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Exam Format

Closed book, closed note
1 hour

Usually 5-8 questions, with sub-parts
— Some short answer

— | give you a CA rule, you show a sequence of states

— | describe desired behavior, you give me some CA
rules to implement it

— 1 longer essay question

Intended to be easy if you have done all the
readings and did the homework yourself

— A sanity check




Topics

Models
— What is a model?

— Styles of modeling
* Aggregate vs. individual
* State-based vs. process-based
* Deterministic vs. probablistic

— How do we use models?
Cellular automata

Data analysis
— Statistical distributions
— Testing for power laws and other distributions
* Curve fitting
* Maximum likelihood estimates
Power laws and scaling
— Power laws in nature and technology
— Mechanisms for generating power laws



Modeling

How do we use models?
How do we evaluate models?

Different approaches to modeling

Examples of different kinds of models and
what they are used for

Pros and cons of different modeling methods
Limitations of modeling?




What is a model?

A hypothetical description, often based on
an analogy, used to study a behavior of
interest.

A representation of a system of interest.

The representation is reduced---what to
throw away?

Examples?




Models for Complex Systems

* Concept-driven
— Mathematical equations

— Computational and simulation models
* Agent-based modeling

* Data-driven
— Bayesian networks




Model Representations

* Verbal descriptions

— The “invisible hand” in
economics

— Clonal selection theory in
Immunology

— Bohr’ s model of the atom




Model Representations

* Verbal descriptions
« Mathematical equations




Model Representations

» Verbal descriptions, e.qg.,

« Computer programs (model vs. simulation)
— The real system
— The model
— The computer




Examples of Models and
Representations???




Example: Limits to growth model

THE LIMITS TO
gl’&sg&f&

Meadows et al. 1972

Computer model:

— 5 variables: populartion, industrialization,
pollution, food production, resource
depletion

Goal: Not to make specific predictions, but to
explore how exponential growth interacts with
finite resources. Because the size of resources
is not known, only general behavior can be
explored.

This process of determining behavior modes is
"prediction” only in the most limited sense of
the word. ... These graphs are not exact
predictions of the values of the variables at any
particular year in the future. They are
indications of the system's behavioral
tendencies only.

L. Nasdres

ANilan

VW Netveen M




Common Modeling Assumptions

Homogeneity (all agents are identical / stateless)
Equilibrium (no or very simple dynamics)
Random mixing

No feedback (learning)

Deterministic

No connection between micro and macro
phenomena

Models with these assumptions can produce
some interesting features, e.g., tipping points (R,).




Hallmarks of Complex Systems

Heterogeneous agents

Nonlinear dynamics

— Nonequilibrium systems

Contact structure: networks, nonrandom mixing

Stochastic behavior (interesting behavior in the
tails)

Learning/feedback

— Agents can change their behavior

Emergence
— Multi-scale phenomena




What are the Challenges in Modeling
Complex Systems?

Closed form solutions rarely exist:

— Features from previous slide

Detailed simulations are problematic:

— Can never hope to get all the details correct.

— Because systems are nonlinear, small errors can have large
consequences.

Evolution is key:
— Basic components change over time.
— Individual variants matter (hard to do theory).

Discreteness (e.g., time, state spaces, and internal variable
values)

— Techniques developed to study nonlinear systems are not
always directly applicable

Spatial heterogeneity




Classes of Scientific Models

Continuous vs. discrete
Deterministic vs. probabilistic
Spatial vs. nonspatial

Data-driven vs. theory-driven




Classes of Scientific Models

Continuous vs. discrete

— e.g., differential equation vs. cellular automata

Deterministic vs. probabilistic
— Dynamical system vs. Markov chain

— Cellular automata vs. genetic algorithm
Spatial vs. nonspatial
Data-driven vs. theory-driven

— Bayseian networks vs. expert system




How do we use models?

* Making predictions (conventional use)
— Quantitative (most analytical models)

— Qualitative, e.g., critical parameters, regions of
stability or instability

— Validation: Accurate predictions




How do we use models?

ftp://ftp.ira.uka.de/pub/cellular-automata/jvn

* Existence proofs

— Demonstrate that something is possible (e.g., von
Neumann’s self-reproducing automaton, patents)

— Validation: it works




How do we use models?

 Building intuitions about how complex
systems work ( ):
— Examples: Flight simulators, Sim City.

— Study how patterns of behavior, how
resources flow, how co-operation arises,
arms races.

— Sensitivity analysis.

— Discovering lever points for intervention,
e.g., vaccines

— Validation? (Trust, allows a pilot to land
safely).

“The contemplation in natural science of a wider domain than the actual leads
to a far better understanding of the actual. “ A.S. Eddington. (first test of
Einstein's Theory of Relativity experimentally)




How do we evaluate models?

Parsimony and simplicity
— Occam’s Razor: select the hypothesis that makes the

fewest assumptions when they are equal in other
respects

Accuracy of predictions

— R? and other statistical tests

Model works as claimed

— Run it. e.g. patented devices

Falsifiability

Consistency---formalize notion of model as a
homomorphic map.




How do we build models?

* Three elements in a computational model:
ne system of interest
ne model

ne computer
* Modeling: The relationship between the real
system and the model

* Simulation: The relationship between the
computer and the model




Basic Modeling Approaches

 Top-down
Analyze problem / system of interest
* Collect data: Live with your data!
Formulate a model
Make simplifying assumptions

Determine variables and model relationships between them,
and submodels

Solve/run model
Compare to data
* Bottom-up
— Collect data (training data)
— Formulate a model to account for the data
— Test model on additional data for goodness of fit




Case Studies

Cancer

Forest fire model

Metabolic scaling in chips and biology
Spam/malware

Student presentations




CELLULAR AUTOMATA




Cellular Automata Topics

1-dimensional
— Space time plots

Wolfram classes
2-dimensional

Case studies
— Forest fire model
— Game of life




CAs as Discrete Simulation Models

e Cellular Automata are discrete

— Time changes in incremental steps
» Differential equations for continuous time, typically

— Space is represented explicitly, in regular
arrangements of cells

— Each cell is in one of a finite number of states at any
given time

e Deterministic

— Initial states of cells determine the rest of the
computation

* Each of these assumptions can be relaxed
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CA can exhibit complex behavior
Wolfram’s Classification

Class I: Eventually every cell in the array settles into one state, never to
change again

— Analogous to computer programs that halt after a few steps and to dynamical
systems that have fixed-point attractors

Class Il: Eventually the array settles into a periodic cycle of states, called a
limit cycle
— Analogous to computer programs that execute infinite loops and to dynamical

systems that fall into limit cycles

Class lll: The array forms “aperiodic” random-like patterns

— Analogous to computer programs that are pseudo-random number generators
(pass most tests for randomness, highly sensitive to seed, or initial condition).

— Analogous to chaotic dynamical systems. Almost never repeat themselves,
sensitive to initial conditions, embedded unstable limit cycles

Class IV: The array forms complex patterns with localized structure that
move through space and time

— Difficult to describe. Not regular, not periodic, not random

— Speculate: this is interesting computation, the edge of chaos

— Example: Rule 110




Forest Fire Model

* 4 transition rules
— A burning cell turns into an empty cell

— A tree will burn if at least one
neighbor is burning

— A tree ignites with probability f even if
no neighbor is burning

— An empty space fills with a tree with
probability p

Neighborhood (von Neumann)




How are forest fire models
related to power laws?




The Game of Life
John Conway (1970)

ne number of states, k=2
he alphabet, 2 ={0,1} //{‘dead’,’alive’}
ne Moore neighborhood

Transition rules:
— Loneliness: A live cell with less than 2 live neighbors, dies
— Overcrowding: A live cell with more than 3 live neighbors,
dies
— Birth: A dead cell with exactly 3 live neighbors becomes a
live cell

— Survival: A live cell with 2 or 3 live neighbors stays alive
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Figure 15.12 Examples of simple periodic objects in Conway’s Game of Life
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Gliders (moving objects)




Topics

Statistical distributions

— Normal

— Log normal

— Exponential

— Power law

Power laws in nature and computing
— Complex networks

Detecting power laws in data
How power laws are generated
Special topics

— Metabolic scaling theory



Nice properties of power laws

e Scale invariant

— Distribution can range over many orders of
magnitude

* Log log plot is a straight line
— Noise in tail

* CCDF is also a power law
— Exponentis—b +1




Testing for distributions: Review

Two basic strategies
— Plot data, fit curves, measure goodness of fit
— Maximum Likelihood calculations
Normal
— Plot on semilogy (look for a quadratic curve)*
— Mean gives MLE
Log normal
— Log data, then treat like a normal distribution
Exponential
— Plot on semilogy and look for linear fit
— MLE is given in the assignment
Power law
— Plot on log-log scale and look for lines (++)

* Don’t try this at home




How to decide which distribution best
fits your data?

1. Estimate the Maximum Likelihood Estimate
(MLE) parameters for each distribution

1. Power law, log normal, exponential

2. Compute the loglikelihood for each distribution
using the MLE parameter estimates

3. Compare the loglikelihoods




Basic Mechanisms that Produce Power Laws

Preferential attachment (previous slides)

Combinations of exponentials
Random walks

Phase transitions (next slide)
— Critical points

Optimizations

— Evolution

— Engineering




Complex Networks
Important properties

* Degree distribution is often power law (ish)
— Centrality

* Low diameter
— 6 degrees of separation

— Small world effect

* Community structure

— Cliques, triangles, etc.




Examples?




Physical and Geometric constraints determine
network architecture and growth

* Network capacity limits performance as systems scale
 Metabolism, response times, power consumption

* Are universal patterns in system behavior predictable
from the scaling properties of distribution networks?




Hierarchical Modularity

Log-log plot of Cvs. N

Rent's rule
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Partition size

C = communication
N = circuit size
P = Rent’s exponent, in 0,1

Rent’s rule for benchmark circuit ¢c3540
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Kleiber’s Law
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Hemmingson, 1960

Observed metabolic scaling
B o< M3/*

B is the rate of energy
(oxygen) use

— Mass specific scaling

B is the master biological rate
that governs

— Ecological interactions

— Food webs & ecosystem

dynamics
Other biological rates

— Biological times




d Metabolic Scaling Theory
L

e Larger organisms
require larger networks
— Pipe lengths (L) are
longer

— Cross-section areas (A)
are larger

— # capillaries increases

more slowly than pipe Increasing volume (mass) 100 times
volume: N = cV3/4 increases delivery rate 30 times

— Metabolism: B = cM3/4

Diminishing returns: Network size grows faster than network delivery rate




