Introduction to Hadoop
Slides compiled from:

• Introduction to MapReduce and Hadoop
 – Shivnath Babu

• Experiences with Hadoop and MapReduce
 – Jian Wen
Word Count over a Given Set of Web Pages

Can we do word count in parallel?
The MapReduce Framework (pioneered by Google)
Handles failures automatically, e.g., restarts tasks if a node fails; runs multiples copies of the same task to avoid a slow task slowing down the whole job.
MapReduce in Hadoop (1)

Figure 2-2. MapReduce data flow with a single reduce task
MapReduce in Hadoop (2)

Figure 2-3. MapReduce data flow with multiple reduce tasks
MapReduce in Hadoop (3)

Figure 2-4. MapReduce data flow with no reduce tasks
Data Flow in a MapReduce Program in Hadoop

- InputFormat
- Map function
- Partitioner
- Sorting & Merging
- Combiner
- Shuffling
- Merging
- Reduce function
- OutputFormat

→ 1:many

Input Format: data → K₁, V₁
Mapper: K₁, V₁ → K₂, V₂
Combiner: K₂, iter(V₂) → K₂, V₂
Partitioner: K₂, V₂ → int
Reducer: K₂, iter(V₂) → K₃, V₃
Output Format: K₃, V₃ → data
Figure 6-4. Shuffle and sort in MapReduce
Lifecycle of a MapReduce Job

```java
public class WordCount {

    public static class Map extends MapReduceBase implements
        Mapper<LongWritable, Text, Text, IntWritable> {
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
            String line = value.toString();
            StringTokenizer tokenizer = new StringTokenizer(line);
            while (tokenizer.hasMoreTokens()) {
                word.set(tokenizer.nextToken());
                output.collect(word, one);
            }
        }

    }

    public static class Reduce extends MapReduceBase implements
        Reducer<Text, Text, IntWritable, IntWritable> {

        public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
            int sum = 0;
            while (values.hasNext()) { sum += values.next().get(); }
            output.collect(key, new IntWritable(sum));
        }

    }

    public static void main(String[] args) throws Exception {
        JobConf conf = new JobConf(WordCount.class);
        conf.setJobName("wordcount");
        conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(IntWritable.class);
        conf.setMapperClass(Map.class);
        conf.setCombinerClass(Reduce.class);
        conf.setReducerClass(Reduce.class);
        conf.setInputFormat(TextInputFormat.class);
        conf.setOutputFormat(TextOutputFormat.class);
        TextInputFormat.setInputPaths(conf, new Path(args[0]));
        TextOutputFormat.setOutputPath(conf, new Path(args[1]));
        JobClient.runJob(conf);
    }
}
```

Run this program as a MapReduce job
Lifecycle of a MapReduce Job

```java
public class WordCount {
    public static class Map extends MapReduceBase implements
        Mapper<LongWritable, Text, Text, IntWritable> {
            private final static IntWritable one = new IntWritable(1);
            private Text word = new Text();
            public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
                String line = value.toString();
                StringTokenizer tokenizer = new StringTokenizer(line);
                while (tokenizer.hasMoreTokens()) {
                    word.set(tokenizer.nextToken());
                    output.collect(word, one);
                }
            }
        }
    
    public static class Reduce extends MapReduceBase implements
        Reducers<Text, IntWritable, Text, IntWritable> {
            public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
                int sum = 0;
                while (values.hasNext()) { sum += values.next().get(); }
                output.collect(key, new IntWritable(sum));
            }
        }
    
    public static void main(String[] args) throws Exception {
        JobConf conf = new JobConf(WordCount.class);
        conf.setJobName("wordcount");
        conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(IntWritable.class);
        conf.setMapperClass(Map.class);
        conf.setCombinerClass(Reduce.class);
        conf.setReducerClass(Reduce.class);
        conf.setInputFormat(TextInputFormat.class);
        conf.setOutputFormat(TextOutputFormat.class);
        FileInputFormat.setInputPaths(conf, new Path(args[0]));
        FileOutputFormat.setOutputPath(conf, new Path(args[1]));
        JobClient.runJob(conf);
    }
}
```

Run this program as a MapReduce job
How are the number of splits, number of map and reduce tasks, memory allocation to tasks, etc., determined?
Job Configuration Parameters

- 190+ parameters in Hadoop
- Set manually or defaults are used
Hadoop Streaming

- Allows you to create and run map/reduce jobs with any executable

- Similar to unix pipes, e.g.:
 - format is: Input | Mapper | Reducer
 - echo “this sentence has five lines” | cat | wc
Hadoop Streaming

- Mapper and Reducer receive data from stdin and output to stdout
- Hadoop takes care of the transmission of data between the map/reduce tasks
 - It is still the programmer’s responsibility to set the correct key/value
 - Default format: “key \t value\n”
- Let’s look at a Python example of a MapReduce word count program...
Streaming_Mapper.py

read in one line of input at a time from stdin
for line in sys.stdin:
 line = line.strip() # string
 words = line.split() # list of strings

write data on stdout
for word in words:
 print '%s	%i' % (word, 1)
Hadoop Streaming

- What are we outputting?
 - Example output: “the 1”
 - By default, “the” is the key, and “1” is the value

- Hadoop Streaming handles delivering this key/value pair to a Reducer
 - Able to send similar keys to the same Reducer or to an intermediary Combiner
Streaming_Reducer.py

wordcount = {} # empty dictionary
read in one line of input at a time from stdin
for line in sys.stdin:
 line = line.strip() # string
 key, value = line.split()
 wordcount[key] = wordcount.get(key, 0) + value

write data on stdout
for word, count in sorted(wordcount.items()):
 print '%s	%i' % (word, count)
Hadoop Streaming

- Streaming Reducer receives single lines (which are key/value pairs) from stdin
 - Regular Reducer receives a collection of all the values for a particular key
 - It is still the case that all the values for a particular key will go to a single Reducer
Using Hadoop Distributed File System (HDFS)

- Can access HDFS through various shell commands (see Further Resources slide for link to documentation)
 - hadoop –put <localsrc> ... <dst>
 - hadoop –get <src> <localdst>
 - hadoop –ls
 - hadoop –rm file
Configuring Number of Tasks

- Normal method
 - `jobConf.setNumMapTasks(400)`
 - `jobConf.setNumReduceTasks(4)`

- Hadoop Streaming method
 - `-jobconf mapred.map.tasks=400`
 - `-jobconf mapred.reduce.tasks=4`

- Note: # of map tasks is only a hint to the framework. Actual number depends on the number of InputSplits generated
Running a Hadoop Job

- **Place input file into HDFS:**
 - `hadoop fs -put ./input-file input-file`

- **Run either normal or streaming version:**
 - `hadoop jar Wordcount.jar org.myorg.Wordcount input-file output-file`
 - `hadoop jar hadoop-streaming.jar \
 -input input-file \
 -output output-file \
 -file Streaming_Mapper.py \
 -mapper python Streaming_Mapper.py \
 -file Streaming Reducer.py \
 -reducer python Streaming Reducer.py`
Output Parsing

- Output of the reduce tasks must be retrieved:
 - hadoop fs –get output-file hadoop-output
- This creates a directory of output files, 1 per reduce task
 - Output files numbered part-00000, part-00001, etc.
- Sample output of Wordcount
 - head –n5 part-00000
 - “tis 1
 - “come 2
 - “coming 1
 - “edwin 1
 - “found 1
Case study 1

NetflixHadoop
NetflixHadoop: Problem Definition

• From Netflix Competition
 – Data: 100480507 rating data from 480189 users on 17770 movies.
 – Goal: Predict unknown ratings for any given user and movie pairs.
 – Measurement: Use RMSE to measure the precision.

• The approach: Singular Value Decomposition (SVD)
A feature means...
- User: Preference (I like sci-fi or comedy...)
- Movie: Genres, contents, ...
- Abstract attribute of the object it belongs to.

Feature Vector
- Each user has a user feature vector;
- Each movie has a movie feature vector.

Rating for a (user, movie) pair can be estimated by a linear combination of the feature vectors of the user and the movie.

Algorithm: Train the feature vectors to minimize the prediction error!
NetflixHadoop: SVD Pseudocode

- **Basic idea:**
 - Initialize the feature vectors;
 - Recursively: calculate the error, adjust the feature vectors.

```python
LEARN (user, movie, rating, userFeatureVector, movieFeatureVector):
    Find error in prediction using userFeature(rating.u) & movieFeature(rating.m)
    For each feature f:
    // LRATE and Q are learning constants, these two updates done atomically:
    userFeature[f] <= LRATE * (err * movieFeature[f] Q
                      * userFeature[f])
    movieFeature[f] <= LRATE * (err * userFeature[f] Q
                      * movieFeature[f])
```
NetflixHadoop: Implementation

• Data Pre-process
 – Randomize the data sequence.
 – Mapper: for each record, randomly assign an integer key.
 – Reducer: do nothing; simply output (automatically sort the output based on the key)
 – Customized RatingOutputFormat from FileOutputFormat
 • Remove the key in the output.
NetflixHadoop: Implementation

• Feature Vector Training
 – Mapper: From an input (user, movie, rating), adjust the related feature vectors, output the vectors for the user and the movie.
 – Reducer: Compute the average of the feature vectors collected from the map phase for a given user/movie.

• Challenge: Global sharing feature vectors!
NetflixHadoop: Implementation

- Global sharing feature vectors
 - Global Variables: fail!
 - Different mappers use different JVM and no global variable available between different JVM.
 - Database (DBInputFormat): fail!
 - Error on configuration; expecting bad performance due to frequent updates (race condition, query start-up overhead)
 - Configuration files in Hadoop: fine!
 - Data can be shared and modified by different mappers; limited by the main memory of each working node.
NetflixHadoop: Experiments

• Experiments using single-thread, multi-thread and MapReduce

• Test Environment
 ◦ Hadoop 0.19.1
 ◦ Single-machine, virtual environment:
 • Host: 2.2 GHz Intel Core 2 Duo, 4GB 667 RAM, Max OS X
 • Virtual machine: 2 virtual processors, 748MB RAM each, Fedora 10.
 ◦ Distributed environment:
 • 4 nodes (should be... currently 9 node)
 • 400 GB Hard Driver on each node
 • Hadoop Heap Size: 1GB (failed to finish)
NetflixHadoop: Experiments

1 mapper v.s. 2 mappers
Randomizer

1 mapper v.s. 2 mapper2
Learner
NetflixHadoop: Experiments

Mappers 123 on 1894636 ratings

Types

- Randomizer
- Vector Initializer
- Learner

Time (sec)

[Diagram showing time comparison for different types with 1 mapper, 2 mappers, 3 mappers, and 2 mappers+c]
Case study 2

XML Filtering
XML Filtering: Problem Definition

• Aimed at a publish/subscriber system utilizing distributed computation environment
 – Pub/sub: Queries are known, data are fed as a stream into the system (DBMS: data are known, queries are fed).
XML Filtering: Pub/Sub System
XML Filtering: Algorithms

• Use YFilter Algorithm
 – YFilter: XML queries are indexed as a NFA, then XML data is fed into the NFA and test the final state output.
 – Easy for parallel: queries can be partitioned and indexed separately.
XML Filtering: Implementations

• Three benchmark platforms are implemented in our project:
 – Single-threaded: Directly apply the YFilter on the profiles and document stream.
 – Multi-threaded: Parallel YFilter onto different threads.
 – Map/Reduce: Parallel YFilter onto different machines (currently in pseudo-distributed environment).
XML Filtering: Single-Threaded Implementation

- The index (NFA) is built once on the whole set of profiles.
- Documents then are streamed into the YFilter for matching.
- Matching results then are returned by YFilter.
XML Filtering: Multi-Threaded Implementation

- Profiles are split into parts, and each part of the profiles are used to build a NFA separately.
- Each YFilter instance listens a port for income documents, then it outputs the results through the socket.
XML Filtering: Map/Reduce Implementation

• Profile splitting: Profiles are read line by line with line number as the key and profile as the value.
 – Map: For each profile, assign a new key using (old_key % split_num)
 – Reduce: For all profiles with the same key, output them into a file.
 – Output: Separated profiles, each with profiles having the same (old_key % split_num) value.
XML Filtering: Map/Reduce Implementation

- Document matching: Split profiles are read file by file with file number as the key and profiles as the value.
 - Map: For each set of profiles, run YFilter on the document (fed as a configuration of the job), and output the old_key of the matching profile as the key and the file number as the values.
 - Reduce: Just collect results.
 - Output: All keys (line numbers) of matching profiles.
XML Filtering: Map/Reduce Implementation
XML Filtering: Experiments

- **Hardware:**
 - Macbook 2.2 GHz Intel Core 2 Duo
 - 4G 667 MHz DDR2 SDRAM

- **Software:**
 - Java 1.6.0_17, 1GB heap size
 - Cloudera Hadoop Distribution (0.20.1) in a virtual machine.

- **Data:**
 - XML docs: SIGMOD Record (9 files).
 - Profiles: 25K and 50K profiles on SIGMOD Record.

<table>
<thead>
<tr>
<th>Data</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>478416</td>
<td>415043</td>
<td>312515</td>
<td>213197</td>
<td>103528</td>
<td>53019</td>
<td>42128</td>
<td>30467</td>
<td>20984</td>
</tr>
</tbody>
</table>
XML Filtering: Experiments

- Run-out-of-memory: We encountered this problem in all the three benchmarks, however Hadoop is much robust on this:
 - Smaller profile split
 - Map phase scheduler uses the memory wisely.

- Race-condition: since the YFilter code we are using is not thread-safe, in multi-threaded version race-condition messes the results; however Hadoop works this around by its shared-nothing run-time.
 - Separate JVM are used for different mappers, instead of threads that may share something lower-level.
XML Filtering: Experiments

Time Costs for Splitting

Thousands of Time (ms)

- Single
- 2M2R: 2S
- 2M2R: 4S
- 2M2R: 8S
- 4M2R: 4S
XML Filtering: Experiments

There are memory failures, and jobs are failed too.
XML Filtering: Experiments

Map/Reduce: # of Mappers

Tasks

Time

0:00:00
0:00:43
0:01:26
0:02:10
0:02:53
0:03:36
0:04:19

2M2R
4M2R
XML Filtering: Experiments

Map/Reduce: # of Profiles

There are memory failures but recovered.

Tasks

0 1 2 3 4 5 6 7 8 9

Time

0:00:00 0:01:26 0:02:53 0:04:19 0:05:46 0:07:12 0:08:38

25K

50K