More on statistical distributions




The Log Normal Distribution

* |f avariable Xis log normally 16 — mode

distributed, 1“21 median
— Y =log(X) is normally distributed [ — mean

— Multiplicative product of many 08
(positive) random variables 06 e, o = 0.25

* In ecology, the Preston curve is 2‘2‘
log normal 21

0.0 s
— Relative frequency of different 0 14 16 18 20 22
species

— The Black-Scholes model in
finance assumes that changes in
the logarithm of exchange rates,
price indices, and stock market
indices are normal




£
]
(©]
7
@
2
S
=
5
(%)




Log Normal vs Normal
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Relative Species Abundance
Preston Curves

Beetles in the River Thames: Frequency
histogram

So: Wikipedia

Individuals collected (log,; bins)

* Frequency histogram (Preston Curve):

— x-axis: logarithm of abundance bins (usually log,
(because this was historically a simple way to
approximate the natural log))

— y-axis: number of species at given abundance




Testing for distributions: Review

Two basic strategies
— Plot data, fit curves, measure goodness of fit
— Maximum Likelihood calculations
Normal
— Plot on semilogy (look for a quadratic curve)*
— Mean gives MLE
Log normal
— Log data, then treat like a normal distribution
Exponential
— Plot on semilogy and look for linear fit
— MLE is given in the assignment
Power law
— Plot on log-log scale and look for lines (++)

* Don’t try this at home




How to decide which distribution best
fits your data?

1. Estimate the Maximum Likelihood Estimate
(MLE) parameters for each distribution

1. Power law, log normal, exponential

2. Compute the loglikelihood for each distribution
using the MLE parameter estimates

3. Compare the loglikelihoods




What is a Likelihood function?

* Likelihood (L) is a function of how likely an event is
— Fundamental concept in modern statistics

* We are given data: X =[xy, X, ... X,]
— The pdf(x,) is the probability of observing x.

— But, can’t compute the pdf without knowing its
parameters, e.g., mean, std. deviation, etc.

— How do we find the parameters?

 Assume some pdf (e.g., normal, power law, etc.),

then ,
L =1[._; pdf(z:) = pdf (1) X pdf (x2)...pdf (xn)




What'’s the problem with this formula?

L = [[;=, pdf (z:) = pdf (1) X pdf (z2)...pdf (zn)

* Hint: Probabilities are always in [0,1] interval




What's the problem with that formula?

L = [[;=, pdf (z:) = pdf (1) X pdf (z2)...pdf (zn)

* Probabilities are always in [0,1] interval

* You will have almost 1200 observations in
your data set

* Many small numbers multiplied together =»




Log Likelihood Function

This quantity will always be negative!




Log Likelihood Function




Complex Networks Introduction




Complex Networks

* Related to graph theory
— Random graphs

e Small worlds




Graph Theory

* Konigsberg bridge problem
* Leonard Euler (1707 — 1783)




Theory of Random Graphs

* Erdos and Renyi (1960)

e Studied the evolution of
random graphs as mean
degree is increased

* Properties in random

graphs emerge not
gradually, but suddenly

(phase transitions)

, Paul Erdos (1913 — 1996)
— e.g., the giant component




Small World Experiment

Travers and Milgram (1969)

Sent a letter to individuals asking them to
forward it to someone that might know a
target person

296 people from Omaha, Nebraska and
Boston were recruited

Target person lived in Sharon, MA




Instructions

Add your name ot the roster at the bottom of this sheet
— Next person who receives the letter will know who it came from

Detach one postcard, fill it out and return to Harvard
University

— Keep track of progress of folder as it moves towards the target

If you know the target person on a personal basis, mail the
folder directly to him/her, but only if you hae previously

met the target person and know each other on a first name
ENE

If you do not know the target person, do not try to contact
him/her directly. Instead mail the folder to a personal
acquaintance who is more likely than you to know the
target person




Milgram Experiment

* 29% of letters reached the target

 The number of intermediate acquaintances
varied from 1 to 11.
— Median was 5.2
— 6 degrees of separation
* Criticisms
— Most letters did not reach the target

— No guarantee that letters followed the shortest
path




The Erdos Numbers

* Co-authorship network of scientific papers

— Erods published more than 1500 articles with 500
co-authors

— Erdos has Erdos number O




Distribution of Erdos numbers

Erdos number 0 --- 1 person
Erdos number 1 --- 504 people
Erdos number 2 --- 6593 people
Erdos number 3 --- 33605 people
Erdos number 4 --- 83642 people
Erdos number 5 --- 87760 people
Erdos number 6 --- 40014 people
Erdos number 7 --- 11591 people
Erdos number 8 --- 3146 people
Erdos number 9 --- 819 people
Erdos number 10 --- 244 people
Erdos number 11 --- 68 people
Erdos number 12 --- 23 people
Erdos number 13 --- 5 people




Small-world networks

* What is a small-world network?
— Small mean geodesic distance (diameter)
— Skewed distribution of node degree
— Erodos is a hub in the scientific world

(a) Random network (b) Scale-free network




Kevin Bacon Game

Think of an actor or actress

If he or she has ever been in a film
with Kevin Bacon, then s/he is
assigned a Bacon number of 1

If s/he has never been in a film
with Kevin Bacon, but has been in
a film with someone else who has,
then Kevin Bacon number is 2. etc.

Highest finite Bacon number
(worldwide) is 8



Scale-Free Networks

* Focus on node degree

— Incoming or outgoing edges
* Degree distribution

— For each node in network

— Count the number of incoming
(outgoing) edges
— Make a histogram based on degree

 For many networks, it is power-law
distributed, or something similar

— A few high-connectivity nodes

Node degree distribution




Complex Networks Examples

Social networks Semantic networks
Airline connections Neuronal networks
Scientific collaborations Gene regulatory
Email connections networks

Metabolic networks Terrorist networks
Actors Software call networks

Food webs




What mechanisms produce power laws?




Generating Power Laws
Preferential Attachment

« Barabasi-Albert (BA) model (1999)
— Dates back to H. Smon (1953)
« Grow a network with a rule:
— Begin with 2 nodes, 1 link

— New link is added to an existing node with
probability proportional to its degree.

— “Rich get richer”
* Properties:
— Robust against failure of random nodes

— Vulnerable to non-random attacks. The
network quickly disintegrates when nodes
are removed according to their degree.

— Short average path length

L =logN /loglogk




Error- and Attack-Tolerant Networks

Single-structure networks are homgeneous
— Each node has approximately the same number of links
— Diameter increases monotonically with random removal of nodes
— Diameter increases monotonically under preferential attack

Scale-free networks are inhomogeneous
Highly connected nodes occur with statistical signifcance
Generated with preferential attachment models

Diameter remains unchanged with random removal of nodes (as many
as 50% of nodes can be removed with no effect)

Diameter increases dramatically under targeted attack
Claim:
— Many communication networks are scale-free or close approximations

Conclude: Error tolerance in communication networks comes at
expense of survivability




Generating Power Law Distributions cont.

* Preferential attachment (previous slides)

» Combinations of exponentials: [ TR

— Used to explain power-law dists. of word
HESSE S

 Monkey with a typewriter
e Two distributions: Type letters randomly, P(hit space bar)
— Example: Dish of reproducing bacteria (exponential

population growth) combined with random
stopping time (say, to stop the experiment)

— Then, distribution of X is:




Generating Power Law Distributions cont.

* Preferential attachment (previous slides)
 Combinations of exponentials

e Random walks:
— Many properties of random walks are power-law distributed

— A walker takes a single step randomly to the right or left
along a line, each unit of time. Aftert steps, what is the
probability of returning to the initial position? The
distribution of first-return times is power-law distributed:

position

Newman, 2006




Random Walks cont.

« Random walk models of lifetime of biological
taxa (groups of species)

— Assume that taxon gains and loses species at
random over evolutionary time

— First return time (when taxon goes extinct) is
lifespan of the taxon

— “Gambler’s Ruin”

* Could explain why lifetimes of genera in the fossil
record follow a power law




Generating Power Law Distributions cont.

Preferential attachment (previous slides)
Combinations of exponentials

Random walks

Phase transitions (next slide)




Phase Transitions, Criticality, and Power Laws
(taken from Newman, 2006)

 Example: The percolation
threshold
— |s there a continuous path

through colored squres in the
lattice?

— Depends on p = P(a square is
black)

— Cluster size = N (connected
colored squares)
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Phase Transitions and Critical Points

Critical point

— As size of grid increases, transition
becomes increasingly sharp

— Phase transition
e Whatis the distribution of cluster

crossing probability R,

sizes in the grid? e es e oe

occupation probability p

— Power law at the critical point
— Hallmark of a phase transition

— Must be exactly at the critical point
to observe this

— Self-organized criticality (SOC) is
when a system drives itself to the
critical point

n
¥

number of clusters

10

cluster size s




Self-Organized Criticality (SOC)

e (Canonical example: Sandpiles (Bak, Tang, and Wiesenfield, 1987)
Linear lattice of L sites
Grains of sand are distributed to the sites one at a time
Height of the pile at location x; is denoted h(x))

Grains of sand are allowed to accumulate as long as the height
difference: h(x)) — h(x+1) <=2
Such a situation is unstable and is resolved by “tumbling” grains from

X; to x;,, recursively, until all sites are stable
* Possible effects of adding a single grain of sand:
— Nothing: h(x;) = j(x; + 1)
— One grain tumbles, 2 grains tumble, ... n grains tumble =
— An avalanche




ldealized Sandpile
(from Jensen, 1998)

e Distribution of avalanche sizes
is a power law
— The sandpile responds to

perturbation with events of
any size (scale free)

— Phenomena at many scales
contribute to the overall state

e After an avalanche, the
sandpile will eventually return
to a critical state as more
grains of sand are added

— Self-organized criticality
— Can generalize to d dimensions




Review: Forest Fire Model

Imagine a 2-dimensional lattice, where each site can be in
one of 3 states:

— E (empty)

— G (containing a green tree)
— B (containing a burning tree)
Model dynamics:

— A site occupied by a burning tree becomes an empty site in
the succeeding time step.

— A green tree becomes a burning tree if one or more of its
nearest neighbors contains a burning tree.

— An empt_¥ site becomes occupied by a green tree with
probability p (the growth rate) in eaCh time step.

— A green tree that is not a neighbor to burnin? sites catches
fire spontaneously with probability f (the lightning rate) in
each time step.

Assume periodic boundary conditions and random initial
configuration.




Example: SOC in Forest Fires
Drossel and Schwabl, 1992

* Using the CA model of forest fires
discussed earlier,

— The probability P(S) that a cluster of
green trees contains s trees exhibits
power law behavior:

P(s)~
S

— The clusters of green trees are fractal
objects if the model is extended
beyond 2 dimensions

Model has been extended to study
incidence of Measles in isolated
environments (Rhodes and
Anderson, 1996)

Newman, 2006
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Highly Optimized Tolerance (HOT)
Jean Carlson and John Doyle (1999)

Claim: Designed sandpiles and percolation models produce power law
distributions by a different mechanism than criticality.

Robustness tradeoffs are an essential feature of complex systems

Claim:

— Evolved (natural) or designed (artificial) systems produce rare, structured

states which are,
* Robust to perturbations they were designed to handle
* Fragile to design flaws and unanticipated perturbations

These robustness tradeoffs cause complex systems to be “robust yet fragile”:
— Organisms and ecosystems are robust to large variations in temperature,
moisture, nutrients, predation.

— But, they can be catastrophically sensitive to tiny perturbations, such as
genetic mutation, exotic species, or a novel virus




HOT cont.

 SOC requires criticality to get power laws, but in HOT,
power law distributions arise under many noncritical
conditions

* SOC contains no element of design or planning, but HOT
does.

 Example: forest fires
— Planting forests optimally to reduce fire threat

— Plant trees sparsely to reduce risk of fire
. ]ICEprect a percolating cluster at critical density, leading to catastrophic
res
* Engineered solution: Plant trees densely with fire breaks, isolating
different regions
— HOT corresponds to a planting that produces both high yields
and protection against catastrophic fires

— HOT is thus robust to anticipated failures (fires) but susceptible
to unanticipated failures (design flaws).
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Summary
Basic Mechanisms that Produce Power Laws

Preferential attachment (previous slides)

Combinations of exponentials
Random walks

Phase transitions (next slide)
— Critical points

Optimizations

— Evolution

— Engineering




Physical and Geometric constraints determine
network architecture and growth

* Network capacity limits performance as systems scale
 Metabolism, response times, power consumption

* Are universal patterns in system behavior predictable
from the scaling properties of distribution networks?




Fractal Networks
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Hierarchical Modularity
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Hierarchical Modularity
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Computer Designs are also Fractal
Rent’s rule (1963)
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Rent’s Rule

* Relationship between external signal connections
in a logic block and number of logic gates in the

block
* A scaling relationship for VLSI circuits

* Apower law
— C = communication
— N =circuit size
— P = Rent’s exponent, in [0,1]
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Log-log plot of Cvs. N

Rent's rule
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