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I Introduction

In 2002 an estimated 6.7 million people died from cancer worldwide, and 10.9 million cases were
diagnosed [18]. Over the next 25 years, some expect the number of diagnoses to double to 20 million
[19] as infectious disease is better controlled and longevity climbs in developing nations. Although
the need for better cancer treatment is obvious and significant resources have been devoted to
“winning the war on cancer,” progress has been slow, and treatments are generally limited to specific
forms of the disease. Most cancer research focuses on particular reactions or signal transduction
pathways, which may offer targets for therapy. At this level of detail each vatiety of cancer is a unique
and complicated phenomenon, and it is difficult to assess the effects of individual genetic alterations
on the cell or tissue as a whole.

A more general view of cancer is outlined in Hanahan and Weinberg’s “The Hallmarks of
Cancer” [10], which suggests that six cellular alterations are essential to malignant growth. These six
hallmarfks are believed to be common to most or all human tumors. Such a view offers the hope that
our understanding of cancer may some day move beyond the cataloguing of specific cellular
processes to a more general and unified theory of how such processes result in disease and how they
might be manipulated to control or halt progression to cancer. To achieve this, however, will require
an understanding of the dynamics—how the mutations leading to the phenotypic hallmarks interact
with one another and their surrounding environment.

Cancer cannot be understood simply by considering individual mutations. The effect of a
mutation often depends on the context of other mutations within the same cell, the context of other
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mutant cells within a tumor, and the context of the abiotic environment of the tumor and patient.
Cancer is thus a complex evolutionary system in which tumors consist of phenotypically (and
genetically) heterogeneous populations of cells that are competing for scarce resources. Cancer is
especially interesting from an artificial life perspective because evolutionary dynamics and ecological
dynamics occur on similar time scales and involve many subtle interactions.

In this article, we are concerned with the dynamics of how cell populations become heterogeneous
and acquire the hallmarks of cancer. Thus, we are interested in the relative frequency of different
mutational pathways (which sequences of mutations are most likely), how long the different pathways
take, and the dependence of pathways on various parameters. We describe an agent-based simulation
known as CancerSim that models the Hanahan and Weinberg hallmarks. We then describe experiments
that explore the consequences of Hanahan and Weinberg’s hallmarks in terms of the dynamical
properties of tumor formation and growth. By studying these cell population dynamics we hope to
better characterize the processes of cellular alterations that underlie tumorigenesis. In particular, we
would like to determine how well Hanahan and Weinberg’s hallmarks can account for the appearance
and behavior of cancer. Because the hallmarks specify cell bebavior, they have implications for cell
population dynamics that are difficult to foresee without an analytical model. If an implementation of
the hallmarks failed to reproduce patterns commonly observed in cancer, we could conclude that the
set of hallmarks is incomplete or not implemented correctly. Discovering new hallmarks might lead to
new targets for therapy. If, on the other hand, the hallmarks explain cancer reasonably well,
phenomena arising in the model may give rise to testable hypothesis about cancer.

CancerSim models cancer abstractly, at the level of cellular interactions within a solid animal
tissue. The simulation takes place in a bounded three-dimensional Cartesian array representing a
tissue volume of approximately 0.1 mm’, and on a time scale of many cell lifetimes (around 60 years,
assuming each time step represents 1 hour). Users can see how the hallmarks interact, and they can
affect the simulation by changing model parameters (Figure 2). Cells differentiate by random
phenotypic mutations that occur during mitosis. A mutation is likely to propagate through the cell
population over time if the mutation is advantageous in the microenvironment formed by
neighboring cells. Limited space and nutrients place selective pressure on the cell population, and
interesting evolutionary behaviors emerge over time.

2 Modeling the Hallmarks of Cancer

Hanahan and Weinberg describe the phenotypic differences between healthy and cancerous cells
[10]. They propose six phenotypic changes at the cellular level as the essential hallmarks of cancer:
unlimited mitosis; ignoring growth-inhibition signals; escaping dependence on external growth
stimulation; the ability to recruit new vascular structures; motility and invasion; and disabling the
safety mechanisms that normally detect mutation and trigger apoptosis. Genetic instability is an
additional factor that accounts for the high incidence of mutations in cancer cells. In the following,
we describe these hallmarks briefly and summarize how we chose to model them in CancerSim.

2.1 Self-Sufficiency in Growth Signals

Normal cells divide when stimulated by growth signals from other cells. This occurs when signaling
molecules are bound by transmembrane receptors, prompting cell growth and division. In can-
cerous cells, these receptors are overexpressed, causing hypersensitivity to otherwise ambient levels
of growth signal [6]; or the downstream pathways for these receptors are turned on inappropriately
by mutation [16].

In CancerSim, cells undergo mitosis only if they are within a predefined spatial boundary. This
boundary represents a threshold in the concentration of growth factor; beyond this threshold,
growth signals are too faint to prompt mitosis. The volume defined by this boundary overlaps with
the volume in which angiogenic factor is plentiful (described in the next section), but neither volume
contains the other. Figure 1 illustrates a two-dimensional cross section of the volumes. Cells can
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Figure |. Tissue growth bounded by growth factor and vascularization.

escape the tissue’s natural extent through the growsh signa/ mutation. This mutation causes cells to
proliferate regardless of the concentration of growth factor.

2.2 Sustained Angiogenesis

Cells cannot survive at distances of more than about 100 um from blood supply. Despite this fact, cells
are normally unable to induce angiogenesis (new capillary growth). Without such growth, tumors can
grow only to about 0.5 mm [7]. The importance of angiogenesis to tumorigenesis has been studied
since the early 1970s and has resulted in clinical trials of several angiogenesis inhibitors [29].

Angiogenesis is regulated by a variety of signals; over two dozen inducers (primarily bFGF and
vascular endothelial growth factor, or VEGF) and a similar number of inhibitors are known [8].
Some of the inducers are not specific to endothelial cells; they promote growth in other cells as well
[7]. Cancerous cells may overproduce inducers, lack inhibitors, or both. The angiogenic switch is the
threshold in the ratio of inducers to inhibitors sufficient to trigger angiogenesis [9].

In CancerSim, angiogenesis is inhibited outside a predefined spatial region (Figure 1). Vasculatutre
outside this area can be developed only in response to signals from cells with the sustained angiogenesis
mutation. Cells signal for angiogenesis only when the concentration of nutrient is too low. This
roughly models hypoxia (oxygen deficiency), arguably the most important external stimulus of
angiogenic factor [7].

2.3 Insensitivity to Growth-Inhibitor Signals

In nature, normal cells eventually enter a postmitotic, differentiated state. In this state the cell carries
out a specialized role beneficial to the organism as a whole, and it no longer reproduces. By ignoring
anti-growth signals, cancer cells forgo full maturity and normal functioning, thus maintaining repli-
cative potential.

CancerSim models contact inhibition, which is a type of growth inhibition. Contact inhibition pre-
vents overcrowding by arresting the growth and division of cells already in contact with many other
cells. In the three-dimensional grid space of CancerSim, each cell has up to 26 neighbors (neighbors
need only make contact at a corner). Cells forgo mitosis if all of the neighboring grid locations are
already occupied by living cells. The ignore growth inbibit mutation allows cells to divide even when there
is no empty location for the new daughter cell. In this case, the daughter cell competes for survival with
a randomly chosen neighbor with a 1/g likelihood of success, whete g is a tunable parameter.

2.4 Evasion of Apoptosis

Cells have mechanisms to initiate apoptosis (programmed cell death). Normal cells express receptors
for extracellular and intracellular apoptosis signals. Such signals are sent by intracellular sensors
which detect DNA damage, signaling imbalance, survival factor insufficiency, or hypoxia. Oncogene
overexpression is among the factors that trigger eatly apoptosis. Tumor cells lack some of the surface
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features present on normal cells and express some features not normally present on mature cells
[25]. The immune system detects and responds to these cells as nonself. In this way, the body is
protected from malfunctioning cells. To become cancerous, cells must disable either the effectors of
apoptosis or the receptors that trigger them. Over 50% of human cancers contain a mutated,
nonfunctional P53 tumor suppressor gene. This prevents manufacture of P53 protein—a necessary
component in some pathways of DNA damage detection. The P53 mutation is not the only way to
evade apoptosis triggered by DNA damage, but it is probably the most important.

Before undergoing mitosis, each cell in CancerSim is checked for genetic damage. If mutation is
detected, the cell undergoes apoptosis instead of mitosis. The probability of detection of damage in
the cell is £, where 7 is the number of mutations carried by the cell and ¢ s a tunable parameter. Thus,
the probability of apoptosis due to genetic damage is proportional to the number of mutations. The
evade apoptosis mutation causes cells to ignore apoptosis signals. This removes the selective dis-
advantage of genetic damage.

2.5 Limitless Replicative Potential

Cells normally become senescent after a fixed number of divisions and are unable to continue
dividing, In culture, human cells are limited to 50—70 divisions (the Hayflick limit [11]), although most
die before exhausting this potential. This limitation prevents many tumors from growing large
enough to be seen without a microscope. Experiments show, however, that cells can acquire limitless
replicative potential. Such cells are said to be immortal.

The mechanism of limited replicative potential arises from the inability of DNA polymerase
to replicate chromosomes completely. The ends of chromosomes are called telomeres. With the
duplication of each chromosome, 50—100 base pairs at the end of each telomere are lost. Eventually,
the DNA of the chromosome is exposed, and the unprotected DNA fuses together. Once the cell’s
genetic material is in this deformed configuration, the cell dies quickly.

In cancerous cells, telomeres are extended to compensate for what is lost by DNA polymerase.
Usually this is accomplished by overproducing telomerase enzyme, which appends molecules to the
telomeres. Alternatively, telomeres can be lengthened through homologous recombination. Under
normal circumstances, such an outcome is prevented by mismatch repair machinery. However, this
machinery may itself be defective, inducing one form of genetic instability [2].

Telomere shortening is simulated by CancerSim. The initial cell is created with telomeres of length
¢, a parameter of the simulation. With each mitosis, the telomeres are shortened by one length unit.
When the telomere length falls to O, the cell dies. The /Jmitless replication mutation stops telomere
shortening, Cells with this mutation can undergo mitosis any number of times.

2.6 Tissue Invasion and Metastasis

The final stage of cancerous development is known as metastasis, the spreading of cancer to new
locations in the body. 90% of cancer fatalities are caused by these secondary metastatic lesions,
because they cannot be cured by local therapies such as surgery or radiation [23].

To circulate through the body, cells must decouple themselves from surrounding tissue. Cell
adhesion molecules and integrins are disrupted by mutation, transcriptional repression, or proteol-
ysis. Once freed from their moorings, cancer cells escape the influence of regulatory signals. Cancer
cells also increase protease production, perhaps to facilitate the destruction inherent in the invasion
of tissue (a protease is an enzyme that catalyzes the breakdown of proteins).

In its current form, CancerSim does not simulate metastasis, because the simulation represents
only a single tissue. We assume that metastasis can occur once cells reach the outer boundary of the
simulation.

2.7 Genetic Instability
A tumor is not simply a homogeneous clone of cells. Tumor cell heterogeneity arises from multiple
clones of cancer cells created through mutation. Genetic transcription is generally a highly accurate
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process, but cytotoxic carcinogens can cause genetic instability by altering the cellular environment.
This alters selective pressure, favoring clones of cells that can evolve quickly, that is, those with the
greatest genetic instability [2]. In an environment without carcinogens, cells are better off with low
mutation rates because most mutations are deleterious. However, genetic instability may be
advantageous to the individual cells in unstable and hostile carcinogenic environments. There are
several enzymes in the body to detect and repair different kinds of genetic damage, and loss of these
may correspond to specific types of genetic instability [2].

Experimental evidence suggests that the number of acquired genetic mutations in cancerous cells
is greater than 10,000 [24, 13], although mathematical models suggest that the actual number of
mutations is probably 10'* or more [26]. However, the vast majority of these likely have no effect on
the progression of the malignant growth, so they are not modeled. The exact mechanism of genetic
instability is unknown, but the rate at which mutations must occur suggests a clonal phenotype that
allows rapid accumulation of genetic damage.

Although the cause of genetic instability in cancer is not fully understood, there is little doubt that
it exists, for tumors exhibit a wide variety of cell phenotypes, collectively referred to as cell
heterogeneity. In CancerSim, genetic instability is modeled as a mutator phenotype, which causes other
mutations to occur with increased likelihood. Cells that have become genetically unstable have their
base mutation rate scaled up by a tunable parameter.

3 CancerSim

CancerSim implements the hallmarks described above in a three-dimensional agent-based simulation
that resembles a cellular automaton. The simulation consists of cells and a circulatory system
(vasculature), both of which grow according to their own rules. Each cube in the three-dimensional
simulation contains either one cell or empty space, but the vascular structure may pass through a
cube (with or without an occupying cell). CancerSim has both command-line and graphical user
interfaces to support interactive investigation and batch execution. The graphical interface is
illustrated in Figure 2.

Even with modern processor speeds, it is still not feasible to simulate a realistic number of cells
using an individual-based approach in which each cell is represented explicitly. On a 2-GHz PC,
CancerSim can comfortably simulate up to about 1,000,000 cells, representing approximately
0.1 mm” of tissue. A tumor that is detectable by standard radiographic techniques is approximately
a cubic centimeter in size and represents 1 billion cells, while the entire human body has ap-
proximately 5%10"” cells. Modern computers have on the order of 10” bytes of memory, which
is too little storage to simulate all cells in the body by 5 orders of magnitude (assuming 10 bytes of
memory for each cell), and computational speed is similarly inadequate. Thus, a parallel version of
CancerSim would require about 100,000 nodes to simulate the number of cells in a human body.
Despite these limitations, it is important to simulate a large number of cells in order to observe the
evolutionary trajectories and interactions in which we are interested. And it is important to run
repeated experiments in order to observe the distribution of outcomes. Thus, CancerSim’s
representation of cells and cell dynamics is quite abstract in order to support these requirements.

The simulation begins with a single cell. As the simulation proceeds, cells replicate, die (apoptose),
or signal for angiogenesis (request blood supply). During mitosis, cells acquire phenotypic mu-
tations probabilistically. Normal cells divide only within a confined region of the simulated space.
The simulation terminates when the tissue occupies 90% of the simulated space, when all cells
die, or after an arbitrary number of steps. Cells are stationary and do not move from their place
of origin.

Cells are displayed according to a color scheme, in which the color of a cell depicts which hall-
marks it has acquired. There are 20 =64 possible mutational states that a cell can be in, so there are
64 different color assignments representing these possibilities. Normal cells are coded gray, and cells
with all six hallmarks are coded black.
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Figure 2. Cancerous tissue displayed by the CancerSim visualization package. The display is divided into three regions:
menu buttons for controlling the simulation and setting parameters; time series plots of cell population levels for each
phenotype present in the tissue; and a real-time display of growing tissue. In this example, the display is in dual view mode
in which two different views of the same tissue are displayed simultaneously. The left-hand view shows the exterior of
the growing tissue. In the right-hand view, the green cells have been selected away, so the underlying vascular structure
and less frequent cell phenotypes can be seen.

CancerSim is implemented in C++ and is available under the terms of the General Public License
(GPL) from http:// www.cs.unm.edu/~forrest/softwate/cancersim/. CancerSim uses the wxWindows
[21] cross-platform GUI library, which is available on Linux, various flavors of Unix, MacOS, and all
versions of Microsoft Windows starting with Windows 3.1.

3.1 Cells

CancerSim’s model of cellular mechanisms is highly simplified, which allows us to simulate large cell
populations and to focus on intercellular interactions. Cell properties are expressed as phenotypic
traits rather than genes, and the particular traits of a cell are represented as a Boolean vector whose
values enable or disable the six hallmark phenotypes. For convenience, we refer to this vector as a
genotype. A small amount of additional state information is maintained for each cell: telomere length
(controls how many times a cell line is allowed to divide), mutation history, unique identification tag,
capillary information (is there a capillary at this cell’s location?), and nutrient level (is the cell supplied
with oxygen and energy?). Table 1 summarizes this information.

3.1.1 Caell Life Cycle

In CancerSim each cell goes through a primitive cell cycle. The GO phase is triggered by contact
inhibition. Thus, cells with a full set of neighbors normally do not attempt to replicate. Cells next to
empty space within the tissue’s natural extent automatically enter the G1 phase. G1 is modeled by the
passage of time; each cell occupies equal volume, and the physical enlargement of cell growth is not
simulated. DNA replication occurs in the S phase. Daughter cells normally inherit the genotype of
their parent, but the replication of DNA occasionally introduces a mutation. Then, at the G2
checkpoint, cells undergo a check for genetic damage. Apoptosis is triggered in cells found to
contain genetic defects. (The G1 checkpoint is not modeled separately, because it is similar.) Finally,
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Table I. CancerSim: Information contained in every cell.

Name Data type Notes

genetic instability Boolean

ignore growth inhibit Boolean

evade apoptosis Boolean

limitless replication Boolean

sustained angiogenesis Boolean

self growth Boolean

telomere length Integer Replicative potential of this cell

mutation pathway Phenotype History Records the order in which mutations were obtained
capillary Boolean Whether there is a capillary at the cell’s location

nutrient Real-valued Concentration of oxygen and energy at the cell’s location
sequence number Integer Tag to distinguish between cells reusing the same grid location

the cell undergoes mitosis in the M phase. One of the daughter cells occupies the grid location of its
parent, while the other fills an empty adjacent location.

In CancerSim, cells undergo random apoptosis with low probability. On each cell cycle, each cell
is subjected to a % chance of death, where « is a tunable parameter. This might be due to mechanical,
chemical, or radiological damage, aging, or the immune system.

3.2 Vascularization

All cells require blood flow to provide nutrients. CancerSim’s vascular system develops according to
signals sent by the cells. Nutrients diffuse from each capillary segment into the surrounding elements
of the grid. The nutrients available to each cell are the sum of the contributions of all capillary
segments, but the contribution from distant capillaries is vanishingly small, because nutrient levels
decrease as a power law function of the distance from their source.

The initial capillary segment is co-located with the initial cell. When a newly created cell has
insufficient nutrient, a new capillary segment is created in the nearest candidate element. A candidate
element is any element adjacent to an existing capillary segment; this ensures that the capillaries are
continuous. This may create a branch in the vasculature if the newly created cell is not in a direct line
with existing capillaries. In principle, a branch can be formed anywhere in the vascular tree and not
just at the leaves, which is a departure from reality. However, even with this simple growth rule,
natural-looking fractal-like structures emerge endogenously, as illustrated in Figure 1. If the new cell
is outside the predefined angiogenic boundary, no angiogenesis will occur unless the cell’s phenotype
includes cause angiogenesis.

3.3 Event Model

CancerSim differs from classical cellular automata in a couple of ways. The update rules are
associated with the cells of the simulation (not to be confused with “cells” in a classical cellular
automaton), and the update rules incorporate probabilities, which makes them nondeterministic.
Also, most elements do not change observably each time step. Thete are two reasons for this. First,
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most of the grid represents empty space most of the time. For instance, with a grid size of 125,000,
no more than about 16,000 elements can be occupied unless several mutations have occurred. The
tissue is bounded by growth factor concentration and vascularization (described eatlier and illustrated
in Figure 1). This allows room for the expansion of the tumor. Second, the only observable changes
to cells are apoptosis and replacement. In an actual tissue, only a fraction of all cells are undergoing
such transitions at any given time. In CancerSim, the length of the cell cycle is a random vatiable
distributed uniformly between 5 and 10 time steps. This could be simulated in a classical cellular
automaton by keeping a counter in each cell representing progression through the cell cycle, but
performing such a large number of unobservable updates is computationally inefficient.

CancerSim avoids unnecessary updates by using a discrete event model. This means that each future
update is represented by a data structure. The set of all future updates is stored in a priority queue,
ordered on event time. Only observable updates are performed. Instead of decrementing a counter
in each cell each time step, the update representing mitosis is scheduled for execution several time
steps in the future. This minimizes the number of updates performed. However, the priority queue of
updates must be maintained, consuming some memory and requiring some extra processing.

The simulation begins by initializing all elements to represent empty space. Then, the element at
the center of the grid is changed to represent a single normal cell (no mutations). Mitosis is
scheduled for this initial cell, and this mitotic division is the next event. After the new daughter cells
are created, mitosis is scheduled for each of them, and so on. Each mitotic division is carried out by
copying the “genetic” information of the cell to an unoccupied adjacent space in the grid. Random
errors occur in this copying process to simulate mutation. In CancerSim, these errors always add new
mutations, and never “repair” previous ones. Frequently, cells are unable to replicate because of
some limitation, such as contact inhibition or insufficient growth signal. Cells overcome these
limitations through mutation.

3.4 Completion Criteria

The simulation can terminate in three different ways: All the cells might die off due to aging; the
simulation might continue until a fixed maximum number of time steps has completed (without such
a limit, CancerSim could continue indefinitely if its cells had acquired immortality through the evade
apoptosis phenotype); the simulation might reach a cancerous state. In CancerSim, the criterion for
cancer is the occupation of 90% of the grid. Healthy, noncancerous cells can fill only a small portion
of the grid, because they are bounded by limited vasculature and growth factor. When the simulation
is run with the typical parameters listed below, the simulation reaches the cancerous state on the vast
majority of runs.

3.5 CancerSim Parameters

In CancerSim, each of the hallmark mutations occurs with equal probability. This probability is
determined by the base mutation rate parameter. An additional parameter for each hallmark controls
the effect of the associated phenotype as desctibed by Table 2.

In CancerSim, parameter selection is not straightforward, for several reasons. First, parameters
such as the number of cells in a sizable tissue cannot be set to realistic values, due to computational
limitations. Second, CancerSim is necessarily an abstraction of real cell dynamics, so some parameters
do not have direct analogues in nature. For instance, the felomere length parameter controls
programmed cell destruction, which is actually a complex, environment-dependent interaction of
several factors including initial telomere length, telomerase activity, oxidative stress, and even
emotional stress [5]. Finally, all parameters interact in complex ways. For instance, the smaller the
cell population size, the larger the mutation rate must be to obtain the expected incidence of cancer.

Our choice of parameter values was guided by the observation that hallmarks only have
meaningful interactions within some region of interest. At an extreme parameter setting, a phenotype
may have no noticeable effect, demoting it from hallmark status. At the other extreme, a hallmark
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Table 2. CancerSim parameters.

Parameter name Typical value Description

Cell Phenotype Parameters
telomere length 100 Telomere shortening limits the initial cell to t replications

evade apoptosis 10 A cell with n mutations has an extra £ likelihood of dying each cell cycle, unless
one of its mutations is evade apoptosis

genetic instability 100 Increase the likelihood of mutation by a factor of i for cells with this mutation
ignore growth inhibit 10 Cells with this mutation have a é chance of killing off neighbor to make room
for mitosis

Other Parameters

grid size 125,000 The computational grid contains n cell locations

base mutation rate 100,000 Each allele is copied with a i chance of mutation

random apoptosis 1000 Each cell cycle exposes every cell to a % chance of death from nonspecific causes
random seed (Any) Seed value for the pseudo-random number generator

could dominate, becoming in effect the on/y hallmark of cancer. To find regions of interest in
parameter space, we conducted an eight-dimensional parameter sweep with three runs for each of
1458 parameter settings (4374 runs in total).

Table 2 lists CancerSim parameters and typical values. Each of the cell phenotypes except for se/f-
sufficiency in growth signals and sustained angiogenesis has an associated parameter.

3.6 Visualization

CancerSim models a tissue in three dimensions, but must display it in two dimensions (on a
monitor). In this situation, it is helpful to be able to rotate the tissue smoothly and interactively.
Rendering 1,000,000 cells efficiently involved several decisions.

To save time, the cells are displayed as cubes. A cell could be represented by a more organic
shape such as a sphere, but drawing cubes is advantageous in several ways. Although rendering
hardware draws polygons, and triangles in particular, organic-looking curved surfaces must be
approximated, by piecing together a large number of triangles, which is computationally expen-
sive. In addition, cubes pack together tightly, completely occluding the tissue’s interior. This means
that only the exterior surface of the tissue need be rendered. This is crucial, because most cells
are in the interior of the tissue and therefore do not need to be rendered. Note that the CancerSim
interface provides a nice option for users wishing to view the interior of the tissue, illustrated in
Figure 1.

4 Experimental Results

In this section we describe initial experiments that we conducted with CancerSim, first to calibrate
the model and then to begin studying what the hallmarks model implies about how cancers develop.

We first identified a region of interest for each parameter by experimenting with different values.
An “interesting” region is a range of parameter values that have a noticeable effect on the outcome
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of the runs. Then we performed 100 runs varying only the random seed. For this set of runs, each
parameter was held at a constant value, selected from its region of interest. Thus, we chose
parameter values that gave every hallmark a chance to affect the simulation. Using these data, we
then studied the relative frequency of alternate “pathways to cancer.”

Hanahan and Weinberg argue that “virtually all cancers must acquire the same six hallmark
capabilities.” However, this does not imply that the progression from normal tissues to cancer is
inflexible and predictable. Instead, the hallmark phenotypes can have varied causes and can be ac-
quired in different sequences. CancerSim records the history of each cell’s phenotype. This is simply
the order in which the cell’s mutations were acquired by its ancestors, known as its pazbway. Only the
current phenotype of the cell affects its behavior, but the pathway is recorded for later analysis.

In CancerSim, as in vivo, cancerous tissue is almost never homogeneous at the end of a run; it
contains cells with heterogeneous phenotypes. Moreover, cells with identical phenotypes may have
obtained them by different pathways, and these different pathways may affect the time it takes to
develop cancer. Even if the tissue consists only of cells with all six of the phenotypes, up to 6! = 720
different pathways are possible. Finally, cells with identical pathways are probably, but not necessarily,
related (aside from the common descent from one ancestral cell at the beginning of the simulation);
it may be coincidence that two distinct cell lines receive mutations in the same sequence.

We call a pathway dominant if it is shared by more than 50% of the cells in the tissue at the
conclusion of the simulation. By this definition, a tissue might not have any dominant pathway.
Figure 3 shows how the probability of finishing with some dominant pathway varies according to the
base mutation rate, taking the average over all other parameters. Only runs ending with cancer are
included.

When the mutation rate is low (towards the left side of Figure 3), the simulation trajectory has its
own logic. If the first mutation conveys a selective advantage, descendants of the mutant cell multiply
until the selective advantage is fully exploited. For example, the se/f growth mutation allows its cells to
grow into the region lacking growth factor. It provides no selective advantage within the tissue’s
natural extent, where growth factor is already plentiful, nor outside the vascularized region. Once
these ecological dynamics have played out and the mutation has been fully exploited, a second
selectively advantageous mutation can gain a foothold and expand to its natural extent. Thus, low
mutation rates allow ecological dynamics to play a more important role in the simulation and (as we
see in Figure 3) make it more likely that one phenotype will dominate the population. On the other
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Figure 3. Low mutation rates lead to tumor homogeneity. The figure plots the likelihood of a dominant pathway versus
mutation rate. Each data point represents the average of 100 runs at the specified mutation rate. Runs not resulting in
cancer were discarded. For each run resulting in cancer, the variable Dominant is true if over half the cells at time of death
share a genetic pathway; false otherwise.
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hand, when the mutation rate is high, the effect of a single mutation is less independent. De-
scendants of a mutant cell are likely either to be hampered by other, more degenerate cells, or else
develop their own additional mutations.

Having established that some pathways will dominate under low (and biologically plausible)
mutation rates, we can ask which ones are the most likely. We analyze the random seed parameter
sweep, which consists of 100 runs varying only the random seed. Cancer arose in 96 of 100 runs, and
of the 96, 90 runs completed with some dominant pathway. Figure 4b shows how many times each
dominant pathway occurred. All but one of the 90 runs resulted in dominant pathways formed by
permutations of the same four mutations. In all, only 7 different pathways dominated, with the single
most common pathway accounting for 48% of cancer cases. Thus, all pathways to cancer are not
equally likely in CancerSim.

Perhaps the most striking feature of these results is the absence of sustained angiogenesis. This does
not mean that sustained angiogenesis was unimportant in these runs—just that the dominant phenotype
at the end of the run did not have this mutation. Figure 5 shows the population of angiogenic cells
during a representative simulation. A significant number of angiogenic cells was produced. But after
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(a) Theoretical pathways of cancer, reproduced from Hana-
han [10].
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(b) Pathways of CancerSim. The number of oceurrences of
each pathway is indicated.
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Figure 4. Pathways to cancer.

Artificial Life Volume 12, Number 4 627



R. G. Abbott, S. Forrest, and K. J. Pienta Simulating the Hallmarks of Cancer

Angiogenic Cell Population Dynamics In CancerSim: Parasitism
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Figure 5. A small, short-lived population of angiogenic cells.

the resulting vascularization, sustained angiogenesis no longer offered a selective advantage; all cells took
advantage of the extra nutrient (as shown by the increased total cell population in Figure 5), and the
angiogenic cells were outcompeted by other cells.

Evade apoptosis, however, appears in every pathway. It never occurs first in the sequence, because
it conveys no selective advantage until the cell has at least one other mutation. This is because
apoptosis responds to genetic damage (in our model, a phenotypic change is a proxy for genetic
change), so the ability to evade apoptosis is not advantageous until there are some mutations to
evade.

Only two pathways include genetic instability. This does not agree with studies suggesting that
genetic instability is an important hallmark of cancer and that it appears eatly in carcinogenesis [2].
In CancerSim genetic instability is only a weakly selective mutation. This is because genetic instability
in itself has no effect on the phenotype; it only increases the likelihood of future advantageous muta-
tions. Thus, in the short run it is a selectively neutral mutation [14]. This is an example of associated
selection [2], whereby an allele is selected only through its relation to some other selective allele.

Other models of genetic instability would have a much larger effect. To simulate environmental
effects, all cells might obtain genetic instability together. This would be equivalent to raising the base
mutation rate and would model the effect of mutagenic carcinogens, whose effect is never localized
to just a single cell.

Limitless replication usually occurs first. This is surprising, because our data were collected from
runs using an initial telomere length of 100, which permits a total clonal expansion of 2100 (about
10°°) total cells— far more than the simulation can accommodate. This means that the average cell is
under little pressure to escape apoptosis due to telomere shortening. However, cells with mutations
have high turnover because detected faults trigger apoptosis (unless the affected cell has the evade
apoptosis mutation). A cell with a highly selective mutation could thus have many opportunities for
replication, potentially depleting its telomeres.

The zgnore growth inhibit mutation is consistently near the end of the pathway. It may be that other
mutations are more important until most of the empty space (initially inaccessible due to insufficient
growth factor and vascularization) is occupied.

4.1 Example Simulation Run
The interaction of cell phenotypes in CancerSim gives rise to many interesting cell population
dynamics. Here, we describe one example run of CancerSim, illustrated in Figure 6."

By # = 150, the tissue reaches its natural extent, bounded by low concentrations of cell growth
factor and angiogenic factor. As time passes, a number of mutations occur, primarily deleterious. For

| The parameters used are: -n 125000 -i 100 -g 4 -t 40 -m 100000 -e 20 -a 400 -q 50000 -r 3.
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Figure 6. Snapshots of cell populations at several times during an example run.

example, at # = 585 a cell line obtains the cause angiogenesis mutation. Because the cell acquiring this
mutation is in the interior of the tissue, it has an adequate blood supply and the mutant cell has no
advantage. At # = 636 the abnormal cell is caught by the G2 check for genetic damage, and is
destroyed. At # = 4260, a cell obtains the ignore growth inhibit mutation (Figure 6a). This time, the cell
(by chance) passes the G2 checkpoint, and the mutation confers an immediate selective advantage
because the cell can divide at the expense of its neighbors. By # = 4376 there are 28 cells in this line.
However, the G2 check often detects the mutation, causing high turnover and rapid telomere
shortening, Before long, the mutant cells exhaust their replicative potential, and at # = 4558 the last
dgnore growth inbibit cell dies, leaving the tissue free of this mutation.

The tissue continues with a steady population of cells for a long time. Cellular turnover is low.
By time # = 12500, 15 separate mutation events have occutred, including (by chance) at least
one occurrence of each possible mutation. Through a combination of mutation detection and
limited replication, all mutant cells are eliminated and the tissue is healthy. However, the tissue
has aged. Many cells exhaust their telomeres and die (Figure 6b). Other cells, having fewer
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opportunities for mitosis, have ample remaining replicative potential and quickly replace the dying
cells. However, the increased cell turnover requires more opportunities for mutation. The muta-
tion rate per DNA replication remains the same, yet the mutation rate for the tissue as a whole
increases sharply.

At £ = 13563, a cell acquires the Zmitless replication mutation (Figure 6b). It is not the first cell with
this mutation, but this time the cell is near the edge of the tissue, where telomere shortening is
an important factor. The new cell line grows rapidly until # = 14313, when a cell from this line
acquires the dgnore growth inhibit mutation. Although this mutation alone was previously unsuccessful
(Figure 6a), the combination of ignore growth inbibit and limitless replication quickly spreads throughout
the tissue.

At time # = 15441, a cell near the tissue boundary obtains the cause angiogenesis mutation. Because
nutrients are inadequate near this cell, it sends a signal prompting the growth of a new blood vessel.
The increased nutrients allow the cause angiogenesis cell line to grow beyond the previous extent of
the tissue. However, other cell lines benefit equally from the new supply of nutrients, and almost
immediately begin to compete for the new habitable region (Figure 6c). At # = 15571, the last
remaining angiogenic cell is supplanted by another mutant (but non-angiogenic) cell. Tumorigenesis
is suspended because no new vasculature can be formed. Here, the precancerous cells’ lack of
coordination postpones the onset of cancer.

At = 16377 a cell obtains the evade apoptosis mutation (Figure 6d). Avoiding DNA damage
detection benefits this cell line greatly because it already has three other mutations. This line lacks
only two of the mutations modeled in CancerSim: cause angiogenesis and genetic instability (which is
now unnecessary because the cell already has all the selective mutations). By # = 1900, the cells
are limited by lack of nutrient. A sharp increase in the only remaining angiogenic cell line allows
the dominant cell line to escape the boundaries of healthy tissue, bringing an end to the simulation
at = 21526.

5 Discussion

5.1 Pathways to Cancer

Hanahan and Weinberg propose that cancer arises through various pathways by sequencing the
mutations at the phenotypic level. However, CancerSim’s pathways to cancer are quite different
from those presented in that article (compare Figure 4a and b). Hanahan and Weinberg place
insensitivity to anti-growth signals near the beginning of each pathway, and limitless replication to-
wards the end. In CancerSim, just the opposite is true. There are several possible explanations for
this discrepancy.

First, it could be that CancerSim models the phenotypes incorrectly or insufficiently. Cancer is not
fully understood, so implementing a model requires many generalizations, interpretations, and best
guesses. We have greatly simplified both cell and vascular dynamics, both for computational effi-
ciency and for conceptual clarity. There may be more efficacious ways of modeling the hallmarks that
would change our experimental results.

Second, our choice of parameters could have been biologically unrealistic and affected the out-
come of the simulations. For instance, /mitless replication might have been overly favored because the
telomere length specified for the cells was too short. A simulation as powerful as CancerSim can
produce a wide variety of outcomes simply through changing key parameters. Although we per-
formed sensitivity studies in order to choose parameter values for the experiments, an important
area of future work is to perform more detailed explorations of parameter space and to reconcile our
parameter choices more directly to the biological literature. It is difficult to choose model parameters
correctly. The real-world values of many parameters are unknown, and some parameters cannot be
modeled accurately, due to computational constraints—for example, the number of cells in an organ
or human body. This constraint caused us to alter other parameters to compensate. For example,
we wanted a realistic amount of mutation in our tissue even though we were modeling a relatively
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small number of cells. Although we chose parameter values that we felt were biologically appropriate,
an important area of future investigation is to determine the parameter choices more carefully. It
is important to note that the simulation’s parameter values are not always directly comparable to
the biological realm. For example, mutation rates in CancerSim should not correlate directly with
genetic mutation rates, because they measure the propensity for phenotypic change, a measure that
aggregates many mutational changes in a nontrivial way.

A third possibility is that the pathways suggested by Hanahan and Weinberg are incorrect or
insufficient, for example, reflecting gaps or errors in our understanding of the processes of cancer. It
is possible that the six hallmark phenotypes are not enough to characterize cancer completely and
that new hallmarks will be identified in the future. It is striking that both CancerSim and a similar
ODE model (discussed below) found different pathways from Hanahan and Weinberg, suggesting
that the discrepancy does not arise from trivial implementation or modeling details.

5.2 Modeling the Hallmarks Using Ordinary Differential Equations

Another approach to studying the dynamical interactions of cancer is based on differential equations,
as in [27, 20, 22]. Similar to the work reported here, Spencer et al. [22] use a differential equation
model to study the hallmarks proposed by Hanahan and Weinberg, Their model resembles
CancerSim in several ways. Like CancerSim, the ODE model represents phenotypic properties of
cells and describes how they change over time. However, it groups some mutations into a single
category. In particular, self-sufficiency in growth signals and insensitivity to anti-growth signals are
grouped into a single increased replicative rafe mutation (R in their notation). Likewise, evasion of
apoptosis and limitless replication are modeled as a single smortality mutation (D in their notation).
Further, the ODE model of immortality is slightly different from CancerSim. In CancerSim, cells
with the Jwmitless replication or the evade apoptosis mutation can still die from random apoptosis. Simi-
latly to CancerSim, metastasis is modeled as the final mutation after the other four mutations have
occurred.

The ODE model consists of seven differential equations that model a heterogeneous population
of cells undergoing the multi-step progression to cancer. Each equation describes how the size of
one cell population (e.g., the population of cells containing the genetic instability and sustained angiogenesis
mutations) changes over time. The model was used to explore certain questions about the hallmarks,
including the kinetics of various paths to cancer, the effect of inherited mutations on cancer
development (i.e., the effect of all cells in a tissue inheriting a hallmark), and a sensitivity analysis of
variations in the parameters. They found the sequence DRAG (immortality, increased replicative
rate, angiogenesis, and genetic instability) to be the pathway with the shortest expected time to
cancer. This is a similar result to that found by CancerSim in that both models find that cell death
drives the progtression to cancer rather than genetic instability. As we mentioned above, this result
merits further exploration.

There are some limitations of the ODE model, some of which are addressed by CancerSim. In
the ODE approach, it is difficult to represent how cells spread through space, which is important,
especially for understanding metastasis, while space is an integral part of the CancerSim model.
Likewise, it is impossible to follow the fate of a single cell using the ODE approach—the actual
mutational pathways are more easily studied in CancerSim. And an ODE model such as this cannot
reveal in detail the interesting interactions and competitions among phenotypically heterogeneous
populations of cells. An important area of future research is to compare the two models more closely
and compatre the results they produce. To do this will require careful calibration of the various
parameter values and assumptions.

5.3 Model Extensions

Since Hanahan and Weinberg’s article was published in 2000, research in cancer has continued to
progress. Several recent developments are relevant to the CancerSim model. Importantly, it appears
that while virtually all cancers exhibit tumor cell heterogeneity, there may exist in each tumor a small
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clonal population of tumor stem cells [1]. These stem cells, representing approximately 1%—5% of
the tumor mass, have the ability to recreate the tumor cell heterogeneity of the original tumor mass if
passaged into an immunocompromised animal. It is postulated that these cells are the ones that must
be destroyed by therapy to truly eradicate a cancer and may be the basis of the inability to cure many
advanced cancers. As more is learned about stem cells, it may be that CancerSim will need to model
this population of cells.

In addition, each of the characteristics of cancer cells outlined by Hanahan and Weinberg can be
broken into subcharacteristics or substeps. For example, the process of invasion and metastasis can
be broken down into the cell phenotypes necessary for cell invasion, cell survival in the circulation as
it travels to distant sites, cell movement into the new tissue, and cell growth in the new
microenvironment of the target organ [12]. The current version of CancerSim does not model
invasion and metastasis. More sophisticated versions could be developed that model these crucial
steps in cancer development.

5.4 Future Directions
In nature, normal tissue growth rates fall off as the size of the tissue increases, a feature that is
lacking in CancerSim and often modeled using the Gompertz equation [17]:

V(#) = Vel =), (1)

where 17(#) is the volume at time % and o and B are growth parameters.
Growth curves are also well approximated by a power law [28]:
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where  is the mass of the tissue or organism at time % M is the asymptotic size, and « is a growth
parameter related to the metabolic rate, cell size, and energy to create a cell.

It is believed that these growth curves result from constraints on how cells can acquire nutrients
and oxygen from vasculature [3]. In CancerSim, the rules for vascular recruitment and growth result
in stable growth rates over time—the tissue continues growing until it reaches the artificial
boundaries of the simulation. More realistic growth dynamics could be achieved by reprogramming
the rules for vascular growth to more closely mimic what is observed in nature. For example,
CancerSim does not distinguish between veins and capillaries, and it does not respect what is known
about how the lengths of each link in the network increase through time. These are not trivial
additions, however, because it is not known exactly which mechanistic rules produce the globally
observed growth curves.

From an artificial life perspective, the hallmarks correspond to properties that must have been
acquired through evolution in order to support multicellularity. Traits like “listening to your
neighbors” and “suicide in response to genetic damage™ are clearly crucial for multicellular systems.
Although there have been some limited successes in developing artificial life models that can evolve
and sustain multicellularity, true multicellular artificial life systems have been difficult to implement.
It would be interesting to take the hallmarks (actually the inverse of each hallmark) as a set of
hypotheses about what properties are necessary to support multicellularity and to test the hypotheses
in an artificial life simulation such as Echo or Avida. An important component of such a study would
be identifying what properties an environment must have in order for the hallmarks to be relevant.
Finally, we can imagine studying the hallmarks in wider settings. For example, trying to identify
natural analogues to the hallmarks in social systems.

632 Artificial Life Volume 12, Number 4



R. G. Abbott, S. Forrest, and K. J. Pienta Simulating the Hallmarks of Cancer
6 Conclusions

In conclusion, CancerSim is a model of Hanahan and Weinberg’s proposed hallmarks of cancer,
which allows us to study the dynamics and interactions of the hallmarks. Models such as CancerSim
are relevant to the study of cancer and possible therapies, and they are interesting examples of
artificial life phenomena.

Understanding the pathways to cancer and, more broadly, the cellular interactions of tumorigen-
esis might lead to earlier detection and new strategies to effectively combat cancer. Although the
CancerSim model is still in a preliminary stage, the experiments reported in this article point to several
interesting phenomena. First is the discrepancy between Hanahan and Weinberg’s results and those
obtained both with CancerSim and the ODE model reported by Spencer et al. A second interesting
phenomenon was illustrated by the role the cause angiogenesis mutation played in our simulations. Can-
cer is impossible without angiogenesis, yet cause angiogenesis is often not in the dominant phenotype
at the end of the simulation. This is because the beneficial effects of angiogenesis are shared with
other, non-angiogenic cells. Although this may not be completely realistic, it raises the question of
why not all cells are cancerous, reproducing whenever possible without regard to the welfare of other
cells and the organism as a whole [4]. A third phenomenon is illustrated by the role of the Zmitless
replication mutation, which appears early in many of our runs because cells that have acquired
mutations turn over quickly. This points to a dilemma in cancer treatment. On one hand, the can-
cerous cells must be killed; on the other hand, trying to kill them may simply cull the weaker or less
adaptable cell lines, leaving more space and nutrients for the elites that remain [15]. This underscores
the importance of carefully targeting appropriate cells in therapy. Tools such as CancerSim have the
potential to help study the likely consequences of various targeting strategies.

From an artificial life perspective, the hallmarks provide an interesting set of hypotheses about the
requirements for successful multi-agent behavior, whether at the cellular level (as we have studied in
this article) or perhaps at higher levels of organization, such as social systems. CancerSim generates a
wide range of interesting phenomena, in large part because the ecological and evolutionary dynamics
of the model play out on similar time scales. Social systems also have the property that learning at the
individual level can occur at similar time scales to those on which cultural dynamics occur. As
mentioned earlier, it would be interesting to consider whether or not there are natural analogues to
the hallmarks in social systems. And it would be interesting to characterize the properties that an
environment must have in order for the hallmarks to be effective.
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(c) Cause angiogenesis conveys only a short term selective
advantage because the new vasculature is exploited by all
cells. Angiogenic cell generation (at most 10 cells in this
example)

corresponds to a much larger increase (2414 cells) in the
dominant cell line.

(d) The simulation ends when a highly mutant cell line
escapes the tissue’s natural bounds and fills the
computational grid.

Figure 5: Snapshots of cell populations at several times during an example run.





