Chen et al. [19]. Figure reproduced from Albert et al [3].

capacity is exceeded, it fails and its load is diverted to the remaining nodes, which could fail in
turn. Large-scale cascades can be triggered by the failure of a single key node, namely those with
high loads (high betweenness centrality). This result is particularly relevant to the energy security
mission of the DOE, because it indicates the vulnerability of power-grids to targeted attack.

1.1.4 Theoretical Models of Network Growth

Insights into the growth of complex networks have been gained through the study of biological
scaling laws [13]. One of the models of growth that predicts these scaling laws is the ontogenetic
growth model (OGM) [64]. The OGM is a general mechanistic model of organism growth that—in
contrast to most previous models—relates model parameters to fundamental biological properties
and predicts sigmoidal growth curves that match empirically measured curves for a variety of animal
taxa [48]. OGM has been successfully applied to modeling the growth of other complex systems,
for example, Bettencourt et al. applied the OGM to the growth of cities [9], by adapting the theory
to account for both the diminishing returns of finite resources and network scaling, and by adding
a term to account for increasing returns arising from innovation. In contrast to the asymptotic
growth curves observed for organisms, their results predict exponential growth curves followed by
precipitous crashes.

The OGM is based on conservation of energy: the rate at which energy is devoted to growth
(production of new biomass) is equal to the rate at which metabolic energy is assimilated minus
the rate at which energy is allocated to maintenance of existing biomass. This can be expressed
as dm/dt = am® — bmP where m is mass at time ¢, and a and b are parameters that characterize
the amount of energy required to maintain (b) or create (a) a unit of biomass. Depending on the
setting, « is usually 3/4, and 3 is usually 1.0. The 3/4 exponent is observed to hold across a wide
variety of organisms, indicating that the model successfully predicts a key emergent property of
growing networks.
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1.2 AS Simulation Model (ASIM)

ASIM is an agent-based model that attempts to reproduce large-scale features of the AS level of
the Internet by modeling localized and well-understood network interactions. The ASes of the
Internet lend themselves naturally to discrete agent-based models [10]. Each AS is an economic
agent, comprised of a spatially discrete network. Traffic provides income to the ASes, which is
then invested in infrastructure, which can then lead to changes in traffic patterns. Over time,
ASes create new links to other ASes, upgrade their carrying capacity, and compete for customer
traffic. The agents in the ASIM model behave similarly, although they are highly simplified, being
designed to be general enough to model any spatially extended communication network built by
economically driven agents. These agents manage traffic over a geographically extended network
(which we refer to as a subnetwork to distinguish it from the network of ASes) and profit from the
traffic that flows through their network.

We compare the agents to the ASes that comprise the Internet. This is not an exact mapping—
some of the Internet Service Providers (ISPs) have many AS numbers (e.g., AT&T), while other
ASes are shared by several organizations. We make the common simplifying assumption that once
an agent is introduced, it does not merge with another agent or go bankrupt [52, 58, 18]. This is
partially justified by the fact that the Internet, from its inception, has grown monotonically, and we
seek to capture this dynamic in our model. Most models of the AS graph enforce strict growth [52]
as well and are, as ours, justified by their a posteriori ability to reproduce measured features.

We assume a network user population distributed over a two-dimensional area. Traffic is sim-
ulated by a packet-exchange model, where a packet’s source and destination are generated with
a probability that is a function of the population profile. The model is initialized with one agent
comprised of a subnetwork that spans one grid location (referred to as a pizel of the landscape.
As time progresses, the agent may extend its subnetwork to other pixels, so that the subnetworks
reach a larger fraction of the population. This creates more traffic, which generates profit, which
is then reinvested into further network expansion. Through positive feedback, the network grows
until it covers the entire population.

An agent ¢ is associated with a set of locations A; (representing sources or end-points of traffic,
and peering points), a capacity K; (limiting the rate of packets that can pass through the agent),
a packet-queue @Q;, and a set of neighbor agents I';. A necessary, but not sufficient, condition for
two agents to be connected is that their locations overlap in at least one pixel. The locations exist
on an L, x L, square grid. A pixel of the grid is characterized by its population p(z,y) and the set
of agents with a presence there A(z,y). The total number of agents in the simulation is denoted
by n, and the number of links between agents by m. These quantities, except L, and L,, depend
on the simulation time. The outer loop of the model then iterates over the following phases:

1. Network growth. The number of agents is increased. Existing agents expand geographically,
and their capacities are adjusted.

2. Network traffic. Packets are created, propagated toward their targets, and delivered. This
process is repeated Niafme times before the next network-growth step.

We measure simulation time 7 as the number of times phase 1 is executed (the time unit between
packet movements is 1/Niafic). In the remainder of this section we describe the growth and traffic
steps in greater detail.
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1.2.1 Network growth

The income of an agent during a time step is proportional to the traffic propagated by the agent
during the period. This is a simplification of reality, for example, income could depend both on
the amount of traffic and the prices for forwarding the packets set by business agreements. Assume
an agent 7 has a budget B; that it invests so that it can increase its traffic and thus its profit.
Since there is a possibility of congestion in the model, agent ¢ tries first to remove bottlenecks by
increasing its capacity K; (the number of packets that the agent can transit during one time step).
When the capacity is sufficient, the agent spends the rest of its budget on increasing its traffic by
expanding geographically. There are three prices associated with network growth. The capacity
price Ceapacity is the price of increasing K; one unit. For simplicity we let Ceapacity be independent
of the size of the agent’s subnetwork. The wire price Cyire is the price per pixel between a new
location and the agent’s closest existing location. Finally, Cconnect is the cost of connecting two
agents with locations at the same pixel.

The average degree (number of neighbors of an AS) in the AS graph has been relatively constant
over time [52, 24] (increasing about 5% from 2001 to 2007).! We take this as a constraint in the
model and let the desired average degree kp be a control parameter. We also assume that each
agent tries to spend all of its budget, but not more than that, whenever it is updated.

The network growth phase iterates over the following steps (see figure 3):

1. Increase of the number of agents. As long as the network is too dense (i.e. if 2m > kpn), new
agents are added. New agents are situated in the pixel (z,y) that has the highest available
population p(x,y)/(A(x,y) + 1) where A(z,y) is the cardinality of A(z,y) and A(z,y) > 1.
The budget and capacity of the new agents are initialized to Bjy;x and Kt respectively.

If the network is small, n < kp + 1, it is not dense enough for new agents to be added in
step 1. Thus, we do not apply this condition when n is less than a threshold ng and call the
time when n = ng is reached t.

2. Capacity increase. Each agent synchronously increases its subnetwork’s capacity based upon
traffic from the last time step (but not more than the agent can afford). Agent i invests
the minimum of (B;, CeapacityAT;,0, 0) to increase capacity (AT; is the change in traffic
propagated by i since the last update).

3. Link addition. While 2m < nkp (which usually means kp — 1 times), choose two agents
randomly that are not already connected and share a common pixel. If the budgets of both
agents are larger than Ceopnect, then connect them.

4. Spatial extension. Let the agents with remaining budget extend their networks. Iterate
through all agents ¢ and add a location at the pixel, not in A;, that has the highest available
population p(z,y)/(L(z,y)+1), and is not further than (B; —Ceonnect)/Cwire from a location in
A; (i.e., not further from ¢ than i can afford). (See Figure 3(b)). Alternatively, the algorithm
could select the point with the lowest cost per unit of population. However, such an algorithm
is computationally prohibitive for studying networks of the Internet’s scale.

Each agent’s budget is updated immediately after each modification.

!This calculation is based on data from Oregon Routeviews, www.routeviews.org. Although more edges of the
AS graph can be identified by combining multiple data sources, the Routeviews data set has been compiled in a
consistent way over the years, so we believe that the relative degree increase is reliable.
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Figure 3: Network growth in ASIM. (a) shows
the locations of four spatially distributed agents
as different symbols on the geographic grid.
These are assumed to be connected by a physi-
cal network administrated by the agent, but this
is not explicit in the model. (b) is an example
graph resulting from (a), and (c) illustrates the
area that an agent can afford to expand to (the
shaded region). Figure reproduced from Holme
et al. [36].

1.2.2 Network traffic

b -
%
t=1 t=2 t=3%

Figure 4: Traffic simulation in ASIM. (a) A
packet is propagated from source s to a ran-
domly selected target agent at t. Each agent 7
queues the packets it receives and can relay K;
packets to neighboring agents. The arrows in
(b) symbolize the packet’s probabilistic route
from source to destination agent. Figure re-
produced from Holme et al. [36].

We model traffic with a discrete, packet-exchange model [34, 27]. The packets are generated with
specific source and target pixels, but the routing takes place on the network of agents. We neglect
intradomain routing among the agent’s locations, assuming that the time it takes for a packet to
pass through an agent is independent of the specific locations it visits. The dynamics are defined

as follows (see figure 4):

1. Packet generation. We assume that most traffic originates from direct communication between
individuals and does not depend on the distance between them. For each pair of points
[(z,y), (2',y)] on the grid, we create a packet with source (x,y) and destination (z/,y’) with
probability Pyie p(x,y) p(2,y’), where Py, is a parameter that controls the rate at which
new packets are created. Then, an agent is selected at random from those at the source pixel
to become the source node. The destination agent is randomly chosen from the agents at the
destination pixel. Finally, one unit of credit is added to the sender’s budget.

2. Packet propagation. Each agent i propagates the first K; packets from its queue (of length ;)
each time step and receives one unit credit for each propagated packet. A packet can travel
only one hop (inter-AS transmission) per time step. A packet at agent i is propagated to a
neighbor j with probability exp(A(d(i,t) — d(j,t)) (where ¢ is the recipient AS, d( -, -) is the
graph distance, and A is a parameter controlling the deviation from shortest-path routing [59]

observed in Ref. [32]).

3. Packet delivery. For all agents, delete all packets that have reached their target.
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graph (AS06) inferred from real data together
with degree distribution of a network generated
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sity plot that illustrates the correlation between
traffic and degree in ASIM model runs. Figure
reproduced from Holme et al. [36].
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Figure 6: Radial statistics for real and model
AS networks. Panels (a)—(c) show the radial
densities of nodes for the real AS-graph and
the ASIM algorithm (a), the BA (b), and FKP
(c) models. Panels (d)—(f) show the average
degree vs. average distance d for the ASIM al-
gorithm, the BA, and the FKP models, respec-
tively. d is the inverse of the closeness central-
ity. Figure reproduced from Holme et al. [35].

1.2.3 Simulation Results

ASIM provides a simple yet powerful model that generates AS networks that closely match reality
and are more accurate than earlier models of Internet growth. Figure 5 shows the degree distribution
of networks generated by ASIM compared to those generated by the original BA and FKP models.
Looking beyond degree distributions at the higher-order structures of the Internet (figure 6), we
can see that ASIM generates more realistic networks than the BA and FKP models. Furthermore,
figure 6(a) shows how ASIM-generated networks have peaks and troughs that roughly correspond
to the hierarchical levels in the Internet.

1.3 Proposed Research

We propose research to develop models for studying a broad set of questions concerning the impact
of policies, regulations, geographic borders, preplanned networks, and security and attacks on
networks. To address these questions, we have divided the project into the following emphasis areas:
(1) model extensions, (2) simulating cyberattacks and countermeasures, (3) model validation, and
(4) software development. In addition to results produced by our own investigations, the project
will contribute a mature open-source modeling platform, available to the scientific community.

Our research will build on the ASIM platform. For each proposed extension, we will first study
how it affects network topology using the measures described in Section 1.1. Next, we will study
the effect on network traffic, using the methods of Ref. [34, 36, 11], and finally the effect if any on
network growth using the approaches outlined in Section 1.3.3.
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1.3.1 Model Extensions

We propose extensions to ASIM in several areas: traffic modeling, economic models, regulatory
policies, and political boundaries.

The current ASIM prototype uses a simplistic traffic model. Although our preliminary work
showed that this model yields realistic results, we will implement additional features to see if they
have discernible impact. First, we will implement communication rates that depend on the distance
between agents, rather than being independent of distance. Second, we will implement service-to-
user traffic propagation and compare it to the current method of propagation, which more closely
resembles peer-to-peer. Finally, we will extend the routing model to account for business relation-
ships among ASes. In the current prototype, the next hop for routing is selected according to path
length. However, commercial incentives dictate route selection based on contractual agreements
[55], which govern how ASes exchange traffic on behalf of their customers; most commonly they
adhere to the “valley free” rule, in which customers do not transit traffic between providers, and
peers do not transit traffic between other peers. The valley free rule is an example of how external
factors can impose hierarchies on the structure of the Internet. We will extend ASIM to incorporate
a generic form of this constraint (similar to models of business agreements [58, 18]) and study the
impact of these hierarchies and other imposed structures on topology, dynamics, and growth.

There are other constraints that we hypothesize will impact network growth. A class of these
alter the economics of the model by altering the cost basis. For example, government regulation of
packet contents could force providers to implement packet inspection, which could increase the cost
of routing, as well as reduce throughput. Regulation may start to directly dictate cost structures.
For example, if the Internet were to be regulated as a public utility similar to the power-grid
or the telephone network, Internet providers could be forced to provide low-cost connectivity for
poorer segments of the populace. The impact on network growth and structure could be even
more profound if the constraints were applied asymmetrically, for example, if regulations require
only providers of a certain size to inspect traffic. Similar questions arise for quality-of-service
guarantees, which could either be mandated or offered as an optional service enhancement. We
intend to investigate these issues by extending the model to incorporate alternative, non-uniform
cost structures and externally imposed traffic constraints. Such constraints also lay the groundwork
for modeling the costs of security countermeasures.

Policies and regulations already vary from one country to the next. Although the current ASIM
prototype incorporates geography, it does not model groups of geographically linked ASes that act
under a single policy. We will extend ASIM to model countries. A complicating factor is that many
ASes extend over multiple countries, and are subject to multiple regulatory regimes, a problem we
addressed in [41]. Initially, we will define countries naively by applying boundaries to the geographic
grid. Each location on the grid will then be subject to the regulations of the respective country,
allowing us to investigate the effects of diverse policies on the network. For example, we can explore
the issues of country-level censorship, and what strategies a country or group of countries might
use to route around or avoid a country that was known to eavesdrop or censor [41].

ASIM currently models the commercial Internet, where growth is driven by market forces.
However, many governments build large, preplanned networks for various purposes, such as military
communication, control of information, or for scientific collaboration (e.g. ESNet, Internet2). These
networks often have their own cost structure and regulatory policies, and they usually interface with
the Internet, which could have unforeseen consequences for both kinds of network. We are unaware
of any research that has modeled the effect of preplanned networks on the growth of unstructured
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complex systems such as the Internet; we propose to begin exploring this interaction by extending
ASIM to model subnets that are planned, operate under their own policies, and interconnect with
commercial networks. This aspect of the project is particularly relevant to the Science Mission
of the DOE, which promotes open science through large-scale, preplanned collaborative networks
such as ESNet.

For each extension, we will study the effect on network topology, for instance, the degree
distribution and the radial structure. Some extensions could change not only the exponent of
the power-law currently seen in the degree-distribution, but could even change the form of the
distribution itself. We will run “what-if” scenarios to determine if the fundamentals of the network
topology can be changed by external factors such as government regulation. We will also measure
the effect of the model extensions on traffic flow patterns, particularly throughput and latency.
Throughput can be measured as the number of packets transferred per time step, and latency is
the number of steps it takes for a packet to reach its destination. Throughput and latency will
enable us to measure the efficiency of the network in a more realistic manner than simply considering
topological metrics. We hypothesize that extensions such as business agreements and government
regulations will affect throughput and latency, even if they do not affect the degree distribution or
other aspects of the network topology.

1.3.2 Attacks and Countermeasures

Most attacks happen on much shorter timescales than the timescale on which network topology
changes, and hence any individual attack is unlikely to have long-term impact. However, the chronic
onslaught of multiple attacks could change how the network evolves, similarly to chronic parasitic
infections stunting an organism’s growth or impairing its long-term fitness. We plan to investigate
this interaction by extending ASIM to incorporate models of chronic attacks. We are particularly
interested in the economic impact of chronic or large-scale attacks and will emphasize that in our
studies. We will implement generic versions of several forms of attack, including node deletion,
denial-of-service, botnets, worms, and routing attacks.

In node deletion, nodes are removed from the network, simulating infrastructure attacks or
simple node failure. Previous studies [3] have shown that scale-free networks are resilient to ran-
dom node deletion, but vulnerable to targeted deletion. However, these studies considered only
topological and reachability effects at a single instant in time, and ignored the impact of deletions
on the growth and evolution of the network. We will study chronic, recurring deletions, and we
will consider both targeted and random deletions.

Moving beyond node deletion, we will study other classes of attacks that impact directly on
traffic flow and economic costs. In ASIM the income of an agent is proportional to the traffic it
propagates. Thus, we can simulate several attack classes as spurious traffic, for which agents receive
no income; this enables the model to reflect the economic impact of attacks. The generation and
distribution of the spurious traffic will largely depend on the form of attack, for example, a denial-
of-service (DoS) attack involves large volumes of traffic flowing from multiple locations, directed
at a single target location, whereas spam consists of traffic flowing from many locations to many
other locations, and worms generate traffic that begins in a few locations and rapidly spreads to
many locations.

We will represent these various forms of attack by overlaying spurious traffic generators on
the ASIM agents. These can be regarded as parasitic networks that exist on top of the normal,
commercial networks. Of particular interest is modeling the growth of botnets, because botnets
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are used extensively to generate spam and launch DoS attacks, and may determine the spatial
distribution of spurious traffic. We will model both long-lived generators, such as botnets that
evade detection, and short-lived generators, such as worms that spread rapidly and then die out as
the worm is detected and eliminated.

Another class of attacks targets the routing infrastructure itself, for example incorrectly rerout-
ing traffic, refusing to route traffic, and “black-hole” routing, where a router takes in traffic but
does not pass it on. We will simulate these attacks by applying changes in the traffic model to the
compromised routers. A challenge of simulating routing infrastructure attacks is assigning a cost
or negative impact. Our initial idea is to regard packets that do not reach their destination because
of rerouting or black-holes as spurious traffic, which hence imposes a burden but no income on the
ASes.

The interaction between security countermeasures and attacks forms a continual arms-race,
which we hypothesize will affect the evolution of the Internet and all other complex networks
that are subject to exploitation by malicious elements. We propose a simple economic model
of countermeasures, assuming that agents can spend part of their budget on security, which will
reduce the number of compromised nodes and reduce the flow of spurious traffic. The effectiveness
of the countermeasures can be modeled by relating the amount spent to the probability of success.
Because this relationship may not be linear (it could be a step function), we plan to investigate
various different cost relationships.

To summarize, we propose to investigate the impact of ongoing attacks on several aspects of the
network: its stability when subject to perturbations caused by attacks, the impact of chronic at-
tacks, and the effect of regulations and security measures. Our previous work suggests that several
characteristics of the model such as the degree distribution are independent of time; will this still
be the case in the presence of attacks? Another important issue is whether preplanned networks
are more or less resilient to attacks, and how integrating preplanned subnets into the randomly
generated networks changes the resilience of the overall network. At the heart of this investigation
is the interplay between attacks and security countermeasures. Cost competitiveness is a driver
towards lower security and the impact of attacks is a driver towards higher security. We are inter-
ested in how the frequency of attacks affects this trade-off. For example, if the attack frequency is
sufficiently low, do agents neglect security sufficiently that the network is vulnerable to catastrophic
failure? Is the network actually more resilient when subject to higher attack frequencies?

1.3.3 Model Validation

Although we are interested in the basic principles governing complex networks generally, in previous
work we focused on the Internet because it is an obvious and compelling example with a wealth of
available data. Using real-world data, we demonstrated that ASIM generates networks that closely
match the degree distribution and radial structure of real networks, and is more accurate than
other commonly used models (as shown in figures 5 and 6). Furthermore, ASIM generates traffic
patterns that closely match those occurring in the real Internet. For example, our probabilistic
propagation method (section 1.2.2) has a similar effect on average path length—the excess distance
of real paths traveled compared to the shortest graph distance—as that observed for real Internet
traffic [32].

As we extend the model, we intend to draw from the many available sources of real-world
data [56, 14, 57, 38] to ensure that ASIM still provides an accurate model of the Internet. One
example concerns hierarchical structure of routing and whether incorporating business agreements
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into the model improves model accuracy or not. Another example concerns the round-trip-time
(RTT) between nodes, for which there is readily available data, for example, the RTT normalized
by the geographic distance shows a distinct power-law distribution, with exponent a = —2 [53].
Yet another example is the dynamic evolution of the network structure, which we can compare to
the connectivity maps collected over the last ten years by various organizations [14, 56].

In previous work, we validated the spatial distributions produced by the model by seeding it
with the population density of the US, and observing that the resulting networks closely matched
existing AS networks. This limited form of validation showed that the model produces realistic
spatial distributions given real-world empirical starting conditions. We want to ensure that the
spatial distributions are valid for generic starting conditions. In this case a direct mapping of
the network produced by the model to real-world data cannot be used to validate the spatial
distribution. However, there are other methods we can use, for example, it has been shown that the
distribution of routers in the Internet is fractal [65], as measured using the box counting dimension
[43]. If the spatial distributions generated by ASIM result in similar box counting dimensions, then
we have further validation of the spatial aspect of the model.

Investigating the impact of attacks and security countermeasures is an addition that will require
careful validation. Although predicting and modeling individual and isolated attacks is difficult in
general, we are interested in the large scale, where the rate of attacks, spread of malware, growth
of botnets, etc, is more amenable to modeling. Fortunately, there is much data available, for
example, on the spread of network worms [45] and email viruses [5], the impact of worms on
Internet routing [23], and the extent and spread of botnets [60]. The efficacy of countermeasures
can be derived from various data about the cost of security and the failure rate of defenses such as
network intrusion detection systems and antivirus software.

There are several theoretical approaches to exploring and validating network growth. Our first
approach will be to adapt OGM—the ontogenetic growth model (section 1.1.4)—to describe net-
work growth in ASIM. We observe that population density (consumers) plays the role of energy
availability to the system, there are close parallels between network scaling in biological and com-
putational systems [47] (although the geometry is two-dimensional instead of three-dimensional),
and that the economic model of ASIM will govern the trade-off between maintenance and expan-
sion. This approach will complement the data-driven approach to validation that we have already
described. We will also explore other theoretical approaches such as percolation theory [20], which
has proved useful in the analysis of resilience, and could help to identify critical points in the
dynamics, particularly with regard to attacks.

1.3.4 Software Development

To further research and collaboration with the scientific community, we will develop a readily-
available, mature, open-source modeling platform. The current prototype code is written in C+-+
and is available at http://www.tp.umu.se/ holme /asim/. We will rewrite the prototype using Unified
Parallel C (UPC), a Partitioned Global Address Space (PGAS) language that is designed to run
efficiently on large-scale distributed-memory computers. This will enable us to run large-scale
simulations efficiently, even with the added complexity of the proposed extensions. The Berkeley
UPC (BUPC) implementation from Lawrence Berkeley National Laboratory [8] is the most mature
and portable UPC implementation and is a logical choice given the close collaboration between PI
Hofmeyr and the developers of BUPC.

The software will be made publicly available under the GPL license, and where possible, we will
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make all our data publicly available, so that other researchers can use our repositories to validate
their own models. Much of the data will obtained from other organizations and hence be subject
to other restrictions on distribution.

1.4 Organization

The proposed budget is $393K /year, with $193K spent at LBNL and $200K at the UNM campus.
Hofmeyr has 10 years of experience of applied research in the computer industry, managing teams of
engineers and directing the research efforts of a commercial cybersecurity company. He will be the
lead software architect and primarily responsible for overseeing the software development aspect
of the project. This will include decisions about software environments, overall design, coding
practices and code reviews, as well as managing software releases.

Forrest has nearly 20 years of experience conducting interdisciplinary research, training stu-
dents and managing large grants, primarily in biomodeling and computer security. Hofmeyr and
Forrest will share responsibility for decisions about model development and experimental design,
for example, decisions about which features to add to the model, how to represent attacks such as
botnet activity in the model, and designing specific experiments to test hypotheses about the model.
The PIs will also share responsibility for written dissemination of the project results, through pub-
lished papers. The PlIs have a long history of productive collaboration, beginning when Hofmeyr
was a student at UNM, continuing with the co-founding of a security company, and most recently
co-authoring a retrospective paper for a tight deadline.

The students will be physically located in the UNM Computer Science Department and they
will be part of the Adaptive Computation Laboratory (ACL) at UNM, directed by Forrest. The
students will be assigned offices in the 1000sq. ft. facility and will participate in weekly laboratory
meetings. The students will spend the summer at LBNL, further facilitating interaction between
UNM and LBNL.

1.5 Project Timetable

The research agenda of the project consists of model design, experimentation, simulation and math-
ematical analyzes, software development and real-world data gathering (for validation). Information
will be disseminated in the form of high-quality research publications and ongoing interactions with
the research community. We plan on one major software release per year, for each of the three
years (there may also be minor releases at other times).

Year 1: During the first year we will rewrite ASIM in UPC (by Q2), design and implement a
set of extensions, including new traffic models and constraints that model business agreements
(by Q3). We will devise experiments to validate the extensions and further aspects of the basic
model (such as traffic flow, spatial distributions and network growth) against current data sets by
Q4. Concurrently, we will begin exploring new mathematical techniques for analysis, such as net-
work calculus for traffic flows, fractal geometry for spatial aspects, and scaling theory for growth,
by Q4. We will establish a project website by Q2 and release the first major software version by Q4.

Year 2: During the second year we will extend ASIM to include attack classes and security coun-
termeasures by Q2. We will devise experiments to validate the security countermeasures and attack
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extensions by Q3, and we will carry out experiments to investigate the dynamics of the cybersecu-
rity arms race and other aspects of security, by Q4. We will continue the ongoing mathematical
analyzes of the traffic and spatial components of the model, and explore the application of tech-
niques from predation theory and percolation theory to the understanding of attacker-defender
dynamics. We will release the second major software version by Q4. We will acquire additional
data sets, with one of the graduate students assigned full-time to the task of preprocessing the data
to remove errors and running algorithms to infer probable graph structure and dynamics from the
input data.

Year 3: During the third year we will extend ASIM to include government regulations, country
boundaries and preplanned networks, by Q2. We will devise experiments to explore the impact of
the new features and we will further extend the existing analyzes; in particular we will investigate
new approaches to understanding networks generated by the combination of random and preplanned
growth, such as the dynamical systems theories that focus on small-world graph models, by Q4. In
Q3-Q4, we will focus on project reports, documentation, dissemination of information, and ensuring
that we have a mature software platform. We will release the third and final major software version

by Q4.

1.6 Collaboration and Communication

PI Forrest is an External Professor at the Santa Fe Institute (SFI) and serves on its Science
board, an affiliation which gives the project access to researchers who study complex networks
and scaling. For example, Forrest and Mark Newman, a statistical physicist, have collaborated
in the past on mathematical and computational models of technological networks. Newman was
mentor to Prof. Petter Holme, currently at the Royal Institute of Technology, Stockholm, and the
author of the current ASIM prototype. Holme is interested in collaborating actively on the project.
Forrest also collaborates closely with other research groups at LANL and UNM, for example,
the West and Brown scaling group, jointly working on projects to reformulate metabolic scaling
theory for computational problems. In the computer networking domain, PI Forrest collaborated
with Prof. Jennifer Rexford of Princeton University on the development of Pretty Good BGP, a
distributed anomaly detection and response system for BGP. Rexford contributes valuable expertise
on commercial computer networks. In addition to her own expertise in computer security, Forrest
has close contacts in industry, such as Matt Williamson of AVG.

PI Hofmeyr is currently collaborating with researchers, such as Prof. John Kubiatowicz, at
the UC Berkeley Parallel Computing Laboratory, on a project to design a new operating system
for multicore computers, using ideas from distributed systems. In addition, as a consequence of
starting a computer security company, Hofmeyr is still closely tied to the computer security industry,
through connections like Elias Levy at Symantec, who was the founder of SecurityFocus.
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