
may 2010 | vol. 53 | no. 5 | communications of the acm 109

Doi:10.1145/1735223.1735249

abstract
There are many methods for detecting and mitigating software
errors but few generic methods for automatically repairing
errors once they are discovered. This paper highlights recent
work combining program analysis methods with evolutionary
computation to automatically repair bugs in off-the-shelf leg-
acy C programs. The method takes as input the buggy C source
code, a failed test case that demonstrates the bug, and a small
number of other test cases that encode the required function-
ality of the program. The repair procedure does not rely on
formal specifications, making it applicable to a wide range of
extant software for which formal specifications rarely exist.

1. intRoDuction
Fixing bugs is a difficult, time-consuming, and manual pro-
cess. Some reports place software maintenance, traditionally
defined as any modification made on a system after its deliv-
ery, at up to 90% of the total cost of a typical software project.22
Modifying existing code, repairing defects, and otherwise
evolving software are major parts of those costs.19 The number
of outstanding software defects typically exceeds the resources
available to address them. Mature software projects are forced
to ship with both known and unknown bugs13 because they
lack the development resources to deal with every defect.

In this paper, we describe how to combine this problem
by combining program analysis methods with evolutionary
computation to automatically repair bugs in off-the-shelf
legacy C programs. Genetic programming (GP) is a computa-
tional method inspired by biological evolution which evolves
computer programs tailored to a particular task.12 GP main-
tains a population of individual programs, each of which is a
candidate solution to the task. Each individual’s suitability is
evaluated using a task-specific fitness function, and the indi-
viduals with highest fitnesses are selected for continued evo-
lution. Computational analogs of biological mutation and
crossover produce variations of the high-fitness programs,
and the process iterates until a high-fitness program is
found. GP has solved an impressive range of problems (e.g.,
Schmidt and Lipson21), but it has not been used to evolve off-
the-shelf legacy software. As the 2008 Field Guide to Genetic
Programming notes, “while it is common to describe GP as
evolving programs, GP is not typically used to evolve pro-
grams in the familiar Turing-complete languages humans
normally use for software development. It is instead more
common to evolve programs (or expressions or formulae) in
a more constrained and often domain-specific language.”
(Poli et al.18 as quoted by Orlov and Sipper15).

Our approach assumes that we have access to C source code,
a negative test case that exercises the fault to be repaired, and

several positive test cases that encode the required behavior of
the program. The C program is represented as an abstract syn-
tax tree (AST), in which each node corresponds to an execut-
able statement or control-flow structure in the program. With
these inputs in hand, a modified version of GP evolves a candi-
date repair that avoids failing the negative test case while still
passing the positive ones. We then use structural differen-
cing1 and delta debugging25 techniques to minimize the size
of the repair, providing a compact human-readable patch.

A significant impediment for an evolutionary algorithm like
GP is the potentially infinite-size search space it must sample
to find a correct program. To address this problem we intro-
duce two key innovations. First, we restrict the algorithm so
that all variations introduced through mutation and crossover
reuse structures in other parts of the program. Essentially, we
hypothesize that even if a program is missing important func-
tionality (e.g., a null check) in one location, it likely exhibits
the correct behavior in another location, which can be copied
and adapted to address the error. Second, we constrain the
genetic operations of mutation and crossover to operate only
on the region of the program that is relevant to the error, spe-
cifically the AST nodes on the execution path that produces
the faulty behavior. Instead of searching through the space of
all ASTs, the algorithm searches through the much smaller
space of nodes representing one execution path. In practice,
the faulty execution path has at least an order of magnitude
fewer unique nodes than the AST. Combining these insights,
we demonstrate automatically generated repairs for eleven C
programs totaling 63,000 lines of code.

The main contributions of the work reported in Forrest
et al.8 and Weimer et al.24 are:

• Algorithms to find and minimize program repairs
based on test cases that describe desired functionality.
The algorithms are generic in the sense that they can
repair many classes of bugs.

• A novel and efficient representation and set of opera-
tions for applying GP to program repair. This is the first
published work that demonstrates how GP can repair
unannotated legacy programs.

• Experimental results showing that the approach gener-

Automatic Program Repair with
Evolutionary Computation
By Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu Nguyen

The material in this paper is taken from two original
publications, titled “A Genetic Programming Approach
to Automated Software Repair” (Genetic and Evolutionary
Computation Conference, 2009) and “Automatically Find-
ing Patches Using Genetic Programming” (Proceedings
of the 2009 IEEE 31st International Conference on Software
Engineering, IEEE Computer Society).

110 communications of the acm | may 2010 | vol. 53 | no. 5

research highlights

ates repairs for several classes of defects in 11 produc-
tion programs taken from multiple domains.

• Experiments to analyze how algorithm performance
scales up with problem size and the relative contribution
of different components of the evolutionary algorithm.

In the remaining sections of the paper we first give an
overview of our technical approach (Section 2), illustrating it
with a recent bug in Microsoft’s Zune media player (Section
3). In Section 4 we report results obtained for repairs of sev-
eral benchmark programs and study how algorithm perfor-
mance scales with problem size. We place the work in the
context of prior contributions in Section 5 and discuss our
experiences, caveats, and thoughts for future work in Section
6, concluding in Section 7.

2. technicaL aPPRoach
The core of our method is an evolutionary algorithm that
repairs programs by selectively searching through the space
of related program variants until it discovers one that avoids
known defects and retains key functionality. We use a novel
GP representation and make assumptions about the prob-
able nature and location of the necessary repair, improving
search efficiency. Given a defective program, there are sev-
eral issues to be addressed:

1. What is it doing wrong? We take as input a set of nega-
tive test cases that characterizes a fault. The input pro-
gram fails all negative test cases.

2. What is it supposed to do? We take as input a set of pos-
itive test cases that encode functionality requirements.
The input program passes all positive test cases.

3. Where should we change it? We favor changing pro-
gram locations visited when executing the negative
test cases and avoid changing program locations vis-
ited when executing the positive test cases.

4. how should we change it? We insert, delete, and swap
program statements and control flow using existing
program structure. We favor insertions based on the
existing program structure.

5. When are we finished? We call the first variant that
passes all positive and negative test cases a primary
repair. We minimize the differences between it and the
original input program to produce a final repair.

To present the repair process, we first describe our pro-
gram representation (Section 2.1) and fault localization
(Section 2.2) choices. We then detail the GP-based repair
strategy (Section 2.3), discussing the genetic operators
(Section 2.4), which modify the representation, and the fit-
ness function (Section 2.5), which uses test cases to evaluate
the results of the modifications. Finally, a postprocessing
step is used to minimize the resulting repair (Section 2.6).

2.1. Representation
There are a number of commonly accepted structures for
representing programs, such as control-flow graphs (CFGs)
and abstract syntax trees (ASTs). We chose ASTs because
they can losslessly represent all structured programs and

tree operations are well studied in GP. ASTs can be expressed
at multiple levels of abstraction or granularity, and our pro-
gram representation reflects the trade-off between expressive
power and scalability. For example, C programs contain both
statements, such as the conditional statement “if (!p) {x =
0;}” and expressions, such as “0” or “(!p)”. For scalability, we
treat the statement as the basic unit, or gene. Thus, we never
modify “(!p)” into “(p || error_flag)” because doing so
would involve changing the inner structure of an expression.
Instead, when manipulating compound statements, we oper-
ate on entire AST subtrees. For example, we might delete the
entire “if …” statement, including its then-branch and else-
branch children. Finally, we never directly modify low-level
control-flow directives such as break, continue, or goto,
although statements around them can be modified.

2.2. fault localization
We assume that software defects are local and that fixing one
does not require changing the entire program. This assump-
tion narrows the search space by limiting code changes to
portions of the program likely to contain the defect. We bias
modifications toward statement nodes that were visited when
running the negative test cases but not visited when running
the positive test cases. We find this information by assigning
each statement a unique ID and instrumenting the program
to print out the ID of each statement visited.14 This allows our
approach to scale to larger program sizes. For example, while
the atris program contains a total of 8068 statement nodes
(Table 1), we use this fault localization information to bias
the search toward 34 statement nodes that are likely to mat-
ter, a reduction of over two orders of magnitude.

Formally, each program variant is a pair containing:

1. An abstract syntax tree (AST) including all of the state-
ments s in the program.

2. A weighted path through that program. The weighted
path is a list of pairs ás, wsñ, each containing a state-
ment in the program visited on the negative test case
and the associated weight for that statement.

The default path weight of a statement is 1.0 if it is visited
in the negative test case but not on any positive test case. Its
weight is 0.1 if it is visited on both positive and negative test
cases. All other statements have weight 0.0. The weight rep-
resents an initial guess of how relevant the statement is to
the bug. This approach is related to the union/intersection
model of fault localization.20 The weighted path length is the
sum of statement weights on the weighted path. This scalar
gives a rough estimate of the complexity of the search space
and is correlated with algorithm performance (Section 4).
We return to the issue of fault localization in Section 6.

2.3. Genetic programming
We use GP to maintain a population of program variants.
Each variant, sometimes referred to as an individual, is rep-
resented as an AST annotated with a weighted path (fault
localization information). We modify variants using two
genetic operations, mutation and crossover. Mutation makes
random changes to the nodes along the weighted path, while

 may 2010 | vol. 53 | no. 5| communications of the acm 111

crossover exchanges subtrees between two ASTs (see below for
details). Each modification produces a new AST and weighted
program path. The fitness of each variant is evaluated by com-
piling the AST and running it on the test cases. Its final fitness
is a weighted sum of the positive and negative test cases it
passes. Once the fitnesses have been computed for each indi-
vidual, a selection phase deletes the bottom-ranked 50% of the
population.a The new population is formed by first crossing
over the remaining high-fitness individuals with the original
program. Each crossover produces a single child. We add the
children to the population and retain the parents unchanged,
maintaining a constant population size. Finally, all surviving
individuals are mutated.

The repair process terminates either when it finds a can-
didate solution that passes all its positive and negative test
cases, or when it exceeds a preset number of generations.
The first variant to pass all test cases is the primary repair.

2.4. Genetic operators
As mentioned above, we apply GP operators to a given vari-
ant to produce new program variants, thus exploring the
search space of possible repairs. A key operator is mutation,
which makes random changes to an individual. Because
the primitive unit (gene) of our representation is the state-
ment, mutation is more complicated than the simple bit
flip used in other evolutionary algorithms. Only statements
on the weighted path are subject to the mutation operator.
Each location on the weighted path is considered for muta-
tion with probability equal to its path weight multiplied by
a global mutation rate. A statement selected for mutation
is randomly subjected to either deletion (the entire state-
ment and all its substatements are deleted: s ¬ {}), insertion
(another statement is inserted after it: s ¬ {s; ś ;}), or swap
of (s ¬ ś while ś ¬ s). Note that a single mutation step in
our scheme might contain multiple statement-level muta-
tion operations along the weighted path.

The second operation for manipulating variants is cross-
over, which in GP exchanges subtrees chosen at random
between two individuals. Although our initial experiments
used a more complicated form of crossover, we have seen
that the results do not depend on the particular crossover
operator used.8 During each generation, every surviving vari-
ant undergoes crossover.

Finally, there are a number of other C program compo-
nents not touched by the GP operators, such as datatype defi-
nitions and local and global variable declarations. Because
these are never on the weighted path, they are never modified
by mutation or crossover. This potentially limits the expres-
sive power of the repairs: If the best fix for a bug is to change
a data structure definition, GP will not discover that fix. For
example, some programs can be repaired either by reordering
the data structure fields, or by changing the program control
flow; our technique finds the second repair. Ignoring variable
declarations, on the other hand, can cause problems with
ill-formed variants. Because of the constraints on mutation
and crossover, GP never generates syntactically ill-formed

programs (e.g., it will never generate unbalanced parenthe-
ses). However, it could move the use of a variable outside of
its declared scope, leading to a semantically ill-formed vari-
ant that does not type check and thus does not compile.

2.5. fitness function
In GP, the fitness function is an objective function used to eval-
uate variants. The fitness of an individual in a program repair
task should assess how well the program avoids the program
bug while still doing “everything else it is supposed to do.” We
use test cases to measure fitness. For our purposes, a test case
consists of input to the program (e.g., command-line argu-
ments, data files read from the disk, etc.) and an oracle compar-
ator function that encodes the desired response. A program P
is said to pass a test case T iff the oracle is satisfied with the
program’s output: Toracle(P(Tinput)) = pass. Test cases may check
additional behavior beyond pure functional correctness (e.g.,
the program may be required to produce the correct answer
within a given time bound or otherwise avoid infinite loops).
Such testing accounts for as much as 45% of total software life-
cycle costs,17 and finding test cases to cover all parts of the pro-
gram and all required behavior is a difficult but well-studied
problem in the field of software engineering.

We call the defect-demonstrating inputs and their anoma-
lous outputs (i.e., the bug we want to fix) the negative test cases.
We use a subset of the program’s existing test inputs and
oracles to encode the core functionalities of the program, and
call them the positive test cases. Many techniques are available
for identifying bugs in programs, both statically (e.g., Ball and
Rajamani3 and Hovemeyer and Pugh10) and dynamically (e.g.,
Forrest et al.7 and Liblit et al.13). We assume that a bug has been
identified and associated with at least one negative test case.

The fitness function takes a program variant (genotype),
compiles the internal representation into an executable pro-
gram, and runs it against the set of positive and negative test
cases. It returns the weighted sum of the test cases passed.
The sum is weighted so that passing the negative test cases
is worth at least as much as passing the positive test cases.
Intuitively, this weighting rewards the search for moving
toward a possible repair. Programs that do not compile are
assigned fitness zero.

2.6. minimizing the repair
Because the GP may introduce irrelevant changes, we use
program analysis methods to trim unnecessary edits from
the primary repair. For example, in addition to the repair,
the GP might produce dead code (x = 3; x = 5;) or calls to
irrelevant functions. We use tree-structured difference algo-
rithms and delta debugging techniques in a postprocessing
step to generate a simplified patch that, when applied to the
original program, causes it to pass all of the test cases.

Using tree-structured differencing,1 we view the primary
repair as a set of changes against the original program. Each
change is a tree-structured operation such as “take the sub-
tree of the AST rooted at position 4 and move it so that it
becomes the 5th child of the node at position 6”. We seek to
find a small subset of changes that produces a program that
still passes all of the test cases.

Let Cp = {c1, …, cn} be the set of changes associated with
a We obtained results qualitatively similar to those reported here with a
more standard method known as tournament selection.

112 communications of the acm | may 2010 | vol. 53 | no. 5

research highlights

When the value of the input days is the last day of a leap
year (such as 10,593, which corresponds to 31 December
2008), the program enters an infinite loop on lines 3–16.

We now walk through the evolution of a repair for this
 program. We first produce its AST and determine the
weighted path, using line numbers to indicate statement
IDs. The positive test case zunebug (1,000) visits lines 1–8,
11–18. The negative test case zunebug (10,593) visits lines
1–16, and then repeats lines 3, 4, 8, and 11 infinitely.

For the purposes of this example, the negative test cases
consist of the inputs 366 and 10,593, which cause an infinite
loop (instead of the correct values, 1980 and 2008), and the
positive test cases are the inputs 1,000, 2,000, 3,000, 4,000,
and 5,000, which produce the correct outputs 1982, 1985,
1988, 1990, and 1993.

We consider one variant, V, which is initialized to be iden-
tical to the original program. In Generation 1, two operations
mutate V: the conditional statement “if (days > 366)
{days −= 366; year += 1;}” is inserted between lines
6 and 7 of the original program; and the statement
“days −= 366” is inserted between lines 10 and 11. Note
that the first insertion includes not just the if but its entire
subtree. This produces the following code fragment:

 5 if (days > 366) {
 6 days −= 366;
 7 if (days > 366) { // insert #1
 8 days −= 366; // insert #1
 9 year += 1; // insert #1
10 } // insert #1
11 year += 1;
12 }
13 else {
14 }
15 days −= 366; // insert #2

This modified program passes the negative test case 366
(year 1980) and one positive test case 1000.

Variant V survives Generations 2, 3, 4, 5 unchanged, but
in Generation 6, it is mutated with the following opera-
tions: lines 6–10 are deleted, and “days −= 366” is inserted
between lines 13 and 14:

 5 if (days > 366) {
 6 // days −= 366; // delete
 7 // if (days > 366) { // delete
 8 // days −= 366; // delete
 9 // year += 1; // delete
10 // } // delete
11 year += 1;
12 }
13 else {
14 days −= 366; // insert
15 }
16 days −= 366;

the primary repair. Let Test(C) = 1 if the program obtained
by applying the changes in C to the original program passes
all positive and negative test cases; let Test(C) = 0 otherwise.
A one-minimal subset C Í Cp is a set such that Test(C) = 1 and
"ci Î C. Test(C\{ci}) = 0. That is, a one-minimal subset pro-
duces a program that passes all test cases, but dropping any
additional elements causes the program to fail at least one
test case. Checking if a set is valid involves a fitness evalua-
tion (a call to Test).

We use delta debugging25 to efficiently compute a one-
minimal subset of changes from the primary repair. Delta
debugging is conceptually similar to binary search, but it
returns a set instead of a single number. Intuitively, start-
ing with {c1, …, cn}, it might check {c1, …, cn/2}: if that half
of the changes is sufficient to pass the Test, then {c1+n/2, …,
cn} can be discarded. When no more subsets of size n/2
can be removed, subsets of size n/4 are considered for
removal, until eventually subsets of size 1 (i.e., individual
changes) are tested. Finding the overall minimal valid set
by brute force potentially involves O(2n) evaluations; delta
debugging finds a one-minimal subset in O(n2).25, Proposition 12
However, we typically observe a linear number of tests in
our experiments. This smaller set of changes is presented
to the developers as the final repair in the form of a stan-
dard program patch. In our experiments, the final repair is
typically at least an order-of-magnitude smaller than the
primary repair.

3. iLLustRation
On 31 December 2008, a bug was widely reported in Micro-
soft Zune media players, causing them to freeze up.b The
fault was a bug in the following program fragment:c

 1 void zunebug(int days) {
 2 int year = 1980;
 3 while (days > 365) {
 4 if (isLeapYear (year)){
 5 if (days > 366) {
 6 days −= 366;
 7 year += 1;
 8 }
 9 else {
10 }
11 }
12 else {
13 days −= 365;
14 year += 1;
15 }
16 }
17 printf(“the year is %d\n”, year);
18 }

b See Microsoft Zune affected by “Bug,” BBC News, December 2008, http://
news.bbc.co.uk/2/hi/technology/7806683.stm.
c Downloaded from http://pastie.org/349916 (Jan. 2009). Note that the origi-
nal program source code does not make lines 9–10 explicit: our AST repre-
sents missing blocks, such as those in if statements without else clauses,
as blocks containing zero statements.

may 2010 | vol. 53 | no. 5 | communications of the acm 113

At this point, V passes all of the test cases, and the search
terminates with V as the primary repair. The minimization
step is invoked to discard unnecessary changes. Compared
to the original program (and using the line numbers from
the original), there are three key changes: c1 = “days −=
366” deleted from line 6; c2 = “days −= 366” inserted
between lines 9 and 10; and c3 = “days −= 366” inserted
between lines 10 and 11. Only c1 and c3 are necessary to pass
all tests, so change c2 is deleted, producing the final repair:

 1 void zunebug_repair (int days) {
 2 int year = 1980;
 3 while (days > 365) {
 4 if (isLeapYear (year)) {
 5 if (days > 366) {
 6 // days −= 366; // deleted
 7 year += 1;
 8 }
 9 else {
10 }
11 days −= 366; // inserted
12 } else {
13 days −= 365;
14 year += 1;
15 }
16 }
17 printf (“the year is %dn”, year);
18 }

table 1. eleven defects repaired by Genetic Programming, summarized from previous work. the size of each program is given in lines of code
as well as weighted path units (see section 2.2). each repair used five or six positive tests and one or two negative tests. the “time” column
gives the total wall-clock time required to produce and minimize the repair (on a successful trial). the “fitness evals” column lists the
number of times the entire fitness function was called before a repair was found (averaged over only the successful trials). the “Repair size”
column gives the size of the final minimized repair, as measured in lines by the unix diff utility.

Program Lines of code
Weighted

Path Description fault time (s)
fitness
evals

Repair
size

gcd 22 1.3 euclid’s algorithm infinite loop 153 45.0 2

zune 28 2.9 ms Zune excerpt infinite loop 42 203.5 4

uniq utx 4.3 1146 81.5 duplicate filtering segmentation fault 34 15.5 4

look utx 4.3 1169 213.0 dictionary lookup segmentation fault 45 20.1 11

look svr 4.0 1363 32.4 dictionary lookup infinite loop 55 13.5 3

units svr 4.0 1504 2159.7 metric conversion segmentation fault 109 61.7 4

deroff utx 4.3 2236 251.4 document processing segmentation fault 131 28.6 3

nullhttpd

0.5.0
5575 768.5 Webserver heap buffer overrun 578 95.1 5

indent 1.9.1 9906 1435.9 source code

formatting

infinite loop 546 108.6 2

flex 2.5.4a 18775 3836.6 lexical analyzer

generator

segmentation fault 230 39.4 3

atris 1.0.6 21553 34.0 Graphical tetris

game

stack buffer overrun 80 20.2 3

Total 63277 8817.2 2003 651.2 39

On average, constructing and minimizing a repair for the
Zune fragment shown here takes our prototype a total 42 s,
including the time to compile and evaluate variants against
a suite of five positive and two negative tests.

4. ResuLts
To date, we have repaired 20 defects in modules totaling
186kLOC from 20 programs totaling 2.3MLOC (not all
shown here). We have repaired defects from eight classes:
infinite loop, segmentation fault, heap buffer overrun,
 nonoverflow denial of service, integer overflow, invalid
exception, incorrect output, and format string vulner-
ability. Constructing a repair requires 1428 s on average,
most of which is spent performing an average of 3903
 fitness evaluations. In Table 1, we summarize results for
11 benchmark programs reported in Forrest et al.8 and
Weimer et al.24 The benchmark programs, test cases, GP
code, and the supporting infrastructure used to generate
and reproduce these results are available at: http://gen
prog.adaptive.cs.unm.edu/.

In all of our experiments, a standard trial uses the
following setup. The population size is 40, and GP runs
for a maximum of 20 generations. For the first 10 gen-
erations, the global mutation rate is 0.06. If no primary
repair is found, the current population is discarded, the
global mutation rate is halved to 0.03, and, if possible, the
weighted path is restricted to statements visited solely
during the negative test case, and the GP is run for 10
additional generations. These results show that GP can
automatically discover repairs for a variety of documented
bugs in production C programs.

114 communications of the acm | may 2010 | vol. 53 | no. 5

research highlights

The trial terminates if it discovers a primary repair. We
performed 100 trials for each program, memoizing fitnesses
such that within one trial, two individuals with different
ASTs but the same source code are not evaluated twice.
Similarly, individuals that are copied to the next generation
without change are not reevaluated.

Once a primary repair has been located, the process of
minimizing it to a final repair is quite rapid, requiring less
than 5 s on average. Final repairs, expressed in patch for-
mat, varied in size from four lines (e.g., zune: one insert,
one delete, and one context-location line for each edit) to 11
lines (e.g., look utx 4.3).

Not all trials lead to a successful repair; in the repairs
shown here, an average of 60% of trials produce a primary
repair. The “Time” and “Fitness Evals” columns in Table 1
measure the effort taken for a successful trial. Since all trials
are independent, a number of trials can be run in parallel,
terminating when the first successful trial yields a primary
repair. In addition, the fitnesses of different variants and
the results of different test cases for a given variant can all
be evaluated independently, making our approach easy to
parallelize on multicore architectures. The measurement in
Table 1 was made on a quad-core 3 GHz machine.

Over half of the total time required to create a repair
is spent evaluating fitness by running compiled variants
through test cases. For programs with large test suites, this
cost can be considerable. A dominant factor in the scalability
of our approach is thus the number of such fitness evalua-
tions that must be made to find a repair. The number of fit-
ness evaluations required is related to the size of the search
space and the efficacy of the search strategy: each fitness
evaluation represents a single probe. We hypothesize that
the size of the weighted path is a good representation of the
search space size; recall that we only modify statements along
the path (Sections 2.2 and 2.4). Figure 1 shows the results of
an empirical investigation into this relationship, plotting the
average number of fitness evaluations required to produce
each of 18 repairs against the length of their weighted paths
(note log–log scale). Although more data points are needed
before strong conclusions can be drawn, the plot suggests
that the number of fitness evaluations, and thus the search
time, may scale as a power law of the form y = axb where b
is the slope of the best fit line (0.78). This suggests that the
time to find a repair scales nearly linearly with the size of the
weighted path for a fixed number of test cases.

Our approach has also failed to repair some defects,
including those that require many simultaneous edits or
changes that cannot be made directly at the statement level
(e.g., matmul(b, a) should be matmul(a, b)). We return to
the issue of repair quality in Section 6.

5. ReLateD WoRK
Arcuri2 proposed the idea of using GP to repair software
bugs automatically, and Orlov and Sipper experimented
with evolving Java bytecode.15 However, our work is the
first to report substantial experimental results on real pro-
grams with real bugs. The field of Search-Based Software
Engineering (SBSE)9 uses evolutionary and related meth-
ods for software testing, e.g., to develop test suites, improve

software project management, and effort estimation find
safety violations and in some cases refactor or reengineer
large software bases. In SBSE, most innovations in the GP
technique involve new kinds of fitness functions, and there
has been less emphasis on novel representations and opera-
tors, such as those explored here.

Our approach automatically repairs programs without
specifications. In previous work, we developed an automatic
algorithm for soundly repairing programs with specifica-
tions.23 However, formal specifications are not always avail-
able (e.g., there were no formal specifications available for
any of the programs repaired here), so the present work
focuses on test cases to check and ensure correctness.

Trace and fault localization, minimization, and explana-
tion (e.g., Jones and Harrold11) projects also aim to elucidate
faults and ease debugging. These approaches typically nar-
row down an error symptom to a few lines (a potential cause).
Our work extends this work by proposing a concrete repair.
In addition, these other algorithms are usually limited to the
given trace or source code and will thus never localize the
“cause” of an error to a missing statement or suggest that a
statement be moved. Our approach can infer new code that
should be added, deleted, or swapped: 6 of the 11 repairs in
Table 1 required insertions or swaps.

Demsky et al.5 present a technique for data structure
repair. Given a formal specification of data structure
 consistency, they modify a program so that if the data
structures ever become inconsistent, they can be modified
back to a consistent state at runtime. Their technique does
not modify the program source code in a user-visible way.
Instead, it inserts runtime monitoring code that “patches

figure 1. GP search time scales with weighted path size. Data are
shown for 18 programs successfully repaired by GP (gcd and zune
examples omitted; figure includes several additional programs to
those listed in table 1), with best linear fit. the x-axis is the base-10
logarithm of the weighted path length, and the y-axis shows the
logarithm of the total number of fitness evaluations performed
before the primary repair is found (averaged over 100 runs).

3.532.521.510.5

0.5

1

1.5

2

2.5

3

3.5

4

4

lo
g

of
 a

vg
 fi

tn
es

s
ev

al
s

pe
r

re
pa

ir

atris

php

ccrypt

openldap

flex

uniq look utx

wu-ftpd

look svr leukocyte

deroff

nullhttpd

units
f(x) = 0.78x+ 0.08
R2= 0.62

lighttpd

tiff

indent

log of weighted path length

imagemagick

 may 2010 | vol. 53 | no. 5| communications of the acm 115

up” inconsistent state so that the buggy program can con-
tinue to execute. Thus, their programs continue to incur
the runtime overhead after the repair is effected. Another
difference from our work is that their data structure repair
requires formal specifications. Finally, their technique is
limited to data structures and does not address the full
range of logic errors. The gcd infinite loop in Section 3, for
example, is outside the scope of this technique. However,
this technique complements ours: in cases where runtime
data structure repair does not provide a viable long-term
solution, it may enable the program to continue to execute
while our technique searches for a long-term repair.

Clearview16 automatically detects and patches assem-
bly-level errors in deployed software. Clearview monitors a
program at runtime, learns invariants that characterize nor-
mal behavior, and subsequently flags violations for repair.
Candidate patches that make the implicated invariant true
are generated and tested dynamically. Although the perfor-
mance overhead of Clearview is high, it has successfully been
applied to buggy versions of Mozilla Firefox and evaluated
against a Red Team of hackers. However, Clearview can repair
only those errors that are relevant to selected monitors. Our
method is more generic, providing a single approach to repair
multiple classes of faults without the need for specific moni-
tors, and we do not require continual runtime monitoring
(and the incumbent slowdown) to create and deploy repairs.

This body of work illustrates a burgeoning interest in
the problem of automated software repair and some of the
many possible approaches that might be tried. There are
several other recent but less mature proposals for automati-
cally finding and repairing bugs in software, e.g., Dallmeier
et al.,4 suggesting that we can expect rapid progress in this
area over the next several years.

6. Discussion
The results reported here demonstrate that GP can be
applied to the problem of bug repair in legacy C programs.
However, there are some caveats.
Basic limitations. First, we assume that the defect is reproduc-
ible and that the program behaves deterministically on the
test cases. This limitation can be mitigated by running the test
cases multiple times, but ultimately if the program behavior is
random it will be difficult for our method to find or evaluate a
correct patch. We further assume that positive test cases can
encode program requirements. Test cases are much easier to
obtain than formal specifications or code annotations, but if
too few are used, a repair could sacrifice important functional-
ity. In practice, we are likely to have too many test cases rather
than too few, slowing down fitness evaluation and impeding
the search. We also assume that the path taken along the nega-
tive test case is different from the positive path. If they over-
lap completely, our weighted representation will not guide GP
modifications as effectively. Finally, we assume that the repair
can be constructed from statements already extant in the pro-
gram; in future work, we plan to extend our method to include
a library of repair templates.
evolution. One concern about our results to date is the role
of evolution. Most of our repairs result from one or two ran-
dom modifications to the program, and they are often found

within the first few generations or occasionally, not at all.
We have conducted some experiments using a brute force
algorithm (which applies simple mutation operations in a
predetermined order) and random search (which applies
mutation operations randomly without any selection or
inheritance of partial solutions). Both these simpler alterna-
tives perform as well or better than the GP on many, but not
all, of our benchmark programs. We do not fully understand
what characteristics, either of the program or the particular
bug, determine how easily a solution can be found through
random trial and error. However, thus far GP outperforms
the other two search strategies in cases where the weighted
path is long (i.e., where the fault is difficult to localize).
There are several interesting questions related to the design
of our GP algorithm, but the overall process proved so suc-
cessful initially that we have not experimented carefully with
parameter values, selection strategies, and operator design.
These all could almost certainly be improved.
Fault localization. As Figure 1 shows, the time to find a solution
varies with the length of the weighted path. Since the weighted
path is a form of fault localization, we could use off-the-shelf
fault localization techniques (e.g., Jones and Harrold11 and
Renieres and Reiss20) or dynamically discovered invariants,13
in the style of Daikon6 to further narrow the search space.
Predicates over data might help in cases where faults cannot
be localized by control flow alone, such as cross-site scripting
or SQL injection attacks. In addition, our recent experiments
have shown that the location of the fault (i.e., where to insert
new code) is rarely the same as source of the fix (i.e., where to
find code to insert). Since more than half of our repairs involve
inserting or swapping code, locating viable fixes is of critical
importance but remains poorly understood.

Fitness function. Our current test suite fitness function
has the advantage of conceptual simplicity: a variant that
passes all test cases is assumed to be correct, and a variant
that does not compile or fails all tests is rejected. However, it
may not be accurate in the middle ranges or precise enough
to guide the evolutionary search in more complex problems.
Consider a program with a race condition, for which the fix
consists of inserting separate lock and unlock calls. A vari-
ant with a partial solution (e.g., just an inserted lock) may
unfortunately pass fewer test cases (e.g., by deadlocking),
thus “deceiving” the evolutionary algorithm. Fitness func-
tion design could be enhanced in several ways, for example,
by weighting individual test cases, dynamically choosing
subsets of test cases to be included, or by augmenting the
test case evaluation with other information. For example, if
a simple predicate like x == y is true at a particular point
on all positive test cases, but false for the negative test, a vari-
ant that causes it to be true for the negative test might be
given a higher fitness value.
repair quality. We are interested in how much repairs vary after
minimization, and how repair quality compares to human-
engineered solutions. In our experiments to date, many, but
not all, repairs look identical after the minimization step. For
example, we have isolated 12 distinct repairs for the null-
httpd fault, but much overlap exists (e.g., two repairs may
insert the same statement into different points in the same
basic block). Repair quality depends on the presence of a

116 communications of the acm | may 2010 | vol. 53 | no. 5

research highlights

 1. al-ekram, r., adma, a., baysal, o.
diffX: an algorithm to detect changes
in multi-version Xml documents.
in Conference of the Centre for
Advanced Studies on Collaborative
Research. ibm Press,
2005, 1–11.

 2. arcuri, a., yao, X. a novel
co-evolutionary approach to
automatic software bug fixing. in
IEEE Congress on Evolutionary
Computation (2008), 162–168.

 3. ball, t., rajamani, s.k. automatically
validating temporal safety properties
of interfaces. in SPIN Workshop on
Model Checking of Software (may
2001), 103–122.

 4. dallmeier, v., Zeller, a., meyer,
b. generating fixes from object
behavior anomalies. in International
Conference on Automated Software
Engineering (2009).

 5. demsky, b., ernst, m.d., guo, P.J.,
mccamant, s., Perkins, J.h., rinard,
m. inference and enforcement of data
structure consistency specifications.
in International Symposium on
Software Testing and Analysis (2006),
233–244.

 6. ernst, m.d., Perkins, J.h., guo, P.J.,
mccamant, s., Pacheco, c., tschantz,
m.s., Xiao, c. the daikon system for
dynamic detection of likely invariants.
Sci. Comput. Program (2007).

 7. forrest, s., hofmeyr, s.a., somayaji,
a., longstaff, t.a. a sense of self for
unix processes. in IEEE Symposium
on Security and Privacy (1996),
120–128.

 8. forrest, s., Weimer, W., nguyen, t.,
le goues, c. a genetic programming
approach to automated software
repair. in Genetic and Evolutionary
Computing Conference (2009),
947–954.

 9. harman, m. the current state and
future of search based software
engineering. in International
Conference on Software Engineering
(2007), 342–357.

 10. hovemeyer, d., Pugh, W. finding
bugs is easy. in Object-Oriented
Programming Systems, Languages,
and Applications Companion (2004),
132–136.

 11. Jones, J.a., harrold, m.J. empirical
evaluation of the tarantula automatic
fault-localization technique. in
International Conference on
Automated Software Engineering
(2005), 273–282.

 12. koza, J.r. Genetic Programming:
on the Programming of Computers
by Means of Natural Selection. mit
Press, 1992.

 13. liblit, b., aiken, a., Zheng, a.X.,
Jordan, m.i. bug isolation via remote

program sampling. in Programming
Language Design and
Implementation (2003),
141–154.

 14. necula, g.c., mcPeak, s., rahul, s.P.,
Weimer, W. cil: an infrastructure for c
program analysis and transformation.
in International Conference on
Compiler Construction (apr. 2002),
213–228.

 15. orlov, m., sipper, m. genetic
programming in the wild: evolving
unrestricted bytecode. in Genetic
and Evolutionary Computation
Conference (acm, 2009),
1043–1050.

 16. Perkins, J.h., kim, s., larsen, s.,
amarasinghe, s., bachrach, J.,
carbin, m., Pacheco, c., sherwood,
f., sidiroglou, s., sullivan, g., Wong,
W.-f., Zibin, y., ernst, m.d., rinard,
m. automatically patching errors
in deployed software. in ACM
Symposium on Operating Systems
Principles (oct. 2009), 87–102.

 17. Pigoski, t.m. Practical Software
Maintenance: Best Practices for
Managing Your Software Investment.
John Wiley & sons, inc., 1996.

 18. Poli, r., langdon, W.b., mcPhee, n.f.
A Field Guide to Genetic
Programming. Published via http://
lulu.com and freely available at
http://www.gp-field-guide.org.uk,
2008.

 19. ramamoothy, c.v., tsai, W.-t.
advances in software engineering.
IEEE Comput. 29, 10 (1996),
47–58.

 20. renieres, m., reiss, s.P. fault
localization with nearest neighbor
queries. in International Conference
on Automated Software Engineering
(oct. 2003), 30–39.

 21. schmidt, m., lipson, h. distilling
free-form natural laws from
experimental data. Science 324,
5923 (2009), 81–85.

 22. seacord, r.c., Plakosh, d., lewis,
g.a. Modernizing Legacy Systems:
Software Technologies, Engineering
Process and Business Practices.
addison-Wesley, 2003.

 23. Weimer, W. Patches as better bug
reports. in Generative Programming
and Component Engineering (2006),
181–190.

 24. Weimer, W., nguyen, t., le goues,
c., forrest, s. automatically finding
patches using genetic programming.
in International Conference on
Software Engineering (2009),
364–367.

 25. Zeller, a., hildebrandt, r. simplifying
and isolating failure-inducing input.
IEEE Trans. Software Eng. 28, 2
(2002), 183–200.

high-quality set of positive test cases that encode program
requirements. In other work, we experimented with held-
out indicative workloads, fuzz testing, and held-out exploits
to demonstrate that our server repairs address the causes of
problems without being fragile memorizations of the negative
input and without failing common requests (i.e., because of
the positive tests). Much remains to be done in this area, how-
ever, such as automatically documenting or proving properties
of the generated repairs.
Future work. Beyond these immediate steps, there are other
more ambitious areas for future work. For example, we plan
to develop a generic set of repair templates so the GP has an
additional source of new code to use in mutation, beyond those
statements that happen to be in the program. Our AST program
representation could be extended in various ways, for example,
by including data structure definitions and variable declara-
tions. Similarly, we are currently experimenting with assem-
bly- and bytecode-level repairs. Finally, we are interested in
testing the method on more sophisticated errors, such as race
conditions, and in learning more about bugs that need to be
repaired, such as their size and distribution, and how we might
identify which ones are good candidates for the GP technique.

7. concLusion
We credit much of the success of this technique to design
decisions that limit the search space. Restricting attention to
statements, focusing genetic operations along the weighted
path, reusing existing statements rather than inventing new
ones, and repairing existing programs rather than creating
new ones, all help to make automatic repair of errors using
GP tractable in practice.

The dream of automatic programming has eluded com-
puter scientists for at least 50 years. The methods described
in this paper do not fulfill that dream by evolving new pro-
grams from scratch. However, they do show how to evolve
legacy software in a limited setting, providing at least a small
down payment on the dream. We believe that our success
in evolving automatic repairs may say as much about the
state of today’s software as it says about the efficacy of our
method. In modern environments, it is exceedingly difficult
to understand an entire software package, test it adequately,
or localize the source of an error. In this context, it should
not be surprising that human programming often has a
large trial and error component, and that many bugs can be
repaired by copying code from another location and pasting
it in to another. Such debugging is not so different from the
approach we have described in this paper.

acknowledgments
We thank David E. Evans, Mark Harman, John C. Knight,
Anh Nguyen-Tuong, and Martin Rinard for insightful dis-
cussions. This work is directly based on the seminal ideas of
John Holland and John Koza.

This research was supported in part by National Science
Foundation Grants CCF 0621900, CCR-0331580, CNS
0627523, and CNS 0716478, Air Force Office of Scientific
Research grant FA9550-07-1-0532, as well as gifts from Microsoft
Research. No official endorsement should be inferred. The
authors thank Cris Moore for help finding the Zune code.

References

© 2010 acm 0001-0782/10/0500 $10.00

Westley Weimer (weimer@virginia.edu),
university of virginia.

Claire Le Goues (legoues@virginia.edu),
university of virginia.

Stephanie Forrest (forrest@cs.unm.edu),
university of new mexico.

ThanhVu nguyen (tnguyen@cs.unm.edu),
university of new mexico.

