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Reading Assighment

 Mitchell, Ch. 10, 2
 Wolfram, A New Kind of Science Ch. 8

* Axelrod: Agent-based modeling as a bridge
between disciplines




Review

* Three legs of science
— Experiment
— Mathematical theory
— Simulation and modeling

 What are models good for?
— Tools for analyzing data
— Methods for discovering new knowledge (3 leg)

— Understanding nature as an information-processing
system

— Explaining how something works---mechanisms




CAs as Discrete Simulation Models

e Cellular Automata are discrete

— Time changes in incremental steps
» Differential equations for continuous time, typically

— Space is represented explicitly, in regular
arrangements of cells

— Each cell is in one of a finite number of states at any
given time

e Deterministic

— Initial states of cells determine the rest of the
computation

* Each of these assumptions can be relaxed




Cellular Automata

* |Invented by John von Neumann (circa 1950)

* Discrete dynamical systems with interesting properties
— Emergent behavior, Self-organized criticality, Percolation
— Examples: Game of Life, forest fire model

 Discrete simulation models

— Focus on complex systems where components interact in
time AND space

— Examples: Forest fires, fluid dynamics, ferro-magnetic
modeling (ISING), epidemics, predator/prey interactions,
enzyme reactions, gene expression, social interactions,
economies, etc.




Example 1: Modeling Disease Spread
Across a Landscape
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Example 2: Forest Fire model

* Introduced by Henly
(1988); Bak, Chen, and
Tang (1990)

lllustrates SOC, percolation

Applications: Spread of
forest fires, orchard blight,
infectious diseases, oil
movement through porous
rock, and many more




Fire CA

A grid of cells in one of 3 states:
— Yellow is empty

— Green is tree

— Red is burning

Each cell changes state depending on the states
of its neighbors (including itself)

All cells are updated simultaneously
— How can this be?

Define initial conditions and iterate the model
synchronously




Suppose we want to develop a CA
model of forest fire spread

. Problem statement

. Define model states and variables
. Establish transition rules and neighborhood

. Deal with grid boundaries (wraparound is
easiest)

. Initialize a grid (initial conditions)

6. Run the simulation with different parameters

and observe behavior




1. Problem statement

* Problem: How does fire spread across a
landscape?

 Model landscape as a 2-D grid
— Some grid cells have trees
— Some trees are burning
— Lightening strikes can cause new fires
— [option: Some trees are resistant to burning]
 Goal: understand how different initial conditions,

probabilities, landscape sizes, and time scales
affect fire spread




2. ldentify States and Variables

e Establish correspondence between states in
the problem statement and in the model:

— 0 EMPTY
— 1 TREE
— 2 BURNING

e Establish variables to hold probabilities
— Of a tree growing into an empty space p

— Of an existing tree igniting spontaneously f
* lightening, etc.




3. Define Transition Rules

* 4 transition rules
— A burning cell turns into an empty cell

— A tree will burn if at least one
neighbor is burning

— A tree ignites with probability f even if
no neighbor is burning

— An empty space fills with a tree with
probability p

* Neighborhood (von Neumann)




Moore vs. Von Neumann
Neighborhood

Von Neumann




4. Define grid boundaries

MATLAB Hint: For wraparound use mod operator and
define arrays Self, North, South, East, West

Figure 11.2.2 Cells that determine a site’s next value




5. Initialize the Grid

e Define one color for each state
* Determine size of grid

* Determine initial state of grid
— For FF model, we assume random initialization




MATLAB Hints

Use colormap, rand, floor, image, and axis functions to
intialize the grid

% help colormap for other built-in maps
colormap(gray(5))

% returns a 3x3 matrix of random numbers between 0 and 1
rand(3)

%randgrid is a 3x3 matrix with values between 1 and 5
%floor rounds down to the nearest integer
randgrid = floor(rand(3)*5 + 1)

%image uses the 5 colors in the colormap to display the grid
image(randgrid)

axis off %removes axis labels

axis square % makes a square grid




Warmup Exercise

 Watch Video 1
 Implement a CA that grows a spiral




6. Run the Model

Fig. (1). A fire in the DS-FFM model (left, @ = 200). The rim of the

fire is darkened, the unburnt islands are lightened up. White and dark
4 gray enclosures are artifacts of the meandering rim. Satellite image of
a fire [32] in a boreal forest (right).
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http://ccl.northwestern.edu/netlogo/models/

models/Sample%20Models/Earth%20Science/ R.D. Zinck1,2 and V. Grimm “More Realistic than Anticipated: A
Fire.png Classical Forest-Fire Model from Statistical Physics Captures
Real Fire Shapes “he Open Ecology Journal, 2008, 1, 8-13




A framework of integrating GIS and parallel computing for spatial
control problems — a case study of wildfire control
Yin et al. International Journal of Geographical Information Science (2012)
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Cas as Discrete Dynamical Systems
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Vary parameters and initial
conditions

Self-organized criticality
— p/f controls behavior
— Cluster sizes power-law distributed
— What is a cluster size?

Percolation

— Submerge a porous rock in a
bucket of water. Does the center
of the rock get wet?

— Release a rat in a maze. What is
the probability that it finds its way
out, if it searches randomly?
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http://www.nt.ntnu.no/users/skoge/prost/proceedings/accl1/data/papers/1503.pdf




Return to Disease Example
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A More Careful Description of CA
Preliminaries

State space: A set of possible values that represent the key
attributes (state) of a system at a particular point in time

In CS, a configuration of discrete states is used to model machines,
i.e., <N,A,S,G> where

N is a finite set of states, e.g., {0,1}
A is a set of transitions between states

e eg,{0=>1,1=>0}
S is a start set (subset of N)
G is a stop state (subset of N)
In physics, a continuous model of a physical system:
— States are vectors (e.g., position, momentum)

— Transitions are expressed as matrices or differential (difference)
equations

Phase space

— Representation of all possible states of system
— Phase diagram: All possible trajectories through phase space in time




One-D)mensionaI CA

i+1... |i+r

Linear array of identical cells (called lattice), each of which
can be in a finite number of k states

The local state of cell i at time t is denoted:
S ES = {0, k-1

The global state s, at time t is the configuration of the
entire array,

0 1 N-1 N
S, =(8,,8, ,.0yS,  )EX

Where N is the size of the array




One-dimensional CA cont.

At each time step, all cells in the array update
their state simultaneously, according to a local

update rule :
This update rule takes as input the /local
neighborhood configuration n of a cell

n consists of s, and its 2r nearest nelghbors (r
cells on either side): ’

ris called the radius of the CA

The local update rule ¢, which is the same for

every cell in the array, can be represented as a
lookup table, which lists all possible

nelghborhood configurations Jp




Example One-Dimensional CA
Rule 110

The number of states, k=2.
The alphabet > ={0,1}
The size of the array, N=11.
The configuration space
> =1(0,0,0,0,0,0,0,0,0,0,0),(0,0,0,0,0,0,0,0,0,0,11),...}
The radius r= 1.

The rule table

— neighborhood :000 001 010 011 100 101 110 111
- ¢ 0 1 1 1 01 10

This is rule 110 (base 10) because the output states are: 01101110
(base 2). Read right to left. Known as Wolfram notation.

Rule 110 supports universal computation.
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Rule Table ¢ :

Neighborhood: 000 001 010 011 100 101 110 111

Output bit: o 1 1 1 0 1 1 0
Lattice:
Periodic
boundary
conditions .
Neighborhood M

| Fe-t---

t=0 |

t=1




Rule 30

7 Lo
% - o 7 4{_3',.
; 7T /47 ff“:; . E ;‘?;%é’& ; 7
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current pattern 111 110 101 100 011 010 001 OO0
new state for center cell 0 0 0 | | | | 0




Comments on Rule 30

Generates apparent randomness, despite being
finite

Wolfram proposed using the central column as a
psuedo-random number generator (png)

Passes many tests for randomness, but many
inputs produce regular patterns:

— All zeroes
— 00001000111000 repeated infinitely

Used in Mathematica for creating random
integers (Wikipedia)




What does a 1-D CA Model?

View nature as an information processing system

CAs as an idealized model of nature
Digital state
Uniform physics
Local computation and communication

Exhibits complex behavior not obvious from direct inspection of the
rules

Easily visualized
Supports universal computation, which some think is common in
nature
— Is there an upper limit on the complexity of computation in nature?
— Recent work by Valiant on what functions are learnable by evolution




Computation in Cellular Automata

* CAs as computers

— Initial configuration constitutes the data that the physical computer is
processing

— Transition function implements the algorithm which is applied to the data
— Examples: Majority calculations, synchronization (Mitchell and Crutchfield)
e CAs as logical universes within which computers can be embedded
Initial configuration constitutes a computer

Transition function is the “physics” obeyed by the parts of the embedded
computer

The algorithm and data are functions of the initial configuration of the
embedded computer

In the most general case, the initial configuration is a universal computer

Examples: Game of life as a universal computer, Fredkin’s billiard ball
computer




CAs can exhibit complex behavior
Wolfram’s Classification

* Class I: Eventually every cell in the array
settles into one state, never to change again
— Analogous to computer programs that halt after a

few steps and to dynamical systems that have
fixed-point attractors




Wolfram Class |
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CA can exhibit complex behavior
Wolfram’s Classification

e Class I: Eventually every cell in the array
settles into one state, never to change again
— Analogous to computer programs that halt after a

few steps and to dynamical systems that have
fixed-point attractors

* Class Il: Eventually the array settles into a
periodic cycle of states, called a limit cycle
— Ana OgOoUus to computer Programs that execute

infinite loops and to dynamical systems that fall
into limit cycles
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CA can exhibit complex behavior
Wolfram’s Classification

Class I: Eventually every cell in the array settles into one state,
never to change again

— Analogous to computer programs that halt after a few steps and to
dynamical systems that have fixed-point attractors

Class Il: Eventually the array settles into a periodic cycle of states,
called a limit cycle

— Analogous to computer programs that execute infinite loops and to
dynamical systems that fall into limit cycles

Class lll: The array forms “aperiodic” random-like patterns

— Analogous to computer programs that are pseudo-random number
generators (pass most tests for randomness, highly sensitive to seed,
or initial condition).

— Analogous to chaotic dynamical systems. Almost never repeat
themselves, sensitive to initial conditions, embedded unstable limit
cycles




Wolfram’s Class ll|
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CA can exhibit complex behavior
Wolfram’s Classification

Class I: Eventually every cell in the array settles into one state, never to
change again

— Analogous to computer programs that halt after a few steps and to dynamical
systems that have fixed-point attractors

Class Il: Eventually the array settles into a periodic cycle of states, called a
limit cycle
— Analogous to computer programs that execute infinite loops and to dynamical

systems that fall into limit cycles

Class lll: The array forms “aperiodic” random-like patterns

— Analogous to computer programs that are pseudo-random number generators
(pass most tests for randomness, highly sensitive to seed, or initial condition).

— Analogous to chaotic dynamical systems. Almost never repeat themselves,
sensitive to initial conditions, embedded unstable limit cycles

Class IV: The array forms complex patterns with localized structure that
move through space and time

— Difficult to describe. Not regular, not periodic, not random

— Speculate: this is interesting computation, the edge of chaos

— Example: Rule 110




Wolfram’s Class IV
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Can you predict which Cas will have which class of behavior?




Comment on Wolfram’s Rule 110

“However, there is nonetheless a distinct limit to the complexity produced
by class 4 automata. The many images of such automata in Wolfram’s
book all have a similar look to them, and although they are nonrepeating,
they are interesting (and intelligent) only to a degree. Moreover, they do
not continue to evolve into anything more complex, nor do they develop
new types of features. Once could run these automata for trillions of
trillions of iterations and the image would remain at the same limited
level of complexity. They do not EVOLVE into, say, insects or humans or
Chopin preludes or anything else that we might consider of a higher order
of complexity than the streaks and intermingling triangles displayed in
these images.”

Kurtzwil A Theory of Technological Evolution, pp. 85-95




The Game of Life
John Conway (1970)

ne number of states, k=2
he alphabet, 2 ={0,1} //{‘dead’,’alive’}
ne Moore neighborhood

Transition rules:
— Loneliness: A live cell with less than 2 live neighbors, dies
— Overcrowding: A live cell with more than 3 live neighbors,
dies
— Birth: A dead cell with exactly 3 live neighbors becomes a
live cell

— Survival: A live cell with 2 or 3 live neighbors stays alive




Example Transition

* Center square changes to one (birth)
e “just 3 for birth, 2 or 3 for survival”




Possible Life Histories
(Dynamical Behaviors)

Static structures
— Behive, loaf, pond,etc. (Fig. 15.11)

Periodic structures
— Blinkers (Fig. 15.12)

Moving structures
— Gliders

Glider guns
Logical gates (and, or, not)
Self-reproducing structures




Static Objects

Figure 15.11 Examples of static objects in Conway’s Game of Life

Figure from The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation. Copyright (©) 1998-2000 by
Gary W a Flake. All « ghts reserved. Permission granted for educational, scholarly, and personal use provided that this notice remains intact and unaltered. Nc
part of this work may be reproduced for commercial purposes without prior written permission from the MIT Press.




Periodic Objects
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Figure 15.12 Examples of simple periodic objects in Conway’s Game of Life
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Gliders (moving objects)




Can we predict the dynamics of a
given initial condition?

* Consider a straight line of n live cells

Dies out immediately
Blinker
Becomes a beehive

Traffic lights
Diesoutatt=12

Interesting behavior, terminating in
the honey farm

4 blocks and 4 beehives
2 sets of traffic lights




Langton’s Lambda Parameter

Wolfram’s classification scheme is
phenomenological

— Argument by visual inspection of space-time diagrams

Chris Langton (1986) quantified the classification
scheme by introducing the parameter A

A is a statistic of the output states in the CA
lookup table, defined as the fraction of non-
guiescent states in this table

The quiescent state is an arbitrarily chosen state,
e.g., for a 2-state CA, we might choose s =0 as
the quiescent state




Lambda Parameter cont.
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Lambda Parameter cont.

N, = the number of rules that map to the quiescent state

Using the lambda parameter to study CAs

— Table walkthrough: start with one random table and progressively
perturb it through the range

— Random table: Interpret lambda as a bias on the random selectino of

states to fill up the table (get a new table for every new value of
lambda).

Use statstics to measure CA “average” behavior, as a function of
lambda

— Single-site entropy

— Two-site mutual information

— Same site mutual information across time steps




Lambda Parameter cont.

* Table walkthrough illustrates interesting
change in dynamics as a function of lambda

— Transient lengths increase dramatically in the
middle of the range (next slide)

— However, different traversals of lambda space

using walkthrough method make the transition at
different lambda values, although there is a well
defined distribution around a mean value.




Lambda Space and Wolfram Classes
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Critical Slowing Down
Length of transients depends on array size
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Fig. 3. Average transient length as a function of A in an array
of 128 cells.
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Comments on Lambda Parameter

e (Claims

There is a phase transition between periodic and chaotic
behavior. Most complex behavior is in the vicinity of the
transition: the “edge of chaos.”

CAs near the transition point correspond to Wolfram’s Class IV

CAs capable of performing complex computations will be found
near the transition point (long transients)

E.g., the Game of life has A =0.273
* in the transition region for k=2, N=9 2-D CAs
e Criticism of the lambda parameter:

— CAs with high lambda value can still have simple behavior.
Lambda describes “average” behavior

— Lambda does not take the initial state of the computation into
account




