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Natural systems from snowflakes to mollusc shells show a great diversity of complex patterns. The
origins of such complexity can be investigated through mathematical models termed *cellular automata’.
Cellular automata consist of many identical components, each simple, but together capable of complex
behaviour. They are analysed both as discrete dynamical systems, and as information-processing
systems. Here some of their universal features are discussed, and some general principles are suggested.

IT is common in nature to find systems whose overall behaviour
is extremely complex, yet whose fundamental component parts
are each very simple. The complexity is generated by the cooper-
ative effect of many simple identical components. Much has
been discovered about the nature of the components in physical
and biological systems; little is known about the mechanisms
by which these components act together to give the overall
complexity observed. What is now needed is a general math-
ematical theory to describe the nature and generation of com-
plexity.

Cellular automata are examples of mathematical systems con-
structed from many identical components, each simple, but
together capable of complex behaviour. From their analysis,
one may, on the one hand, develop specific models for particular
systems, and, on the other hand, hope to abstract general
principles applicable to a wide variety of complex systems.
Some recent results on cellular automata will now be out-
lined; more extensive accounts and references may be found in
refs 1-4.

Cellular automata

A one-dimensional cellular automaton consists of a line of sites,
with each site carrying a value O or 1 (orin general 0,..., k—1).
The value a; of the site at each position i is updated in discrete
time steps according to an identical deterministic rule depending
on a neighbourhood of sites around it:
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Even with k=2 and r=1 or 2, the overall behaviour of cellular
automata constructed in this simple way can be extremely
complex.

Consider first the patterns generated by cellular automata
evolving from simple ‘seeds’ consisting of a few non-zero sites.
Some local rules ¢ give rise to simple behaviour; others produce
complicated patterns. An extensive empirical study suggests that
the patterns take on four qualitative forms, illustrated in Fig. 1:

Fig. 1

(1) disappears with time;

(2) evolves to a fixed finite size;

(3) grows indefinitely at a fixed speed;

(4) grows and contracts-irregularly.

Patterns of type 3 are often found to be self-similar or scale
invariant. Parts of such patterns, when magnified, are indistin-
guishable from the whole. The patterns are characterized by a
fractal dimension®; the value log, 3= 1.59 is the most common.
Many of the self-similar patterns seen in natural systems may,
in fact, be generated by cellular automaton evolution.

Figure 3 shows the evolution of cellular automata from initial
states where each site is assigned each of its k possible values
with an independent equal probability. Self-organization is seen:
ordered structure is generated from these disordered initial
states, and in some cases considerable complexity is evident.

Different initial states with a particular cellular automaton
rule yield patterns that differ in detail, but are similar in form
and statistical properties. Different cellular automaton rules
yield very different patterns. An empirical study, nevertheless,
suggests that four qualitative classes may be identified, yielding
four characteristic limiting forms:

(1) spatially homogeneous state;

(2) sequence of simple stable or periodic structures;

(3) chaotic aperiodic behaviour;

(4) complicated localized structures, some propagating.

All cellular automata within each class, regardless of the
details of their construction and evolution rules, exhibit qualita-
tively similar behaviour. Such universality should make general
results on these classes applicable to a wide variety of systems
modelled by cellular automata.

Applications

Current mathematical models of natural systems are usually
based on differential equations which describe the smooth vari-
ation of one parameter as a function of a few others. Cellular
automata provide alternative and in some respects complemen-
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Classes of patterns generated by the evolution of cellular automata from simple ‘seeds’. Successive rows correspond to successive

time steps in the cellular automaton evolution. Each site is updated at each time step according to equation (1) by cellular automaton rules

that depend on the values of a neighbourhood of sites at the previous time step. Sites with values 0 and | are represented by white and black

squares, respectively. Despite the simplicity of their construction, patterns of some complexity are seen to be generated. The rules shown

exemplify the four classes of behaviour found. (The first three are k=2, r=1 rules with rule numbers' 128, 4 and 126, respectively; the fourth
is a k=2, r=2 rule with totalistic code® 52.) In the third case, a self similar pattern is formed.
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Fig. 2 Evolution of small initial perturbations in cellular automata, as shown by the difference (modulo two) between patterns generated

from two disordered initial states differing in the value of a single site. The examples shown illustrate the four classes of behaviour found.

[nl‘ormat:on on changes in the initial state almost always propagates only a finite distance in the first two classes, but may propagate an
arbitrary distance in the third and fourth classes.

tary models, describing the discrete evolution of many (iden-
tical) components. Models based on cellular automata are typi-
cally most appropriate in highly nonlinear regimes of physical
systems, and in chemical and biological systems where discrete
thresholds occur. Cellular automata are particularly suitable as
models when growth inhibition effects are important.

As one example, cellular automata provide global models for
the growth of dendritic crystals (such as snowflakes)®. Starting
from a simple seed, sites with values representing the solid phase
are aggregated according to a two-dimensional rule that
accounts for the inhibition of growth near newly-aggregated
sites, resulting in a fractal pattern of growth. Nonlinear chemical
reaction—diffusion systems give another example™®: a simple
cellular automaton rule with growth inhibition captures the
essential features of the usual partial differential equations, and
reproduces the spatial patterns seen. Turbulent fluids may also
potentially be modelled as cellular automata with local interac-
tions between discrete vortices on lattice sites.

If probabilistic noise is added to the time evolution rule (1),
then cellular automata may be identified as generalized Ising
models™'’. Phase transitions may occur if ¢ retains some deter-
ministic components, or in more than one dimension.

Cellular automata may serve as suitable models for a wide
variety of biological systems. In particular, they may suggest
mechanisms for biological pattern formation. For example, the
patterns of pigmentation found on many mollusc shells bear a
striking resemblance to patterns generated by class 2 and 3
cellular automata (see refs 11,12), and cellular automaton
models for the growth of some pigmentation patterns have been
constructed .

Mathematical approaches

Rather than describing specific applications of cellular
automata, this article concentrates on general mathematical
features of their behaviour. Two complementary approaches
provide characterizations of the four classes of behaviour seen
in Fig. 3.

In the first approach?, cellular automata are viewed as discrete
dynamical systems (see ref. 14), or discrete idealizations of
partial differential equations. The set of possible (infinite) con-
figurations of a cellular automaton forms a Cantor set; cellular
automaton evolution may be viewed as a continuous mapping
on this Cantor set. Quantities such as entropies, dimensions and
Lyapunov exponents may then be considered for cellular
automata.

In the second approach?®, cellular automata are instead con-
sidered as information-processing systems (see ref. 15), or
parallel-processing computers of simple construction. Informa-
tion represented by the initial configuration is processed by the
evolution of the cellular automaton. The results of this informa-
tion processing may then be characterized in terms of the types
of formal languages generated (Note that the mechanisms for
information processing in natural system appear to be much
closer to those in cellular automata than in conventional serial-
processing computers: cellular automata may, therefore, provide
efficient media for practical simulations of many natural
systems.)

Entropies and dimensions

Most cellular automaton rules have the important feature of
irreversibility: several different configurations may evolve to a
single configuration, and, with time, a contracting subset of all
possible configurations appears. Starting from all possible initial
configurations, the cellular automaton evolution may generate
only special ‘organized’ configurations, and ‘self-organization’
may occur.

For class 1 cellular automata, essentially all initial configur-
ations evolve to a single final configuration, analogous to a limit
point in a continuous dynamical system. Class 2 cellular
automata evolve to limit sets containing essentially only periodic
configurations, analogous to limit cycles. Class 3 cellular
automata yield chaotic aperiodic limit sets, containing analogues
of chaotic or ‘strange’ attractors.

Entropies and dimensions give a generalized measure of the
density of the configurations generated by cellular automaton
evolution. The (set) dimension or limiting (topological) entropy
for a set of cellular automaton configurations is defined as
(compare ref. 14)

i |
d™ = lim }logk N(X) (2)

X0

where N(X) gives the number of distinct sequences of X site
values that appear. For the set of possible initial configurations,
d® =1, Fora I1m1t set containing only a finite total number of
configurations, d*) = 0. For most class 3 cellular automata, d*
decreases with time, giving, 0<d” <1, and suggesting that a
fractal subset of all possible conﬁgurations occurs.

A dimension or limiting entropy d‘’ corresponding to the
time series of values of a single site may be defined in analogy
with equation (2). (The analogue of equation (2) for a sufficiently
wide patch of sites yields a topologically-invariant entropy for
the cellular automaton mapping.) d‘” =0 for periodic sets of
configurations.

d™ and d'” may be modified to account for the probabilities
of configurations by defining

dY =—lim L5 Z p; logy p; (3)
X-=x X

and its analogue, where p; are probabilities for possible length
X sequences. These measure dimensions may be used to
delineate the large time behaviour of the different classes of
cellular automata:

(1) d’=di’=0

(2) dP>0, di’=0

(3) di'>0, dP>0
As discussed below, dimensions are usually undefined for class
4 cellular automata.

Information propagation

Cellular automata may also be characterized by the stability or
predictability of their behaviour under small perturbations in
initial configurations. Figure 2 shows differences in patterns
generated by cellular automata resulting from a change in a
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Fig. 3 Evolution of various cellular automata from disordered initial states. In many cases, ordered structure is seen to be generated. The

first row of pictures show examples of the four qualitative classes of behaviour found. (The rules shown are the same as in Fig. 1.) The lower

two rows show examples of cellular automata with k=35 (five possible values for each site) and r= | (nearest neighbour rules). Site values 0

to 4 are represented by white, red, green, blue and yellow squares, respectively. (The rules shown have totalistic codes 10175, 566780, 570090,
580020, 583330, 672900, 5694390, 59123000.) The ‘orange’ discoloration is a background, not part of the pattern.

Fig. 4 Evolution of multiple phases in cellular automata. Pairs
of sites are shown combined: 00 is represented by white, 01 by
red, 10 by green and 11 by blue. Alternate time steps are shown.
Both rules simulate an additive rule (number 90) under a blocking
transformation. In the first rule (number 18), the simulation is
attractive: starting from a disordered initial state, the domains
grow with time. In the second rule (number 94), the simulation is
repulsive: only evolution from a special initial state yields additive
rule behaviour: a defect is seen to grow, and attractive simulation
of the identity rule takes over.

Fig. 5 Examples of the evolution of a typical class 4 cellular

automaton from disordered initial states. This and other class 4

cellular automata are conjectured to be capable of arbitrary infor-

mation processing, or universal computation. The rule shown has

k=3, r=1, and takes the value of a site to be | if the sum of the

values of the sites in its three-site neighbourhood is 2 or 6, to be 2
if the sum is 3, and to zero otherwise (totalistic code 792).

Fig. 6 Persistent structures generated in the evolution of the class

4 cellular automaton of Fig. 5. The first four structures shown

have periods 1, 20, 16 and 12 respectively; the last four structures

(and their reflections) propagate: the first has period 32, the next

three period 3, and the last period 6. These structures are some of
the elements required to support universal computation.
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Fig. 7 Evolution of some cellular automata with reverisble rules. Each configuration is a unique function of the two previous configurations.
(Rule numbers 4, 22, 90 and 126 are shown.) As initial conditions, each site in two successive configurations is chosen to have value 1 with
probability 0.1.

single initial site value. Such perturbations have characteristic
effects on the four classes of cellular automata:

(1) no change in final state;

(2) changes only in a finite region;

(3) changes over an ever-increasing region;

(4) irregular changes.

In class 1 and 2 cellular automata, information associated
with site values in the initial state propagates only a finite
distance; in class 3 cellular automata, it propagates an infinite
distance at a fixed speed, while in class 4 cellular automata, it
propagates irregularly, but over an infinite range. The speed of
information propagation is related to the Lyapunov exponent
for the cellular automaton evolution, and measures the degree
of sensitivity to initial conditions (see ref. 16). It leads to different
degrees of predictability for the outcome of cellular automaton
evolution:

(1) entirely predictable, independent of initial state;

(2) local behaviour predictable from local initial state;

(3) behaviour depends on an ever-increasing initial region;

(4) behaviour effectively unpredictable.

Information propagation is particularly simple for the special
class of additive cellular automata (whose local rule function
¢ is linear modulo k), in which patterns generated from arbitrary
initial states may be obtained by superposition of patterns gener-
ated by evolution of simple initial states containing a single
non-zero site. A rather complete algebraic analysis of such
cellular automata may be given'’. Most cellular automata are
not additive; however, with special initial configurations it is
often possible for them to behave just like additive rules. Thus,
for example, the evolution of an initial configuration consisting
of a sequence of 00 and 01 digrams under one rule may be
identical to the evolution of the corresponding ‘blocked’ con-
figuration consisting of 0 and 1 under another rule. In this way,
one rule may simulate another under a blocking transformation
(analogous to a renormalization group transformation). Evo-
lution from an arbitrary initial state may be attracted to (or
repelled from) the special set of configurations for which such
a simulation occurs. Often several phases exist, corresponding
to different blocking transformations: sometimes phase boun-
daries move at constant speed, and one phase rapidly takes
over; in other cases, phase boundaries execute random walks,
annihilating in pairs, and leading to a slow increase in the
average domain size, as illustrated in Fig. 4. Many rules appear
to follow attractive simulation paths to additive rules, which
correspond to fixed points of blocking transformations, and thus
exhibit self similarity. The behaviour of many rules at large
times, and on large spatial scales, is therefore determined by
the behaviour of additive rules.

Thermodynamics

Decreases with time in the spatial entropies and dimensions of
equations (2) and (3) signal irreversibility in cellular automaton
evolution. Some cellular automaton rules are, however, revers-
ible, so that each and every configuration has a unique pre-
decessor in the evolution, and the spatial entropy and dimension
of equations (2) and (3) remain constant with time. Figure 7
shows some examples of the evolution of such rules, constructed
by adding a term —a!'~" to equation (1) (ref. 20 and E. Fredkin,
personal communication). Again, there are analogues of the

four classes of behaviour seen in Fig. 3, distinguished by the
range and speed of information propagation.

Conventional thermodynamics gives a general description of
systems whose microscopic evolution is reversible; it may, there-
fore, be applied to reversible cellular automata such as those
of Fig. 4. As usual, the ‘fine-grained’ entropy for sets (ensembles)
of configurations, computed as in equation (3) with perfect
knowledge of each site value, remains constant in time. The
‘coarse-grained’ entropy for configurations is, nevertheless,
almost always non-decreasing with time, as required by the
second law of thermodynamics. Coarse graining emulates the
imprecision of practical measurements, and may be imple-
mented by applying almost any contractive mapping to the
configurations (a few iterations of an irreversible cellular
automaton rule suffice). For example, coarse-grained entropy
might be computed by applying equation (3) to every fifth site
value. In an ensemble with low coarse-grained entropy, the
values of every fifth site would be highly constrained, but
arbitrary values for the intervening sites would be allowed. Then
in the evolution of a class 3 or 4 cellular automaton the disorder
of the intervening site values would ‘mix’ with the fifth-site
values, and the coarse-grained entropy would tend towards its
maximum value. Signs of self-organization in such systems must
be sought in temporal correlations, often manifest in ‘fluctu-
ations’ or metastable ‘pockets’ of order.

While all fundamental physical laws appear to be reversible,
macroscopic systems often behave irreversibly, and are
appropriately described by irreversible laws. Thus, for example,
although the microscopic molecular dynamics of fluids is revers-
ible, the relevant macroscopic velocity field obeys the irreversible
Navier-Stokes equations. Conventional thermodynamics does
not apply to such intrinsically irreversible systems: new general
principles must be found. Thus, for cellular automata with
irreversible evolution rules, coarse-grained entropy typically
increases for a short time, but then decreases to follow the
fine-grained entropy. Measures of the structure generated by
self-organization in the large time limit are usually affected very
little by coarse graining.

Formal language theory

Quantities such as entropy and dimension, suggested by infor-
mation theory, give only rough characterizations of cellular
automaton behaviour. Computation theory suggests more com-
plete descriptions of self-organization in cellular automata (and
other systems). Sets of cellular automaton configurations may
be viewed as formal languages, consisting of sequences of sym-
bols (site values) forming words according to definite gram-
matical rules.

The set of all possible initial configurations corresponds to a
trivial formal language. The set of configurations obtained after
any finite number of time steps are found to form a regular
Ianguage’. The words in a regular language correspond to the
possible paths through a finite graph representing a finite state
machine. It can be shown that a unique smallest finite graph
reproduces any given regular language (see ref. 15). Examples
of such graphs are shown in Fig. 8. These graphs give complete
specifications for sets of cellular automaton configurations
(ignoring probabilities). The number of nodes E in the smallest
graph corresponding to a particular set of configurations may
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Fig. 8 Graphs representing the sets of configurations generated in the first few time steps of evolution according to a typical class 3 cellular

automaton rule (k=2, r=1, rule number 126). Possible configurations correspond to possible paths through the graphs, beginning at the

encircled node. At t=0, all possible configurations are allowed. With time, a contracting subset of configurations are generated. (After one

time step, for example, no configuration containing the sequence of site value 101 can appear.) At each time step, the complete set of possible

configurations forms a regular formal language: the graph gives a minimal complete specification of it. The number of nodes in the graph

gives a measure of the complexity = of the set, viewed as a regular language. As for other class 3 cellular automata, the complexity of the
sets grows rapidly with time; for =3, =107, and r=4, E=2867.

be defined as the ‘regular language complexity’ of the set. It
specifies the size of the minimal description of the set in terms
of regular languages. Larger = correspond to more complicated
sets. (Note that the topological entropy of a set is given by the
logarithm of the algebraic integer obtained as the largest root
of the characteristic polynomial for the incidence matrix of the
corresponding graph. The characteristic polynomials for the
graphs in Fig. 7 are 2= A (Amax=2), 1 A +2A2= 2% (A=
1.755) and —1+A —A2+2A°—4A* +A° 4325517 +3A%-32" +
SATO—6AT +4A 12— 212 (A = 1.732), respectively.)

The regular language complexity = for sets generated by
cellular automaton evolution almost always seems to be non-
decreasing with time. Increasing = signals increasing self-
organization. = may thus represent a fundamental property of
self-organizing systems, complementary to entropy. It may, in
principle, be extracted from experimental data.

Cellular automata that exhibit only class | and 2 behaviour
always appear to yields sets that correspond to regular languages
in the large time limit. Class 3 and 4 behaviour typically gives
rise, however, to a rapid increase of = with time, presumably
leading to limiting sets not described by regular languages.

Formal languages are recognized or generated by idealized
computers with a ‘central processing unit’ containing a fixed
finite number of internal states, together with a ‘memory’. Four
types of formal languages are conventionally identified, corre-
sponding to four types of computer:

® Regular languages: no memory required.

@ Context-free languages: memory arranged as a last-in, first-
out stack.

® Context-sensitive languages: memory as large as input word
required.

® Unrestricted languages: arbitrarily large memory required
(general Turing machine).

Examples are known of cellular automata whose limiting sets
correspond to all four types of language (L. Hurd, in prepar-
ation). Arguments can be given that the limit sets for class 3
cellular automata typically form context-sensitive languages,
while those for class 4 cellular automata correspond to unrestric-
ted languages. (Note that while a minimal specification for any
regular language may always be found, there is no finite pro-
cedure to obtain a minimal form for more complicated formal
languages: no generalization of the regular language complexity
= may thus be given.)

Computation theory

While dynamical systems theory concepts suffice to define class
1, 2 and 3 cellular automata, computation theory is apparently
required for class 4 cellular automata. Examples of the evolution
of a typical class 4 cellular automaton are shown in Fig. 5.
Varied and complicated behaviour, involving many different
time scales is evident. Persistent structures are often generated;
the smallest few are illustrated in Fig. 6, and are seen to allow
both storage and transmission of information. It seems that the
structures supported by this and other class 4 cellular automata
rule may be combined to implement arbitrary information pro-
cessing operations. Class 4 cellular automata would then be
capable of universal computation: with particular initial states,
their evolution could implement any finite algorithm. (Universal
computation has been proved for a k=18, r=1 rule®?, and for
two-dimensional cellular automata such as the ‘Game of
Life'*?*.) A few per cent of cellular automaton rules with k> 2
or r>1 are found to exhibit class 4 behaviour: all these would
then, in fact, be capable of arbitrarily complicated behaviour.
This capability precludes a smooth infinite size limit for entropy
or other quantities: as the size of cellular automaton considered
increases, more and more complicated phenomena may appear.

Cellular automaton evolution may be viewed as a computa-
tion. Effective preidiction of the outcome of cellular automaton
evolution requires a short-cut that allows a more efficient compu-
tation than the evolution itself. For class 1 and 2 cellular
automata, such short cuts are clearly possible: simple computa-
tions suffice to predict their complete future. The computational
capabilities of class 3 and 4 cellular automata may, however,
be sufficiently great that, in general, they allow no short-cuts.
The only effective way to determine their evolution from a given
initial state would then be by explicit observation or simulation:
no finite formulae for their general behaviour could be given.
(If class 4 cellular automata are indeed capable of universal
computation, then the variety of their possible behaviour would
preclude general prediction, and make explicit observation or
simulation necessary.) Their infinite time limiting behaviour
could then not, in general, be determined by any finite computa-
tional process, and many of their limiting properties would be
formally undecidable. Thus, for example, the ‘halting problem’
of determining whether a class 4 cellular automaton with a given
finite initial configuration ever evolves to the null configuration
would be undecidable. An explicit simulation could determine
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only whether halting occurred before some fixed time, and not
whether it occurred after an arbitrarily long time.

For class 4 cellular automata, the outcome of evolution from
almost all initial configurations can probably be determined
only by explicit simulation, while for class 3 cellular automata
this is the case for only a small fraction of initial states. Neverthe-
less, this possibility suggests that the occurrence of particular
site value sequences in the infinite time limit is in general
undecidable. The large time limit of the entropy for class 3 and
4 cellular automata would then, in general, be non-computable:
bounds on it could be given, but there could be no finite
procedure to compute it to arbitrary precision. (This would be
the case if the limit sets for class 3 and 4 cellular automata
formed at least context-sensitive languages.)

While the occurrence of a particular length n site value
sequence in the infinite time limit may be undecidable, its
occurrence after any finite time f can, in principle, be determined
by considering all length n, = n +2rt initial sequences that could
evolve to it. For increasing n or ¢ this procedure would, neverthe-
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less, involve exponentially-growing computational resources, so
that it would rapidly become computationally intractable. It
seems likely that the identification of possible sequences gener-
ated by class 3 and 4 cellular automata is, in general, an NP-
complete problem (see ref. 15). It can, therefore, presumably
not be solved in any time polynomial in n or t, and essentially
requires explicit simulation of all possibilities.

Undecidability and intractability are common in problems of
mathematics and computation. They may well afflict all but the
simplest cellular automata. One may speculate that they are
widespread in natural systems, perhaps occurring almost
whenever nonlinearity is present. No simple formulae for the
behaviour of many natural systems could then be given; the
consequences of their evolution could be found effectively only
by direct simulation or observation.
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