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We investigate the problem of learning to play the game of
rock–paper–scissors. Each player attempts to improve her�his av-
erage score by adjusting the frequency of the three possible
responses, using reinforcement learning. For the zero sum game
the learning process displays Hamiltonian chaos. Thus, the learning
trajectory can be simple or complex, depending on initial condi-
tions. We also investigate the non-zero sum case and show that it
can give rise to chaotic transients. This is, to our knowledge, the
first demonstration of Hamiltonian chaos in learning a basic two-
person game, extending earlier findings of chaotic attractors in
dissipative systems. As we argue here, chaos provides an impor-
tant self-consistency condition for determining when players will
learn to behave as though they were fully rational. That chaos can
occur in learning a simple game indicates one should use caution
in assuming real people will learn to play a game according to a
Nash equilibrium strategy.

Learning in Games

Most work in game theory and economics involves the
assumption of perfect rationality. In this case, it is natural

to characterize a game in terms of its Nash equilibria, at which
neither player can achieve better performance by modifying
her�his strategy. Under the more realistic assumption that the
players are only boundedly rational and must learn their strat-
egies, everything becomes more complicated. Under-learning
the strategies may fail to converge to a Nash equilibrium (1) or
may even be chaotic (2). Thus, understanding the learning
dynamics is essential (3). Here we give an example of an
elementary two-person game in which a standard learning
procedure leads to Hamiltonian chaos. This example extends
earlier work finding chaotic attractors in dissipative game dy-
namics (4). We argue that chaos is a necessary condition for
intelligent adaptive players to fail to converge to a Nash equi-
librium (for some related work, see ref. 5).

A good example is the game of rock–paper–scissors: rock beats
scissors, paper beats rock, scissors beats paper. With possible
relabelings of the three possible moves, such as ‘‘earwig–man–
elephant,’’ this ancient game is played throughout the world (6).
To allow players to use their ‘‘skill,’’ it is often played repeatedly.
In contrast, two-game theorists who practice what they preach
would play with the skill-free Nash equilibrium mixed strategy,
which is to choose the three possible moves randomly with equal
probability. (In game theory, a mixed strategy is a random
combination of the pure strategies—here, rock, paper, and
scissors.) On average, the Nash equilibrium mixed strategy for
rock–paper–scissors has the advantage that no strategy can beat
it but it also has the disadvantage that there is no strategy that
it can beat. An inspection of the World Rock–Paper–Scissors
Society web site (http:��www.worldrps.com�gbasics.html) sug-
gests that members of this society do not play the Nash equi-
librium strategy. Instead, they use psychology to try to anticipate
the moves of the other player or particular sequences of moves
to try to induce responses in the other player. At least for this
game, it seems that real people do not learn to act like the
rational agents studied in standard game theory.

A failure to converge to a Nash equilibrium under learning can
happen, for example, because the dynamics of the trajectories of

the evolving strategies in the space of possibilities are chaotic.
Chaos has been observed in games with spatial interactions (7)
or in games based on the single-population replicator equation
(4, 8). In the latter examples, players are drawn from a single
population and the game is repeated only in a statistical sense,
i.e., the players’ identities change in repeated trials of the game.

The example we present here demonstrates Hamiltonian
chaos in a two-person game, in which each player learns her�his
own strategy. We observe this for a zero-sum game, i.e., one in
which one player’s win is always the other’s loss. The observation
of chaos is particularly striking because of the simplicity of the
game. Because of the zero-sum condition the learning dynamics
have a conserved quantity with a Hamiltonian structure (9)
similar to that of physical problems, such as celestial mechanics.
There are no attractors, and trajectories do not approach the
Nash equilibrium. Because of the Hamiltonian structure, the
chaos is particularly complex, with chaotic orbits finely interwo-
ven between regular orbits; for an arbitrary initial condition it is
impossible to say a priori which type of behavior will result. When
the zero-sum condition is violated we observe other complicated
dynamical behaviors, such as heteroclinic orbits with chaotic
transients. As discussed in the conclusions, the presence of chaos
is important because it implies that it is not trivial to anticipate
the behavior of the other player. Thus, under chaotic learning
dynamics even intelligent adaptive agents may fail to converge to
a Nash equilibrium.

The Model of Learning Players
We investigate a game involving two players. At each move the
first player chooses from one of m possible pure strategies
(moves) with frequency x � (x1, x2, . . . , xn), and similarly the
second player chooses from one of n possible pure strategies with
frequency y � (y1, y2, . . . , ym). The players update x and y based
on past experience by using reinforcement learning. Behaviors
that have been successful are reinforced, and those that have
been unsuccessful are repressed. In the continuous time limit
where the change in x and y on any given time step goes to zero
under some plausible assumptions, it is possible to show (11) that
reinforcement learning dynamics are described by the coupled
replicator equations (see Notes) of the form

ẋi � xi��Ay�i � xAy��i � 1, . . . , n�, [1]

ẏ � y��Bx�j � yBx��i � 1, . . . , m�, [2]

where A and B are the payoff matrices for the first and second
players, respectively.

The relation of these equations to reinforcement learning is
very intuitive. Consider the first equation, which describes the
updating of the strategies of the first player: The frequency of
strategy i increases proportional to [current frequency (xi)] times
[average performance relative to the mean]. (Ay)i is the perfor-
mance of strategy i (averaged over the second player’s possible
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moves), and xAy is the performance averaged over all m
strategies of the first player. The second equation is similar.

We investigate the dynamics of a generalized rock–paper–
scissors game whose payoff matrices are

A � � �x � 1 1
1 �x � 1

� 1 1 �x

� , B � � �y � 1 1
1 �y � 1

� 1 1 �y

� , [3]

where �1 � �x � 1 and �1 � �y � 1 are the payoffs when there
is a tie. We place these bounds on � because when they are
violated, the behavior under ties dominates, and this more
closely resembles a matching-pennies-type game with three
strategies. We have placed the columns in the order ‘‘rock,’’
‘‘paper,’’ and ‘‘scissors.’’ For example, reading down the first
column of A, in the case that the opponent plays ‘‘rock,’’ we see
that the payoff for using the pure strategy ‘‘rock’’ is �x, ‘‘paper’’
is 1, and ‘‘scissors’’ is �1.

The rock–paper–scissors game exemplifies a class of games
where no strategy is dominant and no pure-strategy Nash
equilibrium exists (any pure strategy is vulnerable to another).
An example of a possible application is two broadcasting com-
panies competing for the same time slot when preferences of the
audience are context-dependent. Suppose, for example, that the
audience prefers sports to news, news to drama, and drama to
sports. If each broadcasting company must commit to their
schedule without knowing that of their competitor, then the
resulting game is of this type.

We consider the general case that a tie is not equivalent for
both players, i.e., �x � �y. In the example above, this symmetry
would be true if the audience believes that within any given
category one company’s programming is superior to the other.
If the size of the audience is fixed, so that one company’s gain
is the other’s loss, this is a zero-sum game corresponding to the
condition �x � ��y � �. In general, Eqs. 1 and 2 form a
conservative system, which cannot have an attractor. If
in addition A � �Bt, it is known that the dynamics are Hamil-
tonian (9). This is a stronger condition, as it implies the full
dynamical structure of classical mechanics, with pairwise con-
jugate coordinates obeying Liouville’s theorem.

Dynamical Behavior of the System
To visualize the behavior of this system, in Fig. 1 we show
Poincaré sections of Eqs. 1 and 2 with the initial conditions
(x1, x2, x3, y1, y2, y3) � (0.5, 0.01k, 0.5 � 0.01k, 0.5, 0.25, 0.25)
with k � 1, 2, . . . , 25. This is a sample of points where the
trajectories intersect the hyperplane x2 � x1 	 y2 � y1 � 0. When
� � 0, our simulation indicates that the system is integrable, and
trajectories are confined to quasi-periodic tori. When � 
 0,
however, this is no longer guaranteed. As we vary � from 0 to 0.5
without changing initial conditions, some tori collapse and
become chaotic, and the trajectories cover a larger region of the
strategy space. Regular and chaotic trajectories are finely inter-
woven; for typical behavior of this type, there is a regular orbit
arbitrarily close to any chaotic orbit (12).

To demonstrate that these trajectories are indeed chaotic, we
numerically compute Lyapunov exponents, which can be viewed
as generalizations of eigenvalues that remain well defined for
chaotic dynamics. Positive values indicate directions of average
local exponential expansion, and negative values indicate local
exponential contraction. Some examples are given in Table 1.
The largest Lyapunov exponents are clearly positive for the first
three initial conditions when � � 0.25 and for the first four initial
conditions when � � 0.5. An indication of the accuracy of these
computations can be obtained by comparing to known cases:
because of the conservation condition the four exponents always
sum to zero; because of the special nature of motion along
trajectories plus the Hamiltonian condition the second and third

Fig. 1. Poincaré section at x2 � x1 	 y2 � y1 � 0. Nonlinear parameters are � �
0 (Top), � � 0.25 (Middle), and � � 0.50 (Bottom). The horizontal and vertical axis
are x1, y2, respectively. Initial conditions are given as (x1,x2,x3,y1,y2,y3) �
(0.5,0.01k,0.5 � 0.01k,0.5,0.25,0.25) with k � 1, 2, . . . , 25. We used a fourth-order
symplectic integrator (10) for the canonical form of Hamiltonian (see Notes).
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are always zero; and when � � 0, because the motion is
integrable, all Lyapunov exponents are exactly zero.

As mentioned already, this game has a unique Nash equilib-
rium when all responses are equally likely, i.e., x1* � x2* � x3* � y1* �
y2* � y3* � 1�3. It is possible to show that all trajectories have the
same payoff as the Nash equilibrium on average (13). However,
there are significant deviations from this payoff on any given
step, which are larger than those of the Nash equilibrium. Thus,
a risk averse agent would prefer the Nash equilibrium to a
chaotic orbit.

The behavior of the non-zero sum game is also interesting and
unusual. When �x 	 �y � 0 (e.g., �x � �0.1, �y � 0.05), the motion
approaches a heteroclinic cycle, as shown in Fig. 2.

Players switch between pure strategies in the order rock 3
paper 3 scissors. The time spent near each pure strategy
increases linearly with time. This dynamics is in contrast to
analogous behavior in the standard single-population replica-
tor model, which increases exponentially with time. When �x 	
�y 
 0 (e.g., �x � 0.1, �y � �0.05), as shown in Fig. 3, the
behavior is similar, except that the time spent near each pure

strategy varies irregularly. The orbit is an infinitely persistent
chaotic transient (14).

Chaos in Learning and Rationality
The emergence of chaos in learning in such a simple game
illustrates that rationality may be an unrealistic approximation
even in elementary settings. Chaos provides an important self-
consistency condition. When the learning of her�his opponent is
regular, any agent with even a crude ability to extrapolate can
exploit this to improve performance. Nonchaotic learning tra-
jectories are symptomatic that the learning algorithm is too
crude to represent the behavior of a human agent. When the
behavior is chaotic, however, extrapolation is difficult, even for
intelligent humans. Hamiltonian chaos is particularly complex,
because of the lack of attractors and the fine interweaving of
regular and irregular motion. This situation is compounded for
high dimensional chaotic behavior, because of the ‘‘curse of
dimensionality’’ (15). In dimensions greater than about five, the
amount of data an ‘‘econometric’’ agent would need to collect to
build a reasonable model to extrapolate the learning behavior of
her�his opponent becomes enormous. For games with more
players it is possible to extend the replicator framework to
systems of arbitrary dimension (Y.S. and J. P. Crutchfield,
unpublished observations). It is striking that low dimensional
chaos can occur even in a game as simple as the one we study
here. The phase space of this game is four dimensional, which is
the lowest dimension in which continuous dynamics can give rise
to Hamiltonian chaos. In more complicated games in higher
dimensional-state spaces we expect that chaos becomes even
more common.

Many economists have noted the lack of any compelling
account of how agents might learn to play a Nash equilibrium
(16). Our results strongly reinforce this concern (see Notes), in
a game simple enough for children to play. That chaos can occur
in learning such a simple game indicates that one should use
caution in assuming that real people will learn to play a game
according to a Nash equilibrium strategy.

Notes
Coupled Replicator Equations. Eqs. 1 and 2 have the same form as
the multipopulation replicator equation (17) or the asymmetric
game dynamics (18), which is a model of a two-population
ecology. The difference from the standard single-population
replicator equation (19) is in the cross term of the averaged

Table 1. Lyapunov spectra for different initial conditions
(columns) and different values of the tie breaking parameter �

� � k � 1 2 3 4 5

0 �1 	1.0 	1.4 	0.4 	0.4 	0.4
�2 	0.2 	0.3 	0.3 	0.3 	0.3
�3 �0.5 �0.4 �0.3 �0.3 �0.3
�4 �0.7 �1.2 �0.4 �0.4 �0.4

0.25 �1 �49.0 �35.3 �16.6 	0.4 	0.4
�2 	0.3 	0.3 	0.4 	0.2 	0.3
�3 �0.3 �0.1 �0.4 �0.2 �0.3
�4 �49.0 �35.5 �16.5 �0.4 �0.4

0.50 �1 �61.6 �35.0 �28.1 �12.1 	0.2
�2 	0.6 	0.3 	0.1 	0.0 	0.2
�3 �0.6 �0.4 �0.2 �0.1 �0.2
�4 �61.5 �35.8 �28.0 �12.2 �0.3

k � 1, 2, 3, 4, 5 correspond to the initial conditions (x1, x2, x3, y1, y2, y3) � (0.5,
0.01k, 0.5 � 0.01k, 0.5, 0.25, 0.25) with k � 1, 2, . . . , 5. The Lyapunov exponents
are multiplied by 103. Note that �2 � 0.0, �3 � 0.0, and �4 � ��1 as expected.
The Lyapunov exponents indicating chaos are shown in boldface.

Fig. 2. The frequency of the pure strategy ‘‘rock’’ vs. time with �x 	 �y � 0
(�x � �0.1, �y � 0.05). The trajectory is attracted to a heteroclinic cycle at the
boundary of the simplex. The duration of the intervals spent near each pure
strategy increases linearly with time.

Fig. 3. The frequency of ‘‘rock’’ vs. time with �x 	 �y 
 0 (�x � 0.1, �y � �0.05).
The trajectory is a chaotic transient attracting to a heteroclinic orbit at the
boundary of the simplex. The time spent near pure strategies still increases
linearly on average but changes irregularly.
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performance. It has been known for some time that chaos occurs
in single-population replicator equations (4, 8). This model is
applicable to game theory in the specialized context where both
players are forced to use the same strategy, for example, when
two statistically identical players are repeatedly drawn from the
same population. Here we study the context of actually playing
a game, i.e., two fixed players who evolve their strategies
independently.

The Hamiltonian Structure. To see the Hamiltonian structure of
Eqs. 1 and 2 with 3, it helps to transform coordinates. (x,y) exist
in a six-dimensional space, constrained to a four-dimensional
simplex because of the conditions that the set of probabilities x
and y each sum to 1. For �x ���y we can make a transformation
from U � (u,v) in R4 with u � (u1,u2) and v � (v1,v2) such as

ui � log
xi � 1

x1
, vi � log

yi � 1

y1
(i � 1,2). The Hamiltonian is

H � �1
3
�u1 � u2 � v1 � v2�

� log�1 � eu1 � eu2��1 � ev1 � ev2� [4]

U̇ � JƒUH, [5]

(see ref. 9) where the Poisson structure J is here given as

J � �
0 0 2� 3 � �
0 0 �3 � � 2�

�2� 3 � � 0 0
�3 � � �2� 0 0

� . [6]

We can transform to canonical coordinates

U̇� � SƒU�H, S � � O I
�I O� [7]

by applying the linear transformation U� � MU

M � �
0 0 1 0
0 0 0 1

�
2�

3��2 � 3�

� � 3
3��2 � 3�

0 0

� � 3
3��2 � 3�

�
2�

3��2 � 3�
0 0

� [8]

to the Hamiltonian form (5).

Conjecture on Learning Dynamics. When regular motion occurs, if
one player suddenly acquires the ability to extrapolate and the
other does not, the first player’s score will improve. If both
players can extrapolate, it is not clear what will happen. Our
conjecture is that sufficiently sophisticated learning algorithms
will result either in convergence to the Nash equilibrium or in
chaotic dynamics. In the case of chaotic dynamics, it is impossible
for players to improve their performance because trajectories
become effectively unforecastable, and in the case of Nash
equilibrium, it is also impossible by definition.
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