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Dynamical Systems vs. Computation

Dynamics:
— Focus on how things change.
— Describe systems undergoing continual temporal change.
— View change geometrically: Trajectories, attractors, bifurcations.
— Stability of patterns of change as a function of system parameters.
— Scaling limitation: Quantitative analysis only feasible for low-dimensional
systems.
Computation:
— Focus on internal structure.
— Equivalence classes.
— Marr’s representation and algorithm level of description.
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Styles of Modeling I (review)
Aggregate / Differential Equations

Describe the global behavior of a system

Average out individual differences

Assume infinite-sized populations

Assume all possible genotypes always present in population.
Easier to do theory and make quantitative predictions.

Examples:
— Fractals
— Mackey-Glass systems
— Lotka-Volterra systems
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Styles of CAS Modeling Il (review)
Computational / Individual-based / Agent-based

- A computational artifact that captures essential components and
interactions (l.e. a computer program).

« Encodes a theory about relevant mechanisms:

— Want relevant behavior to arise spontaneously as a consequence of the
mechanisms. The mechanisms give rise to macro-properties without being
built in from the beginning.

— This is a very different kind of explanation than simply predicting what will
happen next.

— Example: Cooperation emerges from Iterated Prisoner’s Dilemma model.
— Simulation as a basic tool. Observe distribution of outcomes.

- Study the behavior of the artifact, using theory and simulation:

— To understand its intrinsic properties, and wrt modeled system.
—
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Lynx Historical Data (Predators)
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Lynx/Rabbit Historical Data (Predators)
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Paramecium Data
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Predator-Prey Dynamics in Demand Destruction and Oil Prices

The predator-prey oscillations of price increases and demand destruction/production increases
superimposed on top of a geological depletion scenario--note how the volatility fo the predator-prey
dynamic works to conceal the underlying geological and geopolitical trends.

Predator-Prey Crude Oil Model
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Modeling Predator-Prey Interactions

- The Lotka-Volterra model is the simplest model of predator-prey
interactions. It was developed independently by:
— Alfred Lotka, an American biophysicist (1925), and
— Vito Volterra, an ltalian mathematician (1926).

- Basic idea: Population change of one species depends on:
— Its current population.
— Its reproduction rate.
— Its interactions with other species (predation or prey).

«  Model expressed as coupled differential equations:

dx
— = Ax - Bx
di 4

dy
—=-Cy+ Dx
a0 m
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The Lotka-Volterra Model cont.

- Example: Rabbits and Lynxes (bobcats):

— Rabbits reproduce at a rate proportional to their population. Let x denote the number
(density) of rabbits.

— Lynxes eat rabbits, and die at a constant rate. Let y denote the density of lynxes.
— See population plots from real experiments (previous slides).

« The model:
— Population x (the rabbits) increases at rate dx = Axdt.
— Population x (the rabbits) decreases at rate dx = -Bxydt.
— Population y (the lynxes) increases at rate dy = Dxyadt.
— Population y (the lynxes) decreases at rate dy = -Cydt.
« The parameters:
— A = natural reproduction rate of rabbits in the absence of predation.
— B =death rate per encounter of rabbits due to predation.

— C = natural death rate of lynxes in the absence of food (rabbits).
— D =the efficiency of turning predated rabbits into new lynxes.
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Lotka-Volterra Model
Rabbit and Lynx Population

The change in the rabbit population is equal to how many
rabbits are born minus the number eaten by lynxes:

% = Ax — Bxy
The change in lynx population is equal to how fast they
reproduce (depends on how many rabbits are available to eat)

minus their death rate:

@ =-Cy+ Dxy

dt
Note: In some versions B=D.
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Can we predict how the model will behave?

Are the populations ever stable? ax = @ =0
That is, de  dt
A
A-By=0 =—
y y B
-C+Dx=0 X = ¢
D

Stationary point at (x,y) = (C/D,A/B).
— Fig. 12.1 fixed point (F,S): (1.167,0.74)

Typical behavior is one of oscillating populations.
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Figure 12.1 A simple Lotka-Volterra attractor which shows four (out of an infinite
number of possible) limit cycles. The value of the four parameters are equal to 3.029850,
4.094132, 1.967217, and 2.295942, which yields a fixed point at 1.1671, 0.740047.

Figure from The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation. Copyright (© 1998-2000 by
Gary William Flake. All rights reserved. Permission granted for educational, scholarly, and personal use provided that this notice remains intact and unaltered. No

part of this work may be reproduced for commercial purposes without prior written permission from the MIT Press. ” "'
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Stability of Fixed Point

-  What happens if we perturb the system?
— Perturb initial conditions
— Perturb system coefficents
— Stability of system
— Can analyze mathematically (compute the Jacobian and study eigenvalues)

« Experiment with small perturbations
— What happens if you increase A slightly (rabbit reproduction rate)?
— What happens if you increase C slightly (lynx death rate)?
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Comments on the Lotka-Volterra Model

Doesn’t consider competition among prey or predators:

— Prey population may grow infinitely without any resource limits (the rabbits never run
out of food).

— Carrying capacity
— Predators have no saturation: Their consumption rate is unlimited (the lynxes never get
full).

— Only considers two interacting species.
Nanofoxes?

Many extensions and refinements exist, including models of three
interacting species model. The 3-species model can have chaotic
dynamics.

Extending Lotka-Volterra to 3 species:

dx, <
f=x Y A,(1-x)
7=l

dt

X;represents the i-th species.
Aj;represents the effect that species j has on species /.

— Represent A as a matrix.
—
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Three-Species Lotka-Volterra
Example of Chaotic Behavior
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The Interaction Terms

+ Ajrepresents the effect that species jhas on species I

A, A, A,] [05 05 0.
A=|4, A, A,|=[-05 -0.1 0.1
Ay, A, A a 01 0.1

- This choice of A was discovered to have chaotic dynamics:
— Tune a to see full range of dynamical behaviors.
— See Figure 12.4.
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Three-Species Lotka-Volterra cont.
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Figure 12.4 Period doublings in a three-species Lotka-Volterr: n: phase space is

on the left and z; is plotted on the right. (a) spiral fixed point, (b) slmpl e per dl orbit,
(c) period-2 orbit, (d) period-4 orbit, (e) chaos

Stable Fixed Point
Simple Periodic Behavior
Period Doubling

Period 4 Attractor

Chaotic

1L
_—

09ixaM waW 1o ylie1ovinU sd T




An Alternative Approach
(Agent-based modeling)

Taken from The Computational Beauty of Nature.

Represent each individual in the population explicitly.
— Rules for encounters between individuals.

Write down interaction rules between individuals.
Represent physical space explicitly:

— 2-d grid.

— Each grid site is either empty or contains a single individual.
Three types of individuals:

— Plants.

— Herbivores (rabbits).
— Carnivores (lynxes).
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Individual-based Models
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Figure 12.5 An individual-based three-species ecosystem

Figure from The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation. Copyright (© 1998-2000 by
Gary William Flake. All rights reserved. Permission granted for educational, scholarly, and personal use provided that this notice remains intact and unaltered. No
part of this work may be reproduced for commercial purposes without prior written permission from the MIT Press.
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Agent Rules

* Plants can:
— Spread into contiguous empty space.

Be eaten by herbivores.

 Herbivores can:

Die (by starving to death or being eaten by carnivores).
Move into contiguous locations.

Eat plants.

Have babies (if they have stored enough energy).

« Carnivores can:

Die (by starving to death).

Move to a contiguous location.

Eat herbivores.

Have babies (if they have stored enough energy).
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Population Dynamics (Time Series) in an
Individual-based Model
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Figure 12.7 Population levels for all creatures, normalized for comparison

Figure from The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation. Copyright (© 1998-2000 by
Gary William Flake. All rights reserved. Permission granted for educational, scholarly, and personal use provided that this notice remains intact and unaltered. No
part of this work may be reproduced for commercial purposes without prior written permission from the MIT Press.
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Comparison with Lotka-Volterra Model

How is this model different from Lotka-Volterra?
How is this model the same as Lotka-Volterra?
Do we expect fixed points?
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Comparison with Lotka-Volterra Model

- How is this model different from Lotka-Volterra?
— Potential for non-uniform mixing (because space is represented explicitly)
— Non-deterministic movement into adjacent spaces.
— Discrete time.
— Discrete population values.
— Discrete threshhold for reproduction.

« How is this model the same as Lotka-Volterra?
— Similar interaction rules.
— Similar dynamics.

* Do we expect fixed points?
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How Should We Study/Analyze the Behavior
of this Agent-based Model?

Look at one run carefully?

Look at many runs and “note” the analogy to Lotka-Volterra
models?

Look at many runs and compute statistics?

Look at very large runs?

Can we make the analogy more precise?

— Suppose we ignore space and simply record the relative population values
for the entire grid, over time.

— What is the state space?
— Record how population changes at each point in state space.
— Compare with phase portrait for Lotka-Volterra.
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Conclusions

Species eye view of the world vs. individual eye:
— Lotka-Volterra ignores variations among individuals.
— Lotka-Volterra assumes infinite-size populations and perfect mixing.

The agent-based alternative is not exactly a cellular automaton.

These models form the basis of many more complicated
models.

Examples:
— Echo (Holland, 1994)

One type of agent. Agents can: mate, fight, trade.
+ Agent rules and preferences can evolve over time.

— Maley’s models of Barrett’s Esophagus, CancerSim.
— Disease modeling
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