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Readings

Mitchell, Ch. 15 -17

http://www.complexityexplorer.org/online-
courses/11
— Units 9, 10

Newman Ch. 8
Metabolic Ecology Ch. 24 “Beyond biology”




» Detecting power laws in data
 How power laws are generated
« Special topics

— Metabolic scaling theory




Reflection

“I know of scarcely anything so apt to impress the imagination as
the wonderful form of cosmic order expressed by the "Law of
Frequency of Error". The law would have been personified by the
Greeks and deified, if they had known of it. It reigns with serenity
and in complete self-effacement, amidst the wildest confusion.
The huger the mob, and the greater the apparent anarchy, the
more perfect is its sway. It is the supreme law of Unreason.
Whenever a large sample of chaotic elements are taken in hand
and marshaled in the order of their magnitude, an unsuspected
and most beautiful form of regularity proves to have been latent
all along.”

Sir Francis Galton (Natural Inheritance, 1889)




The Normal Distribution

So: Wikipedia

« Many psychological and physical phenomena (e.g., noise) are well
approximated by the normal distribution:
Height of a man (woman)
Velocity in any direction of a molecule in a gas
Error made in measuring a physical quantity

Many small independent effects contribute additively to each
observation

Abraham de Moivre (1733) used the normal distribution to approximate
’]Eh_e distribution of the number of heads resulting from many tosses of a
air coin.




The Central Limit Theorem

« Let X, X,, X, ..., X, be a sequence of nindependent
and identically distributed (i.i.d.) random variables each
having finite values of expectation y and variance o2 > 0.

Th: As the sample size n increases, the distribution of the
sample average of these random variables approaches
the normal distribution with a mean y and variance ¢2/n
regardless of the shape of the original distribution.

 Var(X) = E[(X - )= E[X?] - p2= 0° (LGS N




The Normal (Gaussian) Distribution

« The “Bell curve” . = 0.02=02
M ').Cl: 5'()

— A histogram of samples u=-20=05
— Peaked around a typical value
« Standard Normal Distribution:
— Mean: 0.0
— Standard deviation: 1.0
« Variance:

— 68.3% of values are within +/-1 o
of mean

— 95.5% of values are withing +/- 2 o
of mean

— 99.7% of values are within +/-3 ©
of mean




Exponential Distribution

length of time until some specific PLEIE .
event occurs: 0 1x<O0

— Until an earthquake occurs
— A new war breaks out

— Atelephone call | receive
turns out to be the wrong

number

* In practice, the distribution of the {MM ifx = 0

1

re oo -
avg. value of random var.

 Memoryless:

p{X>s+tlX>t}=p{X>s}fors,t=0




Power Law Distribution

* Polynomial: p(x) = ax®
I EAVEIEISM »(cx) = a(cx)” =" p(x) = p(x)

* Distribution can range over many orders of

magnitude
— Ratio of largest to smallest sample




What happens if we plot on log-log scale?




What happens if we plot on log-log scale?

log(p(x)) =log(ax”) =blogx + loga
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* Slope of line gives scaling exponent b
* vy-intercept gives the constant a




Comparison

« Exponential Distributions:
aka single-scale
Have form P(x) = e

Use Gaussian to approximate
exponential because differentiable

at0. | e™ (Exponential)
Plot on log-linear scale to see
straight line.

« Power-law Distributions: fat tail
aka scale-free or polynomial
Have form P(x) = x2
Fat (heavy) tail is associated with
power law because it decays more
slowly.

Plot on log-log scale to see
straight line.

x? (Power Law)

e (Gaussian)




Zipf’'s Law

Number of occurrences of words in the book Moby Dick




Earthquakes

™
S
<%
L
7]
b
=<
(2]
-
=2
=
~—
P
S
2,
~
g
A
3
Z

2 3 4 5 6
Magnitude m = log,,(S)

Earthquake magnitude distribution over 6 decades (K Christensen, L. Danon, T.
Scanlon, and Per Bak “Unified scaling law for eqrthquakes” PNAS 2002 99:2509-2513




Distribution of Wealth
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The 80/20 Rule: The fraction W of the total wealth in a country
held by the fraction P of the richest people, if wealth is distributed
according to a power law with exponent alpha. (Newman, 2006)




Software Bug Size Distribution

Complement Cumulative Distribution
of Patch Sizes for Eclipse

Weimer studied 20,000 patches
for Eclipse (unpublished data)

Patch: CVS checkin that explicitly
states “l am fixing bug #1234 in
the log message.

Types of Modifications — 10% of patches are 2 lines or less

[ Code Changed

BB Comment Changed — 20% of patches are 5 lines or less
— Code Inserted — 53% of patches are 25 lines or

I Comment Inserted I
[ Code Removed eSS

e emores Changes to lines involving only
comments or whitespace were
rare

Mean lines per patch

10! 10° 10°
Code lines modified in a patch [




Scaling in Software Execution
H. Inoue
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unique methods with arguments

HelloWorld: Unique Function Calls LimeWire Behavior
vs. Invocation Freq




Power Scaling

Transistors

Pentium 4" :
Pentium III o ;
Pentium II °

Pentium

1970: 100 Watts powers 15 MIPS
2005: 100 Watts powers 6700 MIPS
Wire scaling prevents better returns

Power requirement (W)




The World Wide Web
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Albert, Jeong, Barabasi (1999)




Protein Interaction Networ

Nature Reviews | Genetics




Complex Networks Examples

Social networks Semantic networks
Airline connections Neuronal networks
Scientific collaborations Gene regulatory
Email connections networks

Metabolic networks Terrorist networks
Actors Software call networks

Food webs




The Physical Structure of the Internet
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Power laws in nature

Thermal noise in electronic devices.

Flashing of fireflies.

Sizes of forest fires.

Distribution of earthquake sizes (Gutenberg-Richter law).
Distribution of solar flares and sunspots.

Size distributions of initial masses of stars (Salpeter law).
Allometric scaling relationships.

Zipf’ s Law (frequency of word use in any language)
Number of papers that scientists write (and cite)
Stock market activity.

Sizes of towns and cities.

Number of hits on web pages.

Distributions of function invocations in Java programs.



Power Laws in Physical Systems

* Power spectral density distribution (1/f noise)
— f =frequency, P(f) is the power at frequency f

1
P(f)~—
(f) Iz

* Size distributions (allometry)
— s =size of event, N(s) = frequency of event s

1
N(S)N—t
S

 Temporal distributions of events (e.g., sandpile models)

— T is either the duration of an event or the time between

events 1

N(T)Nr—y







How do power laws arise?




Review: Power Law Distribution

* Polynomial: p(x) = ax®

I EAVEIEISM »(cx) = a(cx)” =" p(x) = p(x)

* Take the log of both sides of the equation:

log(p(x)) =log(ax”) = blogx + loga

Slope of line gives scaling exponent b
y-intercept gives the constant a




Why do we care?




Measuring Power Laws

Data-driven modeling
— | give you some data

— What do you do to determine if it follows a power
law, or some other distribution?

Is this a power law?




Measuring Power Laws

* Plot histogram of samples on log-log axes (a):
— Test for linear form of data on plot
— Measure slope of best-fit line to determine scaling
exponent

* Problem: Noise in right-hand side of distribution

(b)

— Each bin on the right-hand side of plot has few
samples

— Correct with logarithmic binning (c)

— Divide # of samples by width of bin to get
e Count per unit interval of x




M. Newman Power laws, Pareto Distributions and Zipf’s Law (2006)
1 million random numbers, with b = 2.5

samples
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A better approach
The Cumulative Density Function (CDF)

« Complement Cumulative Distribution function (d)

P(x) = f p(y)dy

— Probablllty P(x) that x has a value greater thany (1 - CDF)
— Also follows power law but with the exponent —b + 1

— No need to use logarithmic binning

— Sometimes called rank/frequency plots

* For power laws

p—b+1

= [, p(y)dy =a [ y~tdy = 325y~ [P=0—af;




M. Newman Power laws, Pareto Distributions and Zipf’s Law (2006)
1 million random numbers, with b = 2.5

samples
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Determining the Scaling Exponent (slope)

Fit a “best fit” line through the (logged) data
and measure its slope.

— See next two slides for one method of computing
the best fit.

For distributional data: Use the following
formula (Newman 2006):

Points represent the cumulative
This is an estimator for b, based on maximum density functions P(x) for

likelihood estimation synthetic datasets distributed

: : according to: (a) a discrete
Consider a sequence of observations x;,, e.g., 0, g to: (a) )
powerlaw and (b) a continuous

0,0,1,1,1,32,335, ... power law, both with a=2.5 and
Throw out all Os or negative numbers Xin=1. Solid lines represent best
 Power law distribution not defined for neg. values fits to the data using the
« OK because of scale-free property methods described in the text.

We apply this formula instead of creating the (Clauset et al. 2007)
histogram P(x;)




Linear Empirical Models

* An empirical modelis a function
that captures the trend of
Observed data: Datapoints

— It predicts but does not explain the Regression

system that produced the data.

A common technique is to fit a
line through the data:

y=mx+b

Assume Gaussian distributed
errors.

— Note: For logged data, we assume that
the errors are log-normally distributed.

Image downloaded from Wikipedia Sept. 11, 2007




Linear Regression

* Least-squares fit uses linear regression

— Goal: Find the line y = mx+b that minimizes the
sum of squares

— M and b computed using the following formulae:




