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We build a simple model of leveraged asset purchases with margin calls. Investment funds use
what is perhaps the most basic financial strategy, called ‘value investing’, i.e. systematically
attempting to buy underpriced assets. When funds do not borrow, the price fluctuations of the
asset are approximately normally distributed and uncorrelated across time. This changes when
the funds are allowed to leverage, i.e. borrow from a bank, which allows them to purchase
more assets than their wealth would otherwise permit. During good times, funds that use more
leverage have higher profits, increasing their wealth and making them dominant in the market.
However, if a downward price fluctuation occurs while one or more funds is fully leveraged,
the resulting margin call causes them to sell into an already falling market, amplifying the
downward price movement. If the funds hold large positions in the asset, this can cause
substantial losses. This in turn leads to clustered volatility: before a crash, when the value
funds are dominant, they damp volatility, and after the crash, when they suffer severe losses,
volatility is high. This leads to power-law tails, which are both due to the leverage-induced
crashes and due to the clustered volatility induced by the wealth dynamics. This is in contrast
to previous explanations of fat tails and clustered volatility, which depended on ‘irrational
behavior’, such as trend following. A standard (supposedly more sophisticated) risk control
policy in which individual banks base leverage limits on volatility causes leverage to rise
during periods of low volatility, and to contract more quickly when volatility becomes high,
making these extreme fluctuations even worse.

Keywords: Systemic risk; Clustered volatility; Fat tails; Crash; Margin calls; Leverage

JEL Classification: E32, E37, G01, G12, G14

1. Introduction

Recent events in financial markets have underscored the

dangerous consequences of the use of excessive credit. At

the most basic level the problem is obvious: if a firm buys

assets with borrowed money, then under extreme market

conditions it may owe more money than it has and

defaults. If this happens on a sufficiently wide scale, then it

can severely stress creditors and cause them to fail as well.
We show here that a special but extremely widespread

kind of credit called collateralized loans with margin calls

has a more pervasive effect: when used excessively it can

cause default and crashes, but it also leaves a signature

even when there is no default or crash. These kinds of

loans have already been identified as a major culprit in the

recent crisis, and in previous near crises as well.> But we

show here that they create a dynamic in asset price

fluctuations that manifests itself at all time scales and to

all degrees. The extraordinary crisis of the last couple of

years is just one extreme (but not extremal) point on a

continuum.
By taking out a collateralized loan a buyer of stocks or

mortgage-backed securities can put together a portfolio

that is worth a multiple of the cash he has available for

their purchase. In 2006 this multiple or ‘leverage’ reached

60 to 1 for AAA-rated mortgage securities, and 16 to 1 for

*Corresponding author. Email: stefan.thurner@meduniwien.ac.at
>For previous equilibrium-based analyses of leverage that show that prices crash before default actually occurs, see Geanakoplos
(1997, 2003), Fostel and Geanakoplos (2008), Brunnermeier and Pedersen (2009) and Geanakoplos (2010).
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what are now called the toxic mortgage securities. The
outstanding volume of these leveraged asset purchases
reached many trillions of dollars. Leverage has fluctuated
up and down in long cycles over the last 30 years.

Conventional credit is for a fixed amount and a fixed
maturity, extending over the period the borrower needs
the money. In a collateralized loan with margin calls, the
debt is guaranteed not by the reputation (or punishment)
of the borrower, but by an asset that is confiscated if the
loan is not repaid. Typically, the loan maturity is very
short, say a day, much shorter than the length of time the
borrower anticipates needing the money. The contract
usually specifies that, after the daily interest is paid, as
long as the loan-to-asset-value ratio remains below a
specified threshold, the debt is rolled over another day (up
to some final maturity, when the threshold ratio might be
changed). If, however, the collateral asset value falls, the
lender makes a margin call and the borrower is expected
to repay part of the debt and so roll over a smaller loan to
maintain the old loan-to-value threshold. Quite often, the
borrower will obtain the cash for this extra downpayment
by selling some of the collateral. The nature of the
collateralized loan contract thus sometimes turns buyers
of the collateral into sellers, even when they might think it
is the best time to buy.

Such an effect is well known to every hedge fund
manager who uses leverage. It was discussed informally
by Gennotte and Leland (1990) and Shleifer and Vishny
(1997) where it was noted that leveraged value investors
may cause mispricings to increase when they hit margin
limits. Geanakoplos (2003) presents an explicit model of
leverage and prices and solves for the equilibrium leverage
and prices when every agent is fully rational. There the
margin call effect is compounded by an increase in the
endogenous equilibrium haircut. However, the model
extends only for three periods, with just two possible
shocks each period. We provide a quantitative dynamic
model with arbitrarily many periods and continuous
shocks of all sizes. This allows us to study how value
investors decrease volatility under most circumstances,
but occasionally dramatically increase volatility and
generate crashes. It also allows us to examine the
statistical signature of leveraged trading and to compare
statistical measures of returns, such as kurtosis, in our
model with measures obtained from actual data. In our
model, fat tails and clustered volatility are statistically
testable properties. By contrast, in the purely descriptive
commentary of Shleifer and Vishny (1997), they can only
suggest that price changes will be bigger than the shocks
to fundamentals.

Needless to say, the higher the loan to value, or,
equivalently, the higher the leverage ratio of asset value to
cash downpayment, the more severe will be the feedback
mechanism. A buyer who is at his threshold of � times

leverage loses �% of his investment for every 1% drop in
the asset price, and on top of that will have to come up
with $(�� 1)/� of new cash for every $1 drop in the price
of the asset. When there is no leverage, and �¼ 1, there is
no feedback, but as the leverage increases, so does the
feedback.

The feedback from falling asset prices to margin calls to
the transformation of buyers into sellers back to falling
asset prices creates a nonlinear dynamic to the system.
The nonlinearity rises as the leverage rises. This nonlinear
feedback would be present in the most sophisticated
rational expectations models or in the most simple-
minded behavioral models: it is a mechanical effect that
stems directly from the nonlinear dynamics caused by the
use of leverage and margin calls. We therefore build the
simplest model possible and then simulate it over tens of
thousands of periods, measuring and quantifying the
effect of leverage on asset price fluctuations.y

Our model provides a new explanation for the fat tails
and clustered volatility that are commonly observed in
price fluctuations (Mandelbrot 1963, Engle 1982).
Clustered volatility and fat tails emerge in the model on
a broad range of time scales, including very rapid ones
and very slow ones. Mandelbrot and Engle found that
actual price fluctuations did not display the independent
and normally distributed properties assumed by the
pioneers of classical finance (Bachelier 1964, Black and
Scholes 1973). Although their work has been properly
celebrated, no consensus has formed on the mechanism
that creates fat tails and clustered volatility. The mech-
anism we develop here supports the hypothesis that they
are caused by the endogenous dynamics of the market
rather than the nature of information itself—in our
model, information is normally distributed and i.i.d., but
when leverage is used, the resulting prices are not.

Previous endogenous explanations assume the presence
of a kind of trader who exacerbates fluctuations. Traders
in these models are of at least two types: value investors,
who make investments based on fundamentals, and trend
followers, who make investments in the direction of recent
price movements.z Trend followers are inherently desta-
bilizing, and many would dispute whether such behavior
is rational. Value investors, in contrast, are essential to
maintain a reasonably efficient market: they gather
information about valuations, and incorporate it into
prices. Thus, in this sense, value investing is rational. In
typical models of this type, investors move their money
back and forth between trend strategies and value
strategies, depending on who has recently been more
successful, and fat tails and clustered volatility are
generated by temporary increases in destabilizing trend
strategies.

The mechanism that we propose here for fat tails and
clustered volatility only involves value investors, who are

yThe nonlinear feedback that we describe here, which is driven by investors selling into a falling market, is in this sense similar to the
model of hedging by Gennotte and Leland (1990); they also discuss how such feedbacks can cause crashes.
zSee Palmer et al. (1994), Arthur et al. (1997), Brock and Hommes (1997, 1998), Caldarelli et al. (1997), Lux (1999) Lux and
Marchesi (1999) and Giardina and Bouchaud (2003). See also Friedman and Abraham (2009), who induce bubbles and crashes via
myopic learning dynamics.
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stabilizing in the absence of leverage. We do not claim
that our mechanism for making fat tails is the only
possible mechanism—indeed, it likely coexists with the
myopic learning mechanism reviewed above, and may
also coexist with other mechanisms, such as fat tails in
exogenous information arrival.

An important aspect of our model is that even though
the risk control policies used by the individual bank
lenders are reasonable from a narrow, bank-centric point
of view, when a group of banks inadvertently acts
together, they can dramatically affect prices, inducing
nonlinear behavior at a systemic level that gives rise to
excessive volatility and even crashes. Attempts to regulate
risk without taking into account systemic effects can
backfire, accentuating risks or even creating new ones.y

The wealth dynamics in our model illustrate the
interaction between evolutionary dynamics that occur
on very long time scales, and short-term dynamics that
occur on timescales of minutes. In our model, different
agents use different levels of leverage. Agents who use
more leverage produce higher returns and attract more
investment capital, and as time goes on the most
aggressive investors accumulate more wealth. Whereas
funds normally damp price fluctuations by buying when
the price falls, if they are fully leveraged, the margin call
caused by a small downward price fluctuation can force
them to sell into a falling market. In the early stages of a
bubble, when the wealth of the funds is low, their
positions are small, their impact on the market is low, and
this is relatively harmless. However, in the later stages,
when the combination of fund wealth and leverage is
large, the impact is correspondingly large, and a relatively
small downward price movement can trigger a crash.

The above scenario illustrates the evolutionary pressure
driving funds toward higher and higher leverage.
During stable periods in the market, funds that use
large leverage grow at the expense of those who do not,
and acquire more and more market power, while funds
that do not employ sufficient leverage lose investment
capital. Even if fund managers are aware of the danger of
using leverage, the pressure of short-term competition
may force them to do so. Regulating leverage is thus good
for everyone, preventing behavior that all are driven to
yet no one desires.

The leverage effect that we explore here is just one
example of many types of nonlinear positive feedback
that are often referred to as ‘pro-cyclical behavior’ in the
economics literature. Other examples include stop-loss
orders, exercise of put or call options, trend-following and
dynamic hedging strategies. All of these have the common
feature that they generate additional buying or selling in
the direction the price is already moving, thereby ampli-
fying a pre-existing trend. Furthermore, with the excep-
tion of trend following, these are all essentially

mechanical effects that, once contracts are in place, can
lead to the amplification of price movements without any
further decision making. Our work here is in the spirit of
the pioneering paper of Kim and Markowitz (1989), who
simulated dynamic hedging strategies believed to be
involved in the crash of 1987 and demonstrated their
effect on time series of prices. The destabilizing effects of
derivatives have been studied by Brock et al. (2009) and
Caccioli et al. (2009).

We wish to emphasize that we do not claim here that
excessive borrowing by hedge funds caused the liquidity
crisis of 2007 onwards. This work is instead designed to
illustrate the general problems associated with leverage.
The heavy-tailed price movements we demonstrate here,
which are caused by selling into a falling market, should
be observed in any situation where there are collateralized
loans with margin calls, whether or not the borrowers are
value investors.z

2. The model

In our model, traders have a choice between owning a
single asset, such as a stock or a commodity, or owning
cash. There are two types of traders, noise traders and
funds. The noise traders buy and sell nearly at random,
with a slight bias that makes the price weakly mean-revert
around a perceived fundamental value V. The funds use a
strategy that exploits mispricings by taking a long
position (holding a net positive quantity of the asset)
when the price is below V, and otherwise staying out of
the market. The funds can augment the size of their long
position by borrowing from a bank at an interest rate
that, for simplicity, we fix at zero, using the asset as
collateral. This borrowing is called leverage. The bank
will of course be careful to limit its lending so that the
value of what is owed is less than the current price of the
assets held as collateral. Default occurs if the asset price
falls sufficiently far before the loan comes due in the next
period.

In addition to the two types of traders there is a
representative investor who either invests in a fund or
holds cash. The amount she invests in a given fund
depends on its recent historical performance relative to a
benchmark return rb. Thus successful funds attract
additional capital above and beyond what they gain in
the market and similarly unsuccessful funds lose addi-
tional capital.

2.1. Supply and demand

The total supply of the asset is N. At the beginning of
each period t� 1, all agents observe the unit asset price
p(t). As is traditional, all the traders in our model are

yAnother good example from the recent meltdown illustrating how individual risk regulation can create systemic risk is the use of
derivatives.
zThe failure of Long Term Capital Management in 1998 was an example of a near-crisis caused by the precise mechanism discussed
here. Some other types of investment strategies, such as trend-following or portfolio insurance, cause nonlinear feedback in prices,
which is further amplified by leverage.
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perfectly competitive; they take the price as given,
imagining that they are so small that they cannot affect
the price, no matter how much they demand.

2.1.1. Noise traders. The noise traders’ demand is
defined in terms of the cash value �nt(t) they spend on
the asset, which follows an autoregressive random process
of order 1 of the form

log �ntðtÞ ¼ � log �ntðt� 1Þ þ ��ðtÞ þ ð1� �Þ logðVNÞ,

where � is normally distributed with mean zero and
standard deviation one. The noise traders’ demand is

Dntðt, pðtÞÞ ¼
�ntðtÞ

pðtÞ
:

When there are only noise traders the price is set such that
Dnt(t, p(t))¼N. This choice of the noise trader process
guarantees that with �51 the price is a mean-reverting
random process with E[log p]¼ log V.

When there are only noise traders the log price follows
an AR(1) process and so is normally distributed.
However, the returns r(t)¼ log(p(t)/p(t� 1)) are some-
what more heavy tailed than normal. Furthermore, the
mean reversion introduces a slight amount of clustered
volatility. Both of these facts are shown in the appendix.
For the purposes of this paper we fix V¼ 1, N¼ 1000,
�¼ 0.035 and �¼ 0.99. The choice of �� 1 ensures that
the deviation from normality is minimal; with �¼ 0.99 the
typical fluctuation in volatility is about 1%.

2.1.2. Funds. We add a second class of demanders
called funds. The funds in our model are value investors
who base their demand Dh(t) on a mispricing signal
m(t)¼V� p(t). The perceived fundamental value V is
held constant and is the same for the noise traders and for
all funds. As shown in figure 1, each fund h computes its
demand Dh(t) based on the mispricing. As the mispricing
increases, the dollar value Dh(t)p(t) of the asset the fund
wishes to hold increases linearly, but the position size is
capped when the fund reaches the maximum leverage.
Funds differ only according to an aggression parameter
�h that represents how sensitive their response is to the
signal m.

Each fund begins with the same wealthWh(0)¼ 2. After
noting the price p(t), at each date t� 1 hedge fund h
computes its wealth Wh(t)¼Wh(t, p(t)), as described in
the next section. The fund must split its wealth Wh(t)
between cash Ch(t) and the value of the asset Dh(t)p(t),

WhðtÞ ¼Whðt, pðtÞÞ ¼ DhðtÞ pðtÞ þ ChðtÞ:

When the fund is borrowing money, Ch(t) is negative and
represents the loan amount. If Wh(t, p(t))� 0, the fund’s
demand Dh(t)¼Dh(t, p(t)) can be written as

mðtÞ5 0 : DhðtÞ ¼ 0, ð1Þ

05m5mcrit
h : DhðtÞ ¼ �hmðtÞWhðtÞ=pðtÞ, ð2Þ

m � mcrit
h : DhðtÞ ¼ �MAXWhðtÞ=pðtÞ: ð3Þ

In (1) the asset is over-priced and the fund holds nothing.

In (2) the asset is underpriced but the mispricing is not too

large. The fund takes a position whose monetary value is

proportional to the mispricing m(t), the fund’s wealth

Wh(t), and the aggression parameter �h, which can vary

from fund to fund. In (3) the asset is even more

underpriced so that the fund has reached its maximum

leverage �h(t)¼ �MAX. This occurs when mðtÞ � mcrit
h ¼

�MAX=�h.
The leverage �h is the ratio of the dollar value of the

fund’s asset holdings to its wealth, i.e.

�hðtÞ ¼
DhðtÞ pðtÞ

WhðtÞ
¼

DhðtÞ pðtÞ

ðDhðtÞ pðtÞ þ ChðtÞÞ
: ð4Þ

The fund is required by the bank it borrows from to

maintain �h(t)� �MAX. If ��hðtÞ ¼ Dhðt� 1ÞpðtÞ=WhðtÞ4
�MAX, the fund will have to sell the asset in order to bring

leverage �h(t) under the maximum allowed. This is called

meeting a margin call.
Note that a k% change in the asset price from p(t� 1)

to p(t) causes a ��hðtÞk% change in wealth Wh(t), hence the

name ‘leverage’. A fund that satisfied its leverage limit at

time t� 1 might face a margin call at time t either because
��hðtÞ4 1 and p(t) falls below p(t� 1), causing Wh(t) to fall

by a larger percentage than the asset price, or because

Wh(t) falls below Wh(t� 1) due to redemptions, described

in the next section.
If Wh(t)50, the fund defaults and goes out of business.

The fund sells all its assets, demanding Dh(t)¼ 0, and

returns all the revenue to pay off as much of its borrowed

money as it can to its bank lender. The bank bears the loss

of the default. For simplicity, we assume the bank has

deep pockets and, despite the loss, continues to lend to

other funds as before. After a period of time has passed,

the defaulting fund reemerges again as a new fund, as we

shall describe below.
Prices are set by equating the demand of the funds plus

the noise traders to the fixed supply of the asset

Dntðt, pðtÞÞ þ
X
h

Dhðt, pðtÞÞ ¼ N:

Figure 1. Demand function Dh(t)p(t) of a fund (measured in
dollars) vs. the mispricing signal m(t)¼V� p(t). The investor
does nothing when the asset is overpriced, and she buys more
and more as the asset becomes underpriced, until she hits her
leverage limit at m¼mcrit. After this her demand remains flat.
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2.2. Fund wealth dynamics

The funds’ wealth automatically grows or shrinks accord-

ing to the success or failure of their trading. In addition, it

changes due to additions or withdrawals of money by

investors, as described below. If a fund’s wealth goes

below a critical threshold, here set to Wh(0)/10 , the fund

goes out of business,y and after a period of time, Treintro,

has passed it is replaced by a new fund with wealth Wh(0)

and the same parameters �h and �MAX. In the simulations

we use Treintro¼ 100 time steps.
A pool of fund investors, who are treated as a single

representative investor, contribute or withdraw money

from each fund based on a moving average of its recent

performance. This kind of behavior is well documented.z
Let

rhðtÞ ¼
Dhðt� 1Þð pðtÞ � pðt� 1ÞÞ

Whðt� 1Þ

be the rate of return by fund h on investments at time t.

The investors make their decisions about whether to

invest in the fund based on rperfh ðtÞ, an exponential moving

average of these performances, defined as

rperfh ðtÞ ¼ ð1� aÞ rperfh ðt� 1Þ þ a rhðtÞ: ð5Þ

The flow of capital in or out of the fund, Fh(t), is given by

~FhðtÞ ¼ b½rperfh ðtÞ � rb� ½Dhðt� 1Þ pðtÞ þ Chðt� 1Þ�, ð6Þ

FhðtÞ ¼ maxð ~FhðtÞ, � ½Dhðt� 1Þ pðtÞ þ Chðt� 1Þ�Þ, ð7Þ

where b is a parameter controlling how sensitive the

percentage contributions or withdrawals are to returns

and rb is the benchmark return of the investors. The

investors cannot take out more money than the fund has.
Funds are initially given wealth W0¼Wh(0). At the

beginning of each new time step t� 1, the wealth of the

fund changes according to

WhðtÞ ¼Whðt� 1Þ þ ½ pðtÞ � pðt� 1Þ�Dhðt� 1Þ þ FhðtÞ:

ð8Þ

In the simulations in this paper, unless otherwise stated

we set a¼ 0.1, b¼ 0.15, rb¼ 0.005, and W0¼ 2.
The benchmark return rb plays the important role of

determining the relative size of hedge funds vs. noise

traders. If the benchmark return is set very low, then

funds will become very wealthy and will buy a large

quantity of the asset under even small mispricings,

preventing the mispricing from ever growing large. This

effectively induces a hard floor on prices. If the bench-

mark return is set very high, funds accumulate little

wealth and play a negligible role in price formation. The

interesting behavior is observed at intermediate values of

rb where the funds’ demand is comparable to that of the

noise traders.

2.3. A few remarks about the model

2.3.1. Lack of short selling and its consequences. We
have intentionally avoided short selling because short
positions are inherently riskier than long positions. With
an unleveraged long-only position it is not possible to lose
more than one owns. In contrast, with a short position it
is possible to lose an arbitrarily large amount, even
without leverage. Because we wanted to be able to switch
off excess riskiness completely, we intentionally kept short
selling out of this model.

The disadvantage of this approach is that it makes the
model explicitly unrealistic in ways that need to be taken
into account when interpreting the results. When the asset
is overpriced, long-only funds are entirely out of the
market, which can cause strong asymmetries in the
properties of prices. Since the funds normally damp
excursions from fundamentals, it can mean that the
volatility is higher when the asset is overpriced than when
it is underpriced. Mixing the two cases together would
result in artificially induced heavy tails and give an
artificial impression of clustered volatility. The predic-
tions of the model are only relevant when the asset is
underpriced and we therefore condition our analyses on
the asset being underpriced.

2.3.2. Trend following in wealth dynamics. The wealth
dynamics of the funds involves a representative investor
who takes her money in or out of the fund based on its
recent performance. We introduced this into our model
because it guarantees a steady-state behavior, with well-
defined long-term statistical averages. Without this the
wealth of the funds grows without bound, since the funds
consistently profit at the expense of the noise traders. This
causes the price to eventually ‘freeze’ with the value V as a
floor due to the fact that any underpricing is immediately
corrected by the funds. Since the wealth dynamics we
have chosen is a form of trend following, it unfortunately
introduces some confusion about the source of the heavy
tails that we observe here. As we explain later, based on
various experiments we are confident that the wealth
dynamics of the investors is not the source of the
heavy tails.

3. Simulation results

3.1. Wealth dynamics

In figure 2 we illustrate the wealth dynamics for a
simulation with 10 funds whose aggression parameters are
�h¼ 5, 10, . . . , 50. They all begin with the same low wealth
Wh(0)¼ 2; at the outset they make good returns and their
wealth grows quickly. This is particularly true for the
most aggressive funds; with higher leverage they make

yUsing a positive survival threshold for removing funds avoids the creation of ‘zombie funds’ that persist for long periods of time
with almost no wealth.
zSome of the references that document or discuss the flow of investors in and out of mutual funds include Chevalier and Ellison
(1997), Remolona et al. (1997), Sirri and Tufano (1998, Busse (2001) and Del Guercio and Tka (2002).
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higher returns so long as the asset price is increasing. As
their wealth grows the funds have more impact, i.e. they
themselves affect prices, driving them up when they are
buying and down when they are selling. This limits their
profit-making opportunities and imposes a ceiling of
wealth at about W¼ 40. There are a series of crashes that
cause defaults, particularly for the most highly leveraged
funds. Twice during the simulation, at around t¼ 10 000
and 25 000, crashes wipe out all but the two least
aggressive funds with �h¼ 5 and 10. While funds
�3� �10 wait to get reintroduced, fund �2 manages to
become dominant for extended periods of time.

3.2. Returns and correlations

The presence of the funds dramatically alters the statis-
tical properties of price returns. This is illustrated in
figure 3, where we compare the distribution of logarithmic
price returns r(t)¼ logp(t)� logp(t� 1) for three cases: (1)
noise traders only; (2) hedge funds with no leverage
(�MAX¼ 1); and (3) substantial leverage, i.e. �MAX¼ 10.
With only noise traders the log returns are (by construc-
tion) nearly normally distributed. When funds are added
without leverage the volatility of prices drops slightly, but
the log returns remain approximately normally distrib-
uted. When we increase leverage to �MAX¼ 10, however,
the distribution becomes much more concentrated in the
center and the negative returns develop fat tails. (Recall
that since the funds are long-only, they are only active
when the asset is undervalued, i.e. when the mispricing
m40. This creates an asymmetry between positive and
negative returns.) As shown in figure 3(b), for �MAX¼ 10
the cumulative distribution for the most negative returns
roughly follows a straight line on a double logarithmic
scale, suggesting that it is reasonable to approximate the
tails of the distribution as a power law of the form P(r4R
| m40) � R��.

The exponent � may be regarded as a measure of the
concentration of extreme risks, and a low value of �
implies fat tails. The transition from normality to fat tails

occurs more or less continuously as �MAX varies. This is
in contrast to the conjecture of Plerou et al. (Plerou et al.
1999, Gabaix et al. 2003, 2006, Plerou and Stanley 2008)
that � has a universal value �� 3. In figure 3(c) we
measure � as a function of �MAX. As �MAX increases, �
decreases, corresponding to heavier tails.y This trend
continues until �MAX� 10, where � reaches a floor at
�� 2.5. (The reason this floor exists depends on the
particular choice of parameters here, and will be
explained later.) A typical value measured for financial
time series, such as American stocks (Plerou et al. 1999,
Cont 2000), is �� 3. In our model this corresponds to a
maximum leverage �MAX� 7.5. It is perhaps a coinci-
dence that 7.5 is the maximum leverage allowed for equity
trading in the United States, but in any case this
demonstrates that the numbers produced by this model
are reasonable.

In figure 4 we show the log returns r(t) as a function of
time. The case �MAX¼ 1 is essentially indistinguishable
from the pure noise trader case; there are no large
fluctuations and little temporal structure. The case
�MAX¼ 10, in contrast, shows large, temporally corre-
lated fluctuations. The autocorrelation function shown in
panel (c) is similar to that observed in real price series.
This suggests that this model may also explain clustered
volatility (Engle 1982).

4. How leverage induces nonlinear feedback and

clustered volatility

4.1. When do the funds sell?

The fat tails of price movements in our model are
explained by a combination of the nonlinear positive
feedback caused by leveraging, which causes crashes, and
the wealth dynamics of the value funds. When the funds
are unleveraged, they will always buy into a falling
market, i.e. when the price is dropping they are

Figure 2. Wealth time series Wh(t) for 10 funds with �h¼ 5, 10, . . . , 50 and �MAX¼ 20 for all funds. Times at which (at least) one
fund collapses are marked by triangles.

yWe measured � using a Hill estimator (Hill 1975) based on the largest 10% of the returns. The value of � when �¼ 1 should be
infinite, in contrast to the measured value. Large values of � are difficult to measure correctly, whereas small values are measured
much more accurately.
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guaranteed to be buyers, thus damping price movements

away from the fundamental value. When they are

leveraged, however, this situation is sometimes

reversed—if they are maximally leveraged they sell into

a falling market, thus amplifying the deviation of price

movements away from the fundamental value.
This is easily understood by differentiating the fund’s

demand function given in equations (2) and (3) with

respect to the mispricing. Ignoring the slow-moving fund

deposits and redemptions F(t), write W(t)¼D(t� 1)

p(t)þC(t� 1). Recalling that m¼V� p(t) and differenti-

ating gives

for m5mcrit : dD=dm ¼ � Dðt� 1Þ þ
Cðt� 1ÞV

ðV�mÞ2

� �
,

for m4mcrit : dD=dm ¼
�MAXCðt� 1Þ

ðV�mÞ2
:

(a)

(b)

(c)

Figure 3. The distribution of log returns r. (a) The density of log
returns p(r | m40) on a semi-log scale. The results are
conditioned on positive mispricing m40, i.e. only when the
funds are active. The unleveraged case (red circles) closely
matches the noise trader only case (red curve). When the
maximum leverage is raised to 10 (blue squares) the body of
the distribution becomes thinner but the tails become heavy on
the negative side. This is seen from a different point of view in
(b), which plots the cumulative distribution for negative returns,
P(r4R | m40), on a log–log scale. For �MAX¼ 10 we fit a
power law to the data across the indicated region and show a
line for comparison. In (c) we vary �MAX and plot fitted values
of �, illustrating how the tails become heavier as the leverage
increases. Same � values as in figure 2.

Figure 4. Log return time series (a) �MAX¼ 1 and (b)
�MAX¼ 10. Triangles mark margin calls in the simulation,
indicating a direct connection between large price moves and
margin calls. (c) Autocorrelation function of the absolute values
of log returns for (a) and (b) obtained from a single run with
100,000 time steps. This is plotted on a log–log scale in order to
illustrate the power-law tails. (The autocorrelation function is
computed only when the mispricing is positive.) Same � values
as in figure 2.
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As long as the fund always remains unleveraged, the cash
C(t� 1) is always positive and the derivative of the
demand with the mispricing is always positive. This
means the fund always buys as the price is falling. In
contrast, when the fund is leveraged, then C(t� 1) is
negative. This means that the fund is always selling as the
price is falling when it is above its leverage limit, and
depending on the circumstances, it may start selling even
before then.

To visualize this more clearly, consider the derivative at
the value of the mispricing at the last period,
m¼V� p(t� 1). At that point, ignoring redemptions,
we can assume that D(t� 1) and C(t� 1) are chosen so
that for m5mcrit the fraction of the wealth held in the
asset is Dp/W¼�m and the fraction held in cash is
C/W¼ 1� �m. Similarly, if the fund is over its leverage
limit we can assume that the fraction of the wealth held in
the asset is Dp/W¼ �MAX, and the fraction held is cash is
C/W¼ 1� �MAX. This implies that the rate of buying or
selling under an infinitesimal change in the mispricing
from the last period is

for m5mcrit :
dD=dm

W
¼
�ðV� �m2Þ

ðV�mÞ2
,

for m4mcrit :
dD=dm

W
¼
�MAXð1� �MAXÞ

ðV�mÞ2
:

When the fund is leveraged, then 1� �MAX50, and the
second term is negative, so when m4mcrit the fund always
sells as the mispricing increases. If �m24V, then the fund
may sell as the mispricing increases even when m5mcrit.

This is illustrated in figure 5, where we plot the
derivative of the fund’s demand function, dD/dm, as a
function of the mispricing m. First consider the case where
the maximum leverage is one (�MAX¼ 1). The fund buys
as the mispricing increases as long as the mispricing is
small enough that the leverage is under the leverage limit,
i.e. for m5mcrit

¼ �MAX/�¼ 0.1. When the mispricing
becomes greater than this it simply holds its position. In
contrast, with a maximum leverage of two the critical
mispricing increases to mcrit

¼ 0.2. The fund now buys as
the mispricing increases over a wider range of mispricings,
but switches over to selling when m4mcrit. When the
leverage is further increased to three, this effect becomes
even stronger, i.e. the fund sells even more aggressively
while the price is falling.

Even when there is no cap on leverage, for a sufficiently
large mispricing the fund eventually becomes a seller as
the mispricing increases. This is a consequence of the fact
that we chose the demand function to be proportional to
wealth. When the mispricing becomes large enough the
decrease in wealth overwhelms the increase in the
mispricing, so the fund sells even without a margin call
from the bank. This can be viewed as a kind of risk
reduction strategy on the part of the fund.

By altering the margin call policy of the bank it is
possible to eliminate the systemic risk effect entirely.

Suppose, for example, that rather than demanding debt
repayment, the bank simply takes ownership of the shares
of the fund,y and that the demand function of the fund
never causes them to sell into a falling market. In this case
there is no nonlinear feedback and no systemic risk effect.

4.2. Nonlinear amplification of volatility

If the fund is leveraged, once the mispricing becomes great
enough it transitions from being a buyer to being a seller.
When the fund is below the leverage limit it damps
volatility, for the simple reason that it buys when the price
falls, opposing and therefore damping price movements.
It is easy to show that with a reasonably low leverage limit
�MAX, when �5�MAX the expected volatility E½r2t � is
damped by a factor approximately 1/(1þ (�/N)(Chþ

DhV))51 relative to the volatility for noise
traders alone, where N is the total number of shares of
the asset.

When funds reach their maximum leverage this reverses
and funds instead amplify volatility. To remain below
�MAX the fund is forced to sell when the price falls. The
volatility in this case is amplified by a factor approxi-
mately 1/(1� (�MAX/N) V)41. This creates a positive
feedback loop: dropping prices cause funds to sell, which
causes a further drop in prices, which causes funds to sell.
This is clearly seen in figure 4(b), where we have placed
red triangles whenever at least one of the funds is at its
maximum leverage. All the largest negative price changes
occur when leverage is at its maximum. The amplification
of volatility by leverage is illustrated in figure 6(b) where

Figure 5. Change in demand dD/d m as a result of an
infinitesimal increase in the mispricing from the mispricing
m¼V� p prevailing the last period. dD/d m40 means the fund
buys when the mispricing increases, and dD/d m50 means the
fund sells when the mispricing increases. Here the fund has
�¼ 10 and W¼ 1. When the maximum leverage �MAX¼ 1 and
m5�MAX/�¼ 0.1 the fund responds to an increased mispricing
by buying, and when m40.1 the fund neither buys nor sells (it
holds its position). When �MAX¼ 2 the fund continues to buy
until �MAX/�¼ 0.2, but sells for m40.2. When �MAX¼ 3 the
fund sells heavily for m40.3. Finally, when �MAX¼1, the fund
gradually begins selling anyway.

yThis actually happened when the Bear-Stearns hedge funds went out of business; the bank attempted to sell the underlying assets,
but the liquidity was so low that they gave up and simply held them.
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we show that the average volatility is an increasing
function of the average leverage used by the most
aggressive fund.

Thus we see that, under normal circumstances where
the banks impose leverage limits, the proximate cause of
the extreme price movements is the margin call, which
funds can meet only by selling and driving prices further
down. Of course, we are not saying banks should not
maintain leverage at a reasonable level; we are only saying
that if they all maintain leverage at a similar level, many
funds may receive margin calls at nearly the same time,
inducing an instability in prices. As we have already
pointed out, this can be averted by using alternative risk
control policies.

4.3. How the leverage cycle drives volatility clustering

The underlying cause of volatility clustering in this model
is the leverage cycle. To see how this occurs, assume that
we begin at a point where the wealth of all funds is small
(such as following a major market crash in which all
funds default). In the early stages, all funds tend to
accumulate wealth, with aggressive funds growing faster
than cautious funds.y As shown in the previous section,
the overall increase in the wealth of funds lowers
volatility. In addition, the increase in the wealth of the
most aggressive funds drives up the overall use of
leverage.

Eventually, a substantial downward fluctuation in
noise trader demand happens to occur at the same time
that one or more wealthy, aggressive funds are fully
leveraged. This triggers a large sell-off by the aggressive
funds, which drives prices down, and generates a crash.
After the crash the overall wealth of funds is substantially
diminished, and as a result volatility goes back up.

This is illustrated in figure 7, which shows the time
sequences of asset price returns before and after a crash.
Before the crash the overall wealth in funds is large and as
a consequence volatility is low; after the crash many or
most of the funds are wiped out and volatility is once
again high. The crash illustrated in figure 7 is just one of
many, all of which follow a similar pattern: Averaging
over the 500 time steps before and after a crash, and using
standard deviation as the measure of volatility, the
average volatility before a crash is 0.018 � 0.003 and
the average volatility after a crash is 0.032 � 0.003, i.e. on
average it is nearly twice as much. This is the basic
mechanism underlying the clustered volatility driven by
the leverage cycle.

Note that, in this model, the deviation from normality
of the noise traders, which is needed in order to drive
prices toward their fundamental value, causes weak
clustered volatility. One might suspect that leverage is
merely amplifying this effect. This is not the case: as we

(a)

(b)

(c)

Figure 6. An illustration of how prices and volatility depend on
leverage and leverage policy. We explore two different bank
leverage policies. In the first policy the maximum leverage �MAX

is held constant (blue circles) and in the second it is varied (red
squares) so that maximum leverage decreases when historical
volatility increases according to equation (9). There are 10 funds
with the same � values as in figure 2. Panel (a) shows the default
rates as a function of maximum leverage, and panels (b) and (c)
show the average volatility and price as a function of the average
leverage �10 of the most aggressive fund with the maximum
leverage fixed at �MAX¼ 10. Volatility is computed as the
average absolute value of the logarithmic price returns. Use of a
volatility-dependent leverage can increase defaults, increase
volatility, and drive prices further away from fundamentals,
even though the maximum leverage is always less than or equal
to its value under the fixed leverage policy.

yThere are two reasons why aggressive funds grow faster than passive funds. The superior returns achieved by using leverage both
make the funds already under management grow faster and attract new investors. As the wealth of the funds grows sufficiently
large, their market impact also grows, decreasing returns. This can drive the returns of the less aggressive funds below the
benchmark return rb and cause them to lose investment capital. This explains the pattern seen in figure 2, in which less aggressive
funds grow in the period right after a crash but then eventually shrink.
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demonstrate above, the primary causes of clustered
volatility are the leverage-induced crashes and the
wealth dynamics. While crashes are indeed triggered by
small fluctuations of the noise traders, this amplification
is highly selective, and the wealth dynamics also plays an
important role. Thus it is not accurate to say that the
leverage merely amplifies the clustered volatility caused
by the noise traders.

Another suspicion might be that the clustered volatility
is driven by the trend following behavior of the investors,
who pull their money in and out of the funds based on
past performance. This is true in the sense that the
investors’ wealth dynamics affects the wealth of the funds,
which in turn modulates the amplification of volatility.
However, this effect would occur even if no money were
moved in or out of the funds, due to the profits and losses
of the funds themselves. To test this we have varied the
parameter a, which sets the timescale over which investors
average the returns of the funds (see equation (5)). When
we vary a from 0.3 to 0.05 we see little change in the
observed behavior, illustrating that the trend following of
the investors is not essential.

4.4. Evolutionary pressure to increase leverage

There is also longer term evolutionary pressure driving
leverage up which comes from the wealth accumulation
process in this model, as illustrated in figure 8. More
aggressive funds use higher leverage. During times when
there are no crashes, more aggressive funds make better
returns, attract more investment, and accumulate more
wealth, and are thus selected over less aggressive funds.
Thus, on average, during good times the average leverage
used by the funds tends to increase, until there is a crash,
which preferentially wipes out the most aggressive funds
and resets the average leverage to a lower level.

The wealth dynamics are illustrated in the top panel of
figure 8. The total leverage is shown in the panel below it.
The leverage comes in bursts as mispricings develop, but
the size of these bursts tends to become larger as the
relative wealth of the more aggressive funds increases.

The next panel illustrates the noise trader demand,
which is a weakly mean-reverting random process, and
the panel below it illustrates the price. During positive
excursions of the noise trader demand the asset is
overpriced, the funds stay out of the market, and the
price is equal to the noise trader demand (measured in
dollars). When the noise trader demand becomes negative
the asset is underpriced, and under normal circumstances
the fund demand prevents the price from moving very far
below V. This is true until the first crash occurs, where the
floor of demand provided by the funds collapses due to
margin calls, and the funds sell instead of buy as the price
falls, temporarily driving the price down even faster than
where it would be with noise traders alone.

Crashes are typically not caused by unusually large
fluctuations in noise trader demand, as shown in the next
two panels. When the crashes occur the value of change in
the noise trader demand, D�(t)¼ �(t)� �(t� 1) is nothing
out of the ordinary, and indeed for the examples given
here it is not even one of the larger values in the series.
Nonetheless, the associated change in price, Dp(t)¼
p(t)� p(t� 1), is highly negative. Also, one can see that,
while there is a very small amount of clustered volatility
due to the mean reversion in the demand fluctuations of
the noise traders, this is enormously amplified in the price
fluctuations.

To illustrate the evolutionary pressure towards higher
leverage explicitly, we performed simulations holding all
but one fund at a constant leverage �MAX and sweeping
the maximum leverage of the last fund, as illustrated

Figure 7. A typical example illustrating how the leverage cycle
drives volatility clustering. Before the crash the most aggressive
funds are wealthy, and under normal conditions their tendency
to buy on downward price moves damps volatility. The crash
occurs because the noise traders make a downward demand
fluctuation while one or more of these funds is fully leveraged,
causing a large sell off in an already falling market. After the
crash many funds are wiped out, causing volatility to rise again
(same parameters as in previous figures).

Figure 8. Anatomy of two crashes. Crashes are indicated by red
triangles. From top to bottom we see (as a function of time): (a)
The wealth Wh of three representative funds whose aggression
levels �h range from highest to lowest. The wealth of the most
aggressive fund builds in the period leading up to the crash. (b)
The average leverage �tot, calculated by summing the demand
and wealth in equation (4) over all funds. (c) The noise trader
demand �. (d) The price p. (e) The fluctuations in the noise
trader demand, D�.
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in figure 9. For example, if the nine funds have �MAX¼ 3,
a fund with �MAX43 generates higher returns, as seen in
the figure, and thus accumulates wealth and becomes the
dominant fund. In a real-world situation this would of
course put pressure on other fund managers to increase
their leverage. There is thus evolutionary pressure driving
leverage up.

4.5. Better individual risk control can backfire for the
system as a whole

In an attempt to achieve better risk control, banks often
vary the maximum leverage based on the recent historical
volatility of the market, lowering maximum leverage
when volatility has been high and raising it when it has
been low. This is prudent practice when lending to a single
fund. But this can be counterproductive when all the
funds might be deleveraging at the same time.

In figure 6 we investigate an alternative leverage policy
in which lenders tighten leverage restrictions whenever
there is increased historical volatility. Maximum leverage
is adjusted according to the relation

�adjustðtÞ ¼ max 1,
�MAX

1þ 	�2


� �
, ð9Þ

where 	¼ 100 is the bank’s responsiveness to volatility,
and �2
 is the asset price variance computed over an
interval of 
¼ 10 time steps. For low values of maximum
leverage the number of defaults is about the same, but for
higher maximum leverage, in the range 75�MAX515, the
number of defaults is greater with the variable leverage
policy. The reason for this is simple: lowering the
maximum leverage across all funds can cause massive
selling at just the wrong time, creating more defaults
rather than less. Once again, an attempt to improve risk

control that is sensible if one bank does it for one fund
can backfire and create more risk if every bank does it
with every fund.

This kind of policy also has another important
unintended consequence. During times of low volatility
leverage goes up. This in turn drives volatility up, which
forces leverage back down. Thus, in such a situation there
are stochastic oscillations between leverage and volatility
which, on average, drive volatility up and drive prices
further away from fundamentals. This is illustrated in
figures 6(b) and (c), where we plot the average volatility
and the average price as a function of the leverage of the
most leveraged fund. Note that the amplification of
volatility occurs even though, under the variable maxi-
mum leverage risk control protocol, the maximum
volatility is always less than or equal to its value under
the fixed protocol.

5. Conclusion

The use of leverage in the economy is not just an esoteric
matter relating to funds: it is unavoidable. It is the
mechanism through which most people are able to own
homes and corporations do business. Credit (and thus
leverage) is built into the fabric of society. The current
financial crisis perfectly illustrates the dangers of too
much leverage followed by too little leverage. Like
Goldilocks, we are seeking a level that is ‘just right’.
This raises the question of what that level is (Hackbarth
et al. 2006, Peters 2011).

We are not the first to recognize the downward spiral of
margin calls (Geanakoplos 1997, 2003, 2010, Shleifer and
Vishny 1997, Gromb and Vayanos 2002, Fostel and
Geanakoplos 2008, Brunnermeier and Pedersen 2009).
After the Great Depression the Federal Reserve was
empowered to regulate margins and leverage. However,
the model we have developed here provides a quantifiable
and testable framework to explore the consequences of
leverage and its regulation. Recent empirical work has
found a correlation between leverage and volatility
(Adrian and Shin 2008), but our work suggests a more
subtle relationship. We make the falsifiable prediction
that high leverage limits, such as we had in reality until
very recently, cause increased clustering of volatility and
fat tails, and that these effects should go up and down as
leverage goes up and down. This can work in parallel with
other effects that generate heavy tails, such as myopic
learning.

During good times leverage tends to creep up, creating
a dangerous situation leading to a sudden crash in prices.
We have shown that when individual lenders seek to
control risk through adjusting leverage, they may collec-
tively amplify risk. Our model can be used to search for a
better collective solution, perhaps coordinated through
government regulation.

Standard methods currently used by bankers and
regulators to monitor risk by measuring recent volatility
are thus doomed to failure, for it is precisely when the
volatility is low that the risk of collapse is greatest.

Figure 9. Demonstration of evolutionary pressure to increase
leverage. The maximum leverage is held constant at �MAX

¼ 3
for nine funds while �MAX varies from 1 to 10 for the remaining
fund. The vertical axis shows the returns to investors, with
�¼ 20 for all funds and Treintro¼ 10. The fund with a higher
leverage limit obtains better returns, and so attracts more
capital. Averages are taken over 50 independent simulations of
100 000 time steps each.
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Low volatility and high leverage go hand and hand in our
model. This connection was seen by Geanakoplos (2003,
2010), but there the causality ran from low volatility to
high leverage: lenders are willing to give higher leverage
when they think asset prices will not go down much.
In the present model the causality also runs in the reverse
direction. The reason for that is our assumption that the
funds have a more stable view of the fundamental value
than the noise traders. When the funds’ total purchasing
power increases they will stabilize the price against small
downward fluctuations in noise traders’ demand for the
asset. Higher leverage increases the funds’ purchasing
power and thus tends to reduce (downward) price
volatility. When the funds are successful their purchasing
power grows because of their earnings and because
investors shift money into funds. Furthermore, the
distribution of wealth across funds shifts towards the
more highly leveraged funds, because they have relatively
higher earnings and because their relative success attracts
more investors. This increases their average leverage.
Thus volatility is often very low and leverage very high
after a sustained run of price increases.

At a broader level, the present work shows how
attempts to regulate risk at a local level can actually
generate risks at a systemic level. The key element that
creates the risk is the nonlinear feedback on prices that is
created due to repaying loans at a bad time. This
mechanism is actually quite general, and also comes
into play with other risk control mechanisms, such as
stop-loss orders and many types of derivatives, whenever
they generate buying or selling in the same direction as
price movement. We suspect that this is a quite general
phenomenon that occurs in many types of systems
whenever optimization for risk reduction is done locally
without fully taking collective phenomena into account.
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Appendix A: Properties of the noise trader process

In this appendix we show that, for the parameters we use
here, the noise trader process by itself has slightly non-
normal returns and weak clustered volatility. Assume no
funds, so that the dynamics are determined solely by the
noise traders. For convenience make the change of

notation yt¼ log �(t), and for convenience let V¼N¼ 1

(which only shifts the mean). The price is given by

Dnt¼ �(t)/p(t)¼N¼ 1 and the log price is log p(t)¼ log

�(t)¼ y(t). The price dynamics become

yðtþ 1Þ ¼ �yðtÞ þ ��ðtþ 1Þ: ðA1Þ

The noise �(t) is normally distributed with zero mean. The

return r(t) is

rðtþ 1Þ ¼ yðtþ 1Þ � yðtÞ ¼ ð�� 1Þ yðtÞ þ ��ðtþ 1Þ: ðA2Þ

Squaring this and averaging gives

E½rðtÞ2 j yðtÞ� ¼ ð�� 1Þ2yðtÞ2 þ �2:

Thus the volatility varies conditionally on y(t), implying

that there is some clustered volatility even when only

noise traders are present. An estimate of the typical size of

y(t)2 can be made by squaring equation (A1) and making

use of stationarity, which yields E[y(t)2]¼ �2/(1� �)2.
Substituting in equation (A2) gives a typical relative

variation in volatility of (1� �)2/(1� �2), which for

�¼ 0.99 is about 0.005. Thus the variation in volatility

for the pure noise trader process is small for the

parameters we use here, and vanishes in the limit �! 1.

The fact that the variance fluctuates means that the time

series r(t) is not identically distributed, and the marginal

distribution P(r) is a Gaussian mixture, which is slightly

more heavy-tailed than a normal distribution.
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