
A spoonful of DevOps helps the GI go down
Benoit Baudry, Nicolas

Harrand
KTH,

baudry,harrand@kth.se

Eric Schulte
Grammatech

schulte.eric@gmail.com

Chris Timperley
Carnegie Mellon University

ctimperley@cmu.edu

Shin Hwei Tan
National University of Singapore

shinhwei@comp.nus.edu.sg

Marija Selakovic
TU Darmstadt

m.selakovic89@gmail.com

Emamurho Ugherughe
SAP

emamurho@gmail.com

ABSTRACT
DevOps emphasizes a high degree of automation at all phases of the
software development lifecyle. Meanwhile, Genetic Improvement
(GI) focuses on the automatic improvement of software artifacts.
In this paper, we discuss why we believe that DevOps offers an
excellent technical context for easing the adoption of GI techniques
by software developers. We also discuss A/B testing as a prominent
and clear example of GI taking place in the wild today, albeit one
with human-supervised fitness and mutation operators.

KEYWORDS
Genetic Improvement, Continuous Integration, DevOps
ACM Reference Format:
Benoit Baudry, Nicolas Harrand, Eric Schulte, Chris Timperley, Shin Hwei
Tan, Marija Selakovic, and Emamurho Ugherughe. 2018. A spoonful of De-
vOps helps the GI go down. In Proceedings of Workshop on Genetic Improve-
ment (GI). ACM, New York, NY, USA, 2 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
Genetic Improvement aims at improving existing software artifacts
through search via automatic transformations and evaluation [5].
GI has been used to automatically improve software in a variety
of ways, including fixing bugs [10] and reducing energy consump-
tion [2]. In this paper, we outline how GI could have a broader
impact on the software-engineering community by leveraging ex-
isting DevOps tooling to enable the deployment of GI at scale.

DevOps, a portmanteau of development and operations, aims at
continuous end-to-end automation in software development and de-
livery [1]. DevOps has been adopted by most web-based companies
and is gaining momentum in other software-intensive industries
(e.g., telecom1, finance2, IT3, etc.). From a software-technology per-
spective, DevOps emphasizes the construction of software factories
that assemble tens of tools, each of them in charge of automating
1https://www.ericsson.com/en/publications/ericsson-technology-review/archive/
2017/devops-fueling-the-evolution-toward-5g-networks
2http://tech.finn.no/2017/03/10/unleash-your-features-gradually/
3https://atos.net/en/blog/devops-or-die

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GI, 2018, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

Figure 1: DevOps: end-to-end automation of software devel-
opment and operation for continuous evolution.

one task of the process from commit to deployment to end users.
From a process perspective, DevOps is a way of closing the gap
between development teams and the operational teams in charge
of deployment and production operations. The∞-shape in Figure 1
illustrates this continuous flow of software evolution.

Both the social and technical dimensions of DevOps pave the
way for the adoption of GI. From a social perspective, we often
hear in the GI community: “developers do not want a tool to mess
with their code.” From a technical dimension, application of GI
requires tooling that is able to automatically build and evaluate
software. The DevOps process provides for full automation. DevOps
developers are accustomed to tools that manipulate their code in
various ways (e.g., code review, deployment, merging). We believe
that integrating GI technologies into this tool-supported process
and finding appropriate niches for automatic improvement within
DevOps is one way to promote and accelerate the adoption of GI
among software developers.

In the rest of this paper, we discuss technical aspects of the
integration of GI into DevOps: we identify artifacts produced in
DevOps pipelines that may be genetically improved, as well as tools
that automate DevOps tasks that can be leveraged by GI.

2 OPPORTUNITIES FOR GI IN DEVOPS
The existence of sets of software artifacts, i.e. of populations of
artifacts, is a key feature that shall be leveraged by GI. To name a few
of these populations in DevOps; there is populations of pull requests
in the code phase; populations of tests in the test phase; populations
of dependencies in the build phase; populations of instances of
server and client side parts of an application in the deploy phase.
These populations of artifacts open several opportunities for GI.

Although most GI techniques modify source code to automat-
ically fix bugs or improve performance, the scope of GI is much
broader: to automatically improve any software artifact produced by
human developers. In this section, we identify several non-source

https://doi.org/10.475/123_4
https://www.ericsson.com/en/publications/ericsson-technology-review/archive/2017/devops-fueling-the-evolution-toward-5g-networks
https://www.ericsson.com/en/publications/ericsson-technology-review/archive/2017/devops-fueling-the-evolution-toward-5g-networks
http://tech.finn.no/2017/03/10/unleash-your-features-gradually/
https://atos.net/en/blog/devops-or-die
https://doi.org/10.475/123_4

GI, 2018, Sweden Baudry et al.

code artifacts produced in DevOps, and discuss how they can bene-
fit from genetic improvement. The opportunities discussed below
correspond to the numbers annotating the DevOps in Figure 1.
(1) Fixing merge conflicts. In a collaborative development setting

merge conflicts, in which multiple developers simultaneously
edit a section of code, are frequent. Solving these conflicts is
a time consuming manual task, which can benefit from GI au-
tomation. In this scenario there are at least three versions of
code (master and 2 conflicting versions), each of which comes
with a test suite. GI may be used to genetically recombine these
versions using the combined test suite as a fitness function. Prior
work that fixes software errors using multiple program versions
shows the feasibility of this approach [8]. Such automation may
result in significant time savings for software engineers.

(2) Genetically improve the test suite. Automatic testing is essential
in DevOps. As a result, developers write sets of test cases that
can be automatically executed. These are software artifacts that
can be genetically improved. Improvement here consists in aug-
menting the test suites with new cases that execute uncovered
branches or increases the mutation score of the suites. DSpot4
and AFL5 are examples of tools that address this form of GI.

(3) Genetically fix flaky tests, i.e., tests that randomly pass or fail on
the same program version. Such tests are problematic for con-
tinuous integration (CI) since the test results vary across runs.
There are many causes for flaky behavior, e.g., concurrency,
network access, I/O operations, etc. One mitigation strategy is
to increase isolation of the code under test. Here, GI can search
for a version of the test code that is more stable (test stability
could be measured by the changes in test outcomes across runs).

(4) The (CI) engine collects build dependencies, builds the complete
application, and runs the tests automatically. If a bug appears
in new code it will first manifest in the CI pipeline. That and
the fact that the CI can run tests on demand suggests that CI
provides an excellent entry point for automatic GI bug repair in
DevOps. The very first tool filling this niche is now available [9].

(5) Building large projects requires assemblingmultiple parts, which
independently declare dependencies to third party libraries.
This results in new kinds of build bugs, dependency conflicts.
For example, if multiple modules depend on different versions
of a library, the build will fail. Fixes require finding a combi-
nation of edits in dependency declaration to resolve conflicts.
This search is a classic GI task.

(6) The release phase consists of bundling the result of a build, with
a runtime environment, into a single container. While this pro-
cess is fully automated, it also produces container images that
contain much more code than is necessary to run the applica-
tion code. Similar to super optimizers [3], the container could
be genetically minimized to include only the necessary code.

(7) The deploy phase consists of deploying multiple clones of the
same image to let the application scale. A search strategy could
synthesize diverse versions of the image for exploiting the trade-
off between quality and resource consumption. Initial results
show the feasibility of this type of improvement [6, 7].

(8) While the monitor phase appears less amenable to GI, it is
important to consider all the data it can feed back to the devel-
opment teams, enabling further genetic improvement. This data

4https://github.com/STAMP-project/dspot
5http://lcamtuf.coredump.cx/afl/

includes statistics on resource consumption, load, crashes, etc.
In the next section, we discuss how A/B testing can be revisited
as live GI that exploits this feedback to drive an evolutionary
process spanning the DevOps∞-cycle.

3 A/B TESTING
To answer questions such as “what features of my game will users
prefer” or “what design will attract most users,” web companies use
a technique called A/B testing. This technique involves developing
multiple versions of an application along with a quantifiable criteria
to score these versions. Next, the versions are deployed side by side
and the companies collect usage statistics for each version. Finally,
the company calculates fitness from these usage statistics and selects
the fittest version for subsequent deployment.

In the context of DevOps, the alternative solutions are designed
and developed manually, but the rest happens fully automatically,
including; monitoring, assessing acceptance criteria through auto-
matic analytics, and migrating all deployments to the fittest.6

A/B testing appears to be a clear example of evolutionary im-
provement that is currently widely practiced by industry. The initial
variants is built manually, but all the other steps are fully automated,
and clearly adopt an approach based on the survival of the fittest,
using machine learning for real time data analytics and DevOps tool
chains to modify the deployed software according to this feedback.

4 CONCLUSION
We invite the GI community to consider the deployment of their
techniques in the DevOps environment. The existing automated
tools and processes involved in DevOps have removed classic tech-
nical and social barriers to the deployment of GI. The DevOps
environment is ripe for the insinuation of GI techniques.

REFERENCES
[1] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. Devops.

IEEE Software, 33(3):94–100, 2016.
[2] William B Langdon andMark Harman. Optimizing existing software with genetic

programming. TEVC, 19(1):118–135, 2015.
[3] Henry Massalin. Superoptimizer: a look at the smallest program. In ACM

SIGPLAN Notices, volume 22, pages 122–126. IEEE Computer Society Press, 1987.
[4] Risto Miikkulainen, Neil Iscoe, Aaron Shagrin, Ron Cordell, Sam Nazari, Cory

Schoolland, Myles Brundage, Jonathan Epstein, Randy Dean, and Gurmeet Lamba.
Conversion rate optimization through evolutionary computation. In GECCO ’17,
GECCO ’17, pages 1193–1199, New York, NY, USA, 2017. ACM.

[5] Justyna Petke, Saemundur Haraldsson, Mark Harman, David White, John Wood-
ward, et al. Genetic improvement of software: a comprehensive survey. TEVC,
2017.

[6] Marcelino Rodriguez-Cancio, Jules White, and Benoit Baudry. Images of code:
Lossy compression for native instructions. In ICSE 2018, NIER Track, Gothenburg,
Sweden, 2018.

[7] Eric Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and Westley
Weimer. Post-compiler software optimization for reducing energy. In ACM
SIGARCH Computer Architecture News, volume 42, pages 639–652. ACM, 2014.

[8] Shin Hwei Tan and Abhik Roychoudhury. relifix: Automated repair of software
regressions. In ICSE 2015, pages 471–482. IEEE Press, 2015.

[9] Simon Urli, Zhongxing Yu, Lionel Seinturier, and Martin Monperrus. How to
Design a Program Repair Bot? Insights from the Repairnator Project. In ICSE
2018, Track Software Engineering in Practice (SEIP), Gothenburg, Sweden, 2018.

[10] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest.
Automatically finding patches using genetic programming. In ICSE 2009, pages
364–374. IEEE Computer Society, 2009.

6for example at King, an online game company https://blog.crisp.se/2016/11/22/
yassalsundman/ab-testing-at-king, also “ugly logos” designed automatically using
A/B testing [4]

https://github.com/STAMP-project/dspot
http://lcamtuf.coredump.cx/afl/
https://blog.crisp.se/2016/11/22/yassalsundman/ab-testing-at-king
https://blog.crisp.se/2016/11/22/yassalsundman/ab-testing-at-king

	Abstract
	1 Introduction
	2 Opportunities for GI in DevOps
	3 A/B testing
	4 Conclusion
	References

