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ABSTRACT

Recent work on novelty and behavioral diversity in evolutionary
computation has highlighted the potential disadvantage of driving
search purely through objective means. This paper suggests that
leveraging human insight during search can complement such nov-
elty-driven approaches. In particular, a new approach called novelty-
assisted interactive evolutionary computation (NA-IEC) combines
human intuition with novelty search to facilitate the serendipitous
discovery of agent behaviors in a deceptive maze. In this approach,
the human user directs evolution by selecting what is interesting
from the on-screen population of behaviors. However, unlike in
typical IEC, the user can now request that the next generation be
filled with novel descendants. The experimental results demon-
strate that combining human insight with novelty search not only
finds solutions significantly faster and at lower genomic complex-
ities than fully-automated processes guided purely by fitness or
novelty, but it also finds solutions faster than the traditional IEC
approach. Such results add to the evidence that combining human
users and automated processes creates a synergistic effect in the
search for solutions.

Categories and Subject Descriptors:
1.2.6 [Artificial Intelligence]: Learning

General Terms: Algorithms

Keywords: Evolutionary computation, interactive evolutionary com-

putation, human-led search, fitness, deception, non-objective search,
novelty search, stepping stones, serendipitous discovery

1. INTRODUCTION

Several results in recent years have hinted at the limitations of
traditional objective functions, wherein the more a candidate re-
sembles the objective, the higher its fitness. An early hint that
such an approach to fitness may be flawed was from experiments
with the novelty search algorithm [13], which rewards novel be-
haviors instead of rewarding objective performance. Interestingly,
novelty search significantly outperformed objective-based fitness
in a deceptive maze-navigation domain [13, 16], showing counter-
intuitively that in some deceptive cases it is possible that having no
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specific objective may work better than rewarding progress toward
the objective. Other results with novelty search in recent years have
echoed this outcome [10, 17, 20].

At the same time, interactive evolutionary computation (IEC)
[32], wherein humans guide evolution through interactive breed-
ing, has also shown promise at finding needles in the haystack of
possibilities. For example, Woolley and Stanley [35] found that im-
ages evolved by human users on the Picbreeder online service [26]
could not be re-evolved by the very same evolutionary algorithm
when they are made the automated objective, suggesting that hu-
mans are uniquely adept at identifying promising stepping stones.

Yet both novelty search and IEC face their own challenges. Work
with novelty search has shown that it may become lost in especially
large spaces [12, 15], and Takagi [32] warns that IEC is limited by
human fatigue. However, interestingly, the advantages of both ap-
proaches can potentially address each other’s disadvantages. That
is, the main insight in this paper is that the ability of humans to
identify promising stepping stones is naturally complemented by
the ability of novelty search to generate candidate sets of potential
stepping stones. In other words, novelty search can mitigate the
main weakness of IEC (i.e. that humans grow tired quickly [32])
by offloading most of the exploratory work, while IEC can mitigate
the tendency of novelty search to get lost in vast behavior spaces.

In this paper, a hybrid approach, called novelty-assisted inter-
active evolutionary computation (NA-IEC), is compared via the
evolution of neurocontrollers for robots in the deceptive mazes of
Lehman and Stanley [16] to pure novelty search, objective-based
search, and a human-led search without the novelty assistance. In-
terestingly, while novelty search was previously shown significantly
more effective than objective-based search in this domain [16], NA-
IEC outperforms novelty search by a multiple of three to four times,
yielding by far the fastest solution on these deceptive problems.
This work is complementary to recent results from Bongard and
Hornby [1] and Hornby and Bongard [11] that showed that humans
and more conventional objective-driven search can work together
synergistically to solve practical control problems rather than just
to explore creative domains. This paper builds on this idea by
showing that novelty also has an important role to play in such a
human-machine collaboration, in part to push the human out of his
or her comfort zone to explore new ideas.

2. BACKGROUND

This section reviews deception in EC and the non-objective meth-
ods that are the basis for the approach introduced in this paper.

2.1 Deceptive Task Domains

The key question in research on deception is what causes evo-
lutionary algorithms (EAs) to fail and how to mitigate such fail-
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Figure 1: Maze Navigation Maps (Lehman and Stanley [13, 16]). The
deceptive maze domain is a metaphor for search and is not a path-planning
problem. Rather, the aim is to evolve a neural network that drives a robot
through the maze. The walls represent barriers to search and the cul-de-sacs
represent local-optima that can deceive objective-based search.
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Figure 2: Maze Navigation Robot (Lehman and Stanley [13, 16]). The
sensor package (a) includes six rangefinders that detect walls and four pie-
slice sensors that signal the general direction to the objective. The navi-
gation behavior, encoded as an ANN (b), maps sensor inputs to actions,
i.e. turn rate (left/right) and velocity (forward/backward). Under this con-
struction, navigators cannot see the whole maze and must evolve a control
policy that traverses the maze based on sensory input.

ures [8, 34]. For the purpose of this work, we are interested in the
case in which pursuing what appears to be a reasonable objective
produces an unreasonable objective function. In this context, an
intuitive definition of deception, as stated by Lehman and Stanley
[16], is: “A deceptive objective function will deceive search by ac-
tively pointing the wrong way.” That is, the fitness function can
point the wrong way because not only must it reward the objective,
but it must also reward the intermediate solutions (i.e. the stepping
stones) that lead to the objective. Often these stepping stones do not
improve performance on the objective function (and may even de-
crease it), causing search algorithms to forsake the most promising
candidates.

A good example of a deceptive domain, which is also the exper-
imental domain in this paper, is the deceptive maze domain intro-
duced by Lehman and Stanley [13, 16], in which a simulated robot
must navigate through a maze with deceptive cul-de-sacs (figure 1).
The maze-navigation agents that act within the maze have a sensor
package with six rangefinders that detect the walls and four pie-
slice sensors that signal the direction to the goal (figure 2a). Each
robot’s navigation behavior, encoded as an artificial neural network
(ANN), maps sensor inputs to actions, i.e. turn rate (left/right) and
velocity (forward/backward), as shown in figure 2b. Under this
construction, navigators must evolve a control policy that traverses
the maze based on sensory input.

The medium (293 x 134 units) and hard (195 x 202 units) maps
in figure 1 are deceptive by design because the maps contain cul-
de-sacs that represent local optima in the search space. If fitness
is assigned based on reducing the distance to the goal, then the
objective function prunes out of the search the deceptive interme-
diate solutions (i.e. those that move away from the goal location)
needed to reach the global objective. While an alternative objective
function that rewards specific intermediate solutions is conceivable

(and in fact will be explored later in this paper as well), the original
point of this domain was to explore the effect of objective fitness
when the precise stepping stones are not known, which is the typi-
cal predicament in most domains. In such cases, as in the standard
objective function here, performance is generally rewarded for its
proximity to the target behavior. Thus evolution driven by proxim-
ity to the goal often converges to a cul-de-sac from which the goal
is inaccessible.

Despite extensive research, deception remains a significant prob-
lem in the field of EC [9, 18, 22]. The problem is that evolutionary
algorithms (EAs) ultimately respond to the selection pressures cre-
ated by the fitness function, which is often misleading. The chal-
lenge is to determine how to reward the intermediate steps that are
required to reach the goal. In effect, what appears to be a reasonable
heuristic may actually prevent the objective from being reached.
Therefore, any similarity metric that guides the search toward an
a priori objective is potentially a false compass to the optimal so-
lution [28]. In this spirit, Lehman and Stanley [13, 16] introduced
the idea of abandoning objectives as a search heuristic in decep-
tive domains, electing instead to reward individuals only for novel
behaviors, as described next.

2.2 Novelty Search

Because pursuing objectives can be deceptive, Lehman and Stan-
ley [13, 16] proposed that searching without regard to the objective,
i.e. searching only for novel behavior, can be more effective at dis-
covering solutions in some deceptive domains than rewarding ob-
jective performance.

Novelty search works with EAs by replacing the fitness func-
tion with a novelty metric. The novelty metric is a measure of the
uniqueness of an individual’s behavior at a given task. Instead of
rewarding performance, novelty search rewards individuals in the
population for finding new ways to complete the evaluation task,
thus creating a constant pressure to do something new [16].

Because novelty search operates in behavior space, it is impor-
tant first to characterize the space of unique behaviors in a way
that is meaningful to the domain. The novelty search algorithm
then computes the sparseness in the behavior space as the average
distance to the k-nearest neighbors [2] around that behavior. The
sparseness p of behavior x is given by

1 k
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where y; is the ith-nearest neighbor of x with respect to the distance
function dist(x, u). In this way, if the average distance is large, then
the candidate solution is considered to be in a sparse area of the be-
havior space, thus making it more likely to be selected by the EA.
Optionally, as in coevolution [4], an archive of past behaviors may
serve to avoid backtracking through the behavior space. If the nov-
elty metric is sufficiently high for a new individual (i.e. above some
minimal threshold pn;,), then the individual may be recorded in the
permanent archive to provide a comprehensive sample of where the
search has been, thereby increasing the pressure to discover new
ways of behaving in the domain [13, 16].

Characterizing behaviors so that they can be compared is the
most challenging aspect of novelty search. For the deceptive maze
domain [13, 16] (figure 1), the behavior of a maze navigation robot
is usually defined as its final position. In this way, the novelty met-
ric rewards controllers that end at new locations in the maze. At
first, the collection of behaviors may include robots that do noth-
ing, get stuck in corners, run in circles, and so forth. However, at
some point, the collection of simple behaviors becomes saturated
and the pressure to do something new increases, i.e. evolution fa-
vors mutations that take the navigator to new places in the maze.



While the idea of selecting anything novel may sound poten-
tially similar to exhaustive search, searching in the space of behav-
iors is often tractable because many points in the space of possible
genomes collapse to a single behavior. Furthermore, when applied
in conjunction with complexifying algorithms like NEAT [13, 15]
and GP [14], simple behaviors become associated with minimal
representations, and only mutations that increase the size of the
genome and lead to novel behaviors are explored further. There-
fore, this approach, operating without regard to an objective, moves
into complex spaces in a meaningful way because new behaviors
are those that could not be expressed at lower levels of complexity,
i.e. complexity is rewarded when it is warranted.

However, experience has also shown that novelty search becomes
lost in unrestricted domains [15]. In such domains there is an op-
portunity to leverage human knowledge rather than exhaustively
exploring the space of all possible solutions. Thus the next section
provides relevant background on the field of human-led evolution.

2.3 Interactive Evolutionary Computation

In interactive evolutionary computation (IEC) the traditional obj-
ective-function is replaced by a user who performs selection [32].
IEC is effective in creative domains [25] where the term fitness is
subjective because what people experience as pleasing or interest-
ing is based on individual preferences.

Like traditional EAs, IEC systems also typically begin from a
random initial population that evolves over generations by select-
ing, mating and mutating members. However, IEC differs from
traditional automated EAs in that a human user is now responsible
for the evaluation and selection of promising candidate solutions.
While this difference typically leads to smaller population sizes and
higher mutation rates, the most profound implication is that evo-
lution is no longer bound to a rigid expression of what is fit and
unfit. While efforts have been applied to model human selection
criteria [11], the human evaluator’s breadth of experience makes it
likely that his or her selection criteria will change over the course
of evolution. Such an ability to make serendipitous discoveries,
i.e. to identify and pursue important artifacts as they emerge, is an
important motivation for the NA-IEC approach introduced in this
paper.

To interface with the human evaluator, the majority of IEC sys-
tems are modeled after the original Blind Watchmaker Biomorphs
application by Dawkins [3]. In this approach the user is presented
with a panel of individuals (e.g. 3 x4) from which the parents of the
next generation are selected. The IEC system then mates, recom-
bines, and mutates the genetic material of the parents to create the
next generation, which is then presented to the user. This process
is repeated at the user’s direction until the user is satisfied.

Despite the benefits of having a human in the loop, such IEC sys-
tems are limited by user fatigue. According to Takagi [32], typical
IEC only lasts 10-20 generations per session. The problem is that
the vast majority of significant discoveries exist beyond the reach
of a single-user session. One response, which has become known
as collaborative interactive evolution (CIE) [31]), is to leverage the
efforts of many users. That way, when one user fatigues, another
can take over and continue the chain. One particular example is
Picbreeder (http://picbreeder.org [26, 27]), where such CIE al-
lows long chains of users to branch from each other’s discoveries,
which indeed demonstrates that when the generational limits of a
single user are extended significantly, remarkable discoveries begin
to accumulate (figure 3).

However, chaining users is not the only way to augment the
power of a single user. An alternative approach is to combine a
human with a form of automated search, thereby amplifying the
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Figure 3: Images Evolved on Picbreeder (Secretan et al. [26]). These
images were interactively evolved by a community of human users. They
demonstrate the system’s ability to discover interesting and meaningful im-
ages, including such seminal images as the Skull and the Car—which were
evolved in 74 and 106 generations, respectively, by chains of users branch-
ing from each other.

human’s capabilities. While recent work by Bongard and Hornby
[1] and Hornby and Bongard [11] shows that evolution driven by an
objective can help to push search farther than the human alone, the
novel approach in this paper adds the option to run novelty search
into the mix. That way, users can request that the computer quickly
gather a set of unique stepping stones that the user can then assess
to decide which path is most promising, as explained next.

3. NA-IEC FRAMEWORK

The main idea in this section is to combine for the first time
the intuitive ability of human users to identify what is interesting
and important in a domain, i.e. interactive evolutionary computa-
tion (IEC), with a stepping stone generator based on a short-term
novelty search and an objective optimizer to create a synergistic
effect that expedites the evolution of controller solutions. Under
this new approach, called Novelty-Assisted Interactive Evolution-
ary Computation (NA-IEC), a human user is asked to select in-
dividuals from a population of candidate behaviors and then apply
one of three evolutionary operations: a traditional IEC step, a short-
term novelty search, or a fitness-based optimization.

In this way, the user can apply the evolutionary operations where
appropriate, even changing the mode of evolution during the course
of the search, to reach a satisfactory (or just interesting) solution.
The ability of a human user to apply powerful automated approaches
like objective-based search [5-8] and novelty search [13, 16] in
short bursts and when appropriate is a key contribution of the NA-
IEC approach. The primary hypothesis is that letting the user make
a relatively small number of critical selections during evolution,
and leaving the remainder of search to automated approaches seeded
by those user selections, can significantly augment the pace of evo-
lution and the quality of its discoveries.

Figure 4 shows the main interface for the system, where the
user can choose among the Step, Novelty, and Optimize operations.
Choosing the Step operation creates a new generation of offspring
through the recombination and mutation of the selected candidate
behaviors. This classic approach to IEC is simple and computation-
ally inexpensive, i.e. it only creates a handful of new candidates.

Choosing the Novelty operation causes evolution to explore the
space of agent behaviors without regard to an objective and then
present the human evaluator with a broad view of where the evolu-
tionary search can go from its current position. To accomplish this
aim, the next IEC population is generated by seeding a larger pop-
ulation with variations of the user-selected candidate behaviors and
then running novelty search in the background to find novel indi-
viduals (in comparison to what has been encountered previously in
the search) based on the sparseness measure p(x) from equation 1
and the threshold pni,. The underlying evolutionary algorithm is
NEAT [29, 30], which is often the base algorithm under novelty
search [13, 16]. Furthermore, to ensure that novelty is measured


http://picbreeder.org
http://picbreeder.org/search/showgenome.php?sid=576
http://picbreeder.org/search/showgenome.php?sid=3806
http://picbreeder.org/search/showgenome.php?sid=3952
http://picbreeder.org/search/showgenome.php?sid=4041
http://picbreeder.org/search/showgenome.php?sid=7506

Evolution Controls

X2\ @

QuITt BACK FORWARD  STEP NOVELTY  OPTIMIZE SAVE PUBLISH

Evolution Options

ovety | e |
Show/Hide Less Novel | 9 i i | More Novel

Novelty Archive Evaluation Threshold

Population (Evaluations: 1759)

-g
ENEN

Figure 4: Screenshot of the NA-IEC user interface. The user interface
for the NA-IEC framework consists of the Evolution Controls, the Evolu-
tion Options, and the Evaluation Population. Candidate solutions are rep-
resented by a gradient trail that shows the robot’s behavior in a particular
maze. Selected candidates are shown with a green border and solutions are
highlighted with a white background. Unlike traditional IEC applications,
the user can now select one of three evolution modes: Step, Novelty, and
Optimize. The Publish button saves the results of a completed run for later
analysis. Like Picbreeder, projects based on NA-IEC could additionally
leverage crowdsourcing by implemented them an online format. [21].

with respect to the entire search completed so far, all individuals en-
countered during both traditional IEC steps and interleaved novelty
searches throughout a session of NA-IEC are measured for their
novelty and entered into the permeant archive if their novelty score
is greater than the threshold ppin.

The novelty search runs until af least n new individuals are added
to the evaluation population (more than n such novel candidates
may be found when the novelty search is first started by generat-
ing an initial pool of candidates based on the user-selected choices
on the screen), where n is the size of an on-screen IEC popula-
tion. At that point, the collected novel individuals become the next
IEC generation and control is returned to the user. By convention,
the n novel individuals are sorted by their novelty score before the
NEAT-based speciation adjustment to place the most novel candi-
date behaviors on the first visible page of the on-screen IEC popu-
lation (figure 4). While the Novelty operation is significantly more
computationally expensive than the Step operation, it provides the
human user with a breadth of stepping stones that would have been
time-consuming or unlikely to discover on his or her own under the
narrow view of a traditional single IEC step, which only presents
the user with a handful of direct one-generation descendants. In
a sense, the set of stepping stones returned to the user by novelty
search is like the set of images evolved by other users from which a
visitor to Picbreeder can branch: In both cases, someone or some-
thing else has put in effort to collect a set of interesting jumping-off
points and present them to the user.

By augmenting the human-led interactive search with interleaved
novelty searches, a small population can be constructed that con-
tains a set of novel stepping stones around the currently-selected
candidates. In the event that evolution cannot fill the next genera-
tion with a sufficient number of new archive members in a reason-
able amount of time, or if the user cancels the operation, the search
will return the most novel individuals yet discovered.

This approach does not imply that the set of novel agent behav-
iors presented to the evaluator will be good at a potential task. What
is important is that they are behaviorally diverse; it is the human
evaluator who will direct the search by recognizing what is promis-
ing for a given domain. The goal is to promote innovation through
serendipitous discovery, and presenting the various directions that
the search can take leverages the human evaluator’s inherent ability
to recognize what is important or interesting in a particular domain.

Finally, because objective-based optimization is likely the best
option for perfecting well-formed behaviors already discovered,
the user is also given the option to request seeding a traditional
objective-based search with currently-selected individuals. The obj-
ective-based search will run until a specified solution criterion is
met or until the user requests it to terminate, at which point the
most fit individuals discovered so far will update the on-screen IEC
population. Providing this traditional option will allow users to op-
timize candidates that are near an objective attractor that the user
would prefer to approach automatically once it is within striking
distance (i.e. once the search is no longer deceptive and the pri-
mary discovery is already made).

In this multifaceted approach, the user is free to change the mode
of evolution between generations, thus allowing evolution to pro-
ceed in the capacity best suited for the current context. In this
way, the human user may begin NA-IEC by exploring the space
of behaviors agnostically, and once an interesting behavior is es-
tablished, the mode of evolution may be changed to optimize it.
For more information on NA-IEC, or to download the framework,
please visit http://eplex.cs.ucf.edu/naiec.

4. EXPERIMENT

To demonstrate the synergistic effects of augmenting a human-
directed search with novelty search, the experiment is conducted
in the deceptive maze domain introduced by Lehman and Stan-
ley [13, 16, Section 2.1]. That way, the NA-IEC approach can be
compared against pure novelty search, fitness-based search, and a
novelty-free IEC-based search directly. In the deceptive maze do-
main, the goal is to evolve a navigation behavior that drives a robot
from the start to the finish of the medium maze or the hard maze
shown in figure 1, which are constructed with several cul-de-sacs
that create local optima in the fitness landscape. Because these lo-
cal optima are so deceptive, Lehman and Stanley [13, 16] found that
novelty search significantly outperforms objective-based search in
both mazes. The question here is, can NA-IEC do even better?

To compare performance, each approach is evaluated over 30
runs on the medium and hard maps. While novelty search and
fitness-based search are both automated algorithms, the NA-IEC
approach requires a human evaluator. To accomplish the NA-IEC
portion of this experiment, six users (who are not the authors) were
recruited who were familiar with novelty search and EAs. These
users were introduced to the NA-IEC framework and each asked to
evolve five solutions to the medium map and five solutions to the
hard map. The aim is to characterize the performance that can be
reasonably expected from a practitioner in EC when evolving with
NA-IEC. Users were permitted to restart if they felt that evolution
had become stuck. However, all evaluations before such restarts
were recorded as a part of the same run.

Inevitably, some will argue that such human guided runs have
an unfair advantage because the user can see the path through the
maze. To address this concern, an additional fitness-based experi-
ment, inspired by Risi and Stanley [24] is conducted. In this addi-
tional experiment the primary deceptive element of the maze nav-
igation domain, i.e. the attraction of agents to cul-de-sacs, is re-
moved. In this alternative reward scheme, candidates are rewarded
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Figure 5: Maze navigation waypoints. To compare how much advantage
is gained from knowing the path to the goal, waypoints (which are not seen
by the agent) are provided for the medium and hard maps. In this way, de-
ception is removed by allowing a traditional fitness-based search to reward
solutions that discover stepping stones that are on the path to the goal.

for progressing along a path that actually leads to the goal. Fig-
ure 5 shows the waypoints (which are invisible to the agent) in the
medium and hard maps. In this waypoint-directed version of the
experiment, the fitness function f is defined such that agents are
rewarded for each waypoint crossed (including the goal); they also
receive a partial reward for approaching the next waypoint:

f=n+1-4d), 2)
where 7 is the number of waypoints reached and d is the distance to
the next waypoint (proportional to distance between waypoint w,
and w1, in the range [0, 1]).

Some might still argue that the waypoint-directed search above
is at a disadvantage. Thus an additional human-led experiment is
also conducted to further characterize the specific advantage pro-
vided by the human evaluator. In fact, this experiment is identical
to the NA-IEC experiment with two exceptions: (1) the short-term
novelty operation is not available to the human user, and (2) the mu-
tation rate of the step operation is matched to the rates of the other
experiments. In this way, the human user can evaluate individual
generations of candidate behaviors just as in IEC, but can then tune
(without waypoints) their solutions with the optimize operation to
achieve the final solution. In this setup, five human subjects per-
formed six runs each on both mazes.

4.1 ANN Representation

In this experiment, as in Lehman and Stanley [13, 16], the ANN
controllers in all variants of the deceptive maze experiment are
evolved by the NeuroEvolution of Augmenting Topologies (NEAT)
approach [29, 30]. More specifically, the NEAT algorithm starts
with a population of simple ANNs and complexifies them over gen-
erations by adding new nodes and connections through structural
mutations. By evolving networks in this way, the topology of the
network does not need to be known a priori. As applied to maze
navigation policies, this process begins with an initial population of
simple behaviors that are represented by fully-connected networks
with 22 connections, no hidden nodes, and the inputs/outputs in fig-
ure 2b. As the underlying networks add complexity (i.e. new nodes
and connections), features and nuances emerge in the resulting be-
haviors that could not be expressed by the simpler ANNs.

4.2 Experimental Parameters

The evolutionary parameters in this experiment are based on
the deceptive maze navigation experiment by Lehman and Stanley
[13, 16] and on the established parameters for NEAT [29]. All ex-
periments were run with a version of the public domain ANJI pack-
age augmented to support steady-state evolution, interactive evolu-
tion, and novelty search. The IEC population size was 12, while
the novelty search and fitness-based search population sizes were
250, with each run limited to 250,000 total evaluations. Note that

when the user initiates novelty search or optimization from within
NA-IEC, a starting pool of 250 candidates are first generated from
the user-selected candidates on the screen. The speciation thresh-
old, ¢;, was 0.2 and the compatibility modifier was 0.3. Offspring
in all automated runs, short-term novelty operations, and IEC step
operations had a 5% chance of adding a node, a 10% chance of
adding a link, a 1% chance of loosing a link, and the weight muta-
tion power was 0.8. During optimization operations and Step oper-
ations in the NA-IEC experiment the connection weight mutation
power was 0.1 to support behavioral fine-tuning. The ANN em-
ployed unsigned sigmoidal activation with recurrent connections,
resulting in a shifted output range of [-0.5,0.5].

The parameters specific to novelty were also based on the orig-
inal deceptive maze navigation experiment [13, 16]. They include
the nearest neighbors value (k = 15) and the novelty threshold,
Pmin, Which begins at 3.0 and is adjusted after every 2,500 evalua-
tions. Each navigation robot was given 400 time-steps to reach the
goal, which only allows behaviors that proceed directly to the goal.
It is important to note that the experiments of Lehman and Stanley
[13, 16] were re-run with this setup to ensure a fair comparison and
to validate our implementation.

S. RESULTS

As with the original experiment by Lehman and Stanley [13, 16],
a navigation behavior that finishes within five units of the goal lo-
cation is considered successful. The main result is that NEAT with
NA-IEC discovers such solutions in significantly fewer evaluations
than both NEAT with novelty search and fitness-based NEAT on the
medium and hard maps. Furthermore, despite the expense of wait-
ing on the human to evaluate a panel of candidate solutions, NA-
IEC also consumes less wall-clock time in search, suggesting that
the value of the user’s direction easily offsets the delay of waiting
for human input. Another result is that NA-IEC produces solutions
with significantly fewer hidden nodes than both novelty search and
fitness-based search, further suggesting the importance of allowing
a human evaluator to make key decisions about the direction of evo-
lution. While some may dismiss such improvements based on the
human evaluator’s ability to see the path through the maze, results
from the waypoint-directed search, a non-deceptive fitness-based
experiment, are on par with NEAT with novelty search, which is
still well below the performance of NEAT with NA-IEC. Further-
more, NA-IEC not only succeeds in discovering solutions in signifi-
cantly fewer evaluations than IEC without novelty, but also reduces
fatigue by requiring many fewer user operations. The implication
is that NEAT with NA-IEC not only exposes key stepping stones,
but also provides evolution with subtle insights about the domain
not easily incorporated into a traditional fitness function a priori.

On the medium map, users directing NEAT with NA-IEC found
30 solutions in an average of 6,729 (sd = 8, 068) evaluations. These
results are significantly (p < 107°; Student’s t-test) faster than
NEAT with novelty search (22,116 evaluations, sd = 10, 157), fit-
ness-based NEAT (55,066 evaluations sd = 47,339), waypoint-
directed NEAT (22,594 evaluations sd = 11,982), and human-led
NEAT without novelty (12,741 evaluations sd = 12,792), each
averaged over 30 runs (figure 6a). Furthermore, users solved the
medium map in an average of 294 (sd = 359) seconds, which is 2.8
times faster than novelty search, 9.1 times faster than fitness-based
search, and 2.0 times faster than the waypoint-directed search.!
While solutions from the novelty-based, fitness-based, waypoint-

"Note that clock times are not reported for IEC without novelty
because these runs took so long that users generally could not com-
plete them in one sitting, which would confound the results.



directed, and human-led searches have on average 3.2 (sd = 1.9)
hidden nodes, 2.9 (sd = 1.65) hidden nodes, 3.0 (sd = 1.8) hid-
den nodes, and 1.0 (sd = 3.1) hidden nodes respectively, solutions
produced by NA-IEC are significantly simpler, averaging just 0.23
(sd = 0.5) hidden nodes per solution (p < 107'%; Student’s t-test).

On the hard map, the NA-IEC approach evolved 30 success-
ful navigators in an average of 7,481 (sd = 6,610) evaluations,
which is a significant (p < 107>; Student’s t-test) improvement
over not only NEAT with novelty search alone (33,320 evalua-
tions, sd = 20, 949), but also over the non-deceptive (i.e. waypoint-
directed) version of fitness-based NEAT (26,954 evaluations, sd =
18,464) and the human-led NEAT without novelty (24,447 evalu-
ations, sd = 26,691), each averaged over 30 runs. In the case of
fitness-based NEAT, as in Lehman and Stanley [13, 16], no compar-
ison could be made because only four of 30 runs evolved solutions
for the hard map. Evaluations required to solve the hard map are
shown in figure 6b. In addition to evolving successful navigators
for the hard map in fewer evaluations, NA-IEC did so on average
in just 402 (sd = 374) seconds, which is 3.5 times faster than NEAT
with novelty search and 2.5 times faster than the waypoint-directed
search. Regarding complexity, solutions from novelty search have
on average 3.3 (sd = 1.8) hidden nodes, solutions from the non-
deceptive waypoint-directed search have an average of 3.5 (sd =
2.0) hidden nodes, and solutions from the human-led search av-
eraged 1.2 (sd = 1.4) hidden nodes, while those evolved by NA-
IEC are significantly smaller with 0.5 (sd = 1.01) hidden nodes
(p < 1078; Student’s t-test).

Typical patterns of exploration for each approach in the medium
and hard maps are shown in figure 7, which compares the distribu-
tion of all ending points visited during a typical run. As Lehman
and Stanley [13, 16] discovered previously, the traditional fitness-
based approach is attracted to the cul-de-sacs in the maze (fig-
ures 7a and 7b), while selecting for behavioral novelty allows NEAT
to explore the space of possible behaviors more evenly (figures 7c
and 7d). Such search distributions are the result of selection pres-
sure; thus when the objective-function rewards agents for following
the solution path (figures 7e and 7f) the cul-de-sacs no longer de-
ceive evolution. Interestingly, when the points visited during IEC
(figures 7g and 7h) and NA-IEC (figures 7i and 7j) are plotted in
this way the signatures of the human selector becomes evident. As
expected, the first of these is that there are far fewer points in the
cul-de-sacs than in both novelty search and even the waypoint-
directed search, demonstrating the intolerance of the human user
for behaviors that explore these spaces. The second signature is
that there are frequently tight groupings of points at key junctions
in the map, indicating that the user is probing these areas of the
search space for a behavior that can turn a corner and enter a new
chamber of the maze. Such observations demonstrate how the hu-
man evaluator is contributing his or her insights to the search. Fur-
thermore, it is interesting how these human effects are so readily
visible in the points plotted. However, the key difference between
the IEC runs (i.e. without the short-term novelty operator) and NA-
IEC runs is the regularity with which solutions can be found in a
small number of evaluations, highlighting the advantage of having
the novelty search option.

Finally, it is also important to analyze the behavior of the hu-
man users, especially in light of the human susceptibility to fa-
tigue in IEC systems [32]. In the IEC experiment without novelty,
users found solutions to the medium map in an average of 148.8
(sd = 128.5) operations, 79.1% of which were Step functions and
20.9% were Optimize functions. Similarly, solutions found for the
hard map required an average of 1,179.5 (sd = 1, 837.9) user opera-
tions, of which 95.6% were Step functions and 4.4% were Optimize
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Figure 6: Evaluations required to find solutions. The number of evalua-
tions required by NEAT to find solutions are shown for the medium (a) and
hard (b) maps with NA-IEC, IEC augmented with optimization only, nov-
elty search, fitness-based search (pure), and waypoint-directed search. The
average number of evaluations to reach a solution is marked by a line, boxed
regions extend out to one and two standard-deviations, and the distribution
of the individual data points is shown. As in work by Lehman and Stanley
[13, 16], fitness-based search is generally deceived in the hard map and is
unlikely to produce solutions. The main result is that the NA-IEC approach
consistently finds solutions for the medium and hard maps in significantly
fewer evaluations than any other approach.

functions. In contrast, users working with NA-IEC found solutions
for the medium map in an average of just 30.1 (sd = 40.5) choices,
applying the Step function 29.8% of the time, the Novelty function
47.8% of the time, and the Optimize function 22.4% of the time.
On the hard map, solutions required an average of 32.0 (sd = 23.5)
human choices, of which 29.2% were Step functions, 58.9% were
Novelty functions, and 11.9% were Optimize functions. Further-
more, results show that users tended to employ novelty early in
evolution and applied optimization at the end of evolution, i.e. once
a solution has been established. Combined with the overall per-
formance results, these statistics demonstrate the important role
played by the Novelty operator in dramatically reducing both the
overall cost of a run and the likelihood for user fatigue [32]. As
these results also show, the human’s ability to see through the maze
in the IEC runs could not make up for the lack of novelty search,
demonstrating again that search (even interactive search augmented
with objective optimization) benefits significantly from novelty.

6. DISCUSSION

In the deceptive maze domain, humans in NA-IEC make a good
team with novelty search and objective optimization, which helps
to finish the job. In both mazes, users choose Novelty to generate
the next set of choices significantly more frequently than the other
options. The stepping-stone generator of novelty search provides
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Figure 7: Distribution of final points visited. Each maze shows the final
position for all candidates in a typical run. The density of points shows how
fitness-based NEAT, NEAT with novelty search, waypoint-directed NEAT,
IEC-based NEAT, and NEAT with NA-IEC behave in the deceptive maze
domain. As in Lehman and Stanley [13, 16], fitness-based search is at-
tracted to the cul-de-sacs, while the points visited by novelty search are
more evenly distributed throughout the maze. When rewarded for progress-
ing along the solution path, the waypoint-directed runs are less deceived.
For the IEC and NA-IEC runs, the human user’s influence is clearly visible,
i.e. there are significantly fewer points in the major cul-de-sacs and tight
groupings of points around key junctions. Such characteristics reveal how
human selections are impacting evolution.

a desirable menu of possibilities to the human user, ultimately ex-
ceeding the performance of novelty search alone, as well as the re-
ported performance of novelty—fitness multi-objective hybrids [19],
by several times. Nevertheless, a natural question is whether such
results are somehow specific to the maze domain. Perhaps humans
harbor a particularly keen insight into the most promising robot be-
havior in mazes, but would lack such insight in other domains.

For example, one hypothesis might be that humans in effect know
the right path through the maze because they can see the whole
maze. Yet this interpretation is not entirely accurate. The correct
path through the maze is not equivalent to the correct path through
the search space. While some behaviors seem clearly dead ends
(such as being caught in the most obvious cul-de-sac in the hard
maze), others are less obvious. It is not necessarily the case that
just because one behavior drives the robot farther down the cor-
rect path that it must be a more promising stepping stone. Some
such behaviors are themselves dead ends that cannot push farther.
Also, humans perceive more subtle and nuanced indicators that are
also important, such as path smoothness or unnecessary loops in
the robot trajectory. A behavior in which the robot doubles back
on itself and then turns back onto the correct path may be just as
ominous as being stuck in a dead end. Humans intuitively under-
stand these kinds of dangers, yet to articulate them in an objective
function would be quite challenging, and would almost certainly
take more time than simply guiding the search away from them,
whether they are easy to formalize or not.

Interestingly, the NA-IEC approach found solutions in signifi-
cantly fewer evaluations and with fewer user operations compared
to the IEC runs conducted without the novelty operator. In both of
these human-led experiments, the evaluators had full insight into
the correct route through maze and the robot path behaviors for
each candidate, as well as the option to run optimization, yet those
advantages alone without novelty were still less effective. The in-
sight is that the ability to request a set of novel candidate behav-
iors (whether good or bad) plays an important role by affording the
user a broad view of where evolution could go next. This addi-
tional information appears to facilitate better decisions that lead to
increased efficiency.

While only future empirical results can settle this issue, there is
reason to believe that humans would carry similarly critical insights
into other domains. For example, in a biped-walking task [16,
23, 33], humans can see that certain kinds of leg oscillations are
promising even if the robot falls down. Yet to describe exactly what
makes them promising in a fitness function is likely prohibitive.
The human’s overhead view, and hence knowledge of the mazes,
should be viewed metaphorically as like any intuitive understand-
ing of the shape of a particular behavior space. Just as we can see
in the maze that certain passageways must precede other passage-
ways, so we can see in a biped robot that oscillations and balance
must precede walking. While it is possible that the intuitive insight
into some domains is less than in the maze domain, the highly sig-
nificant advantage provided by such insight in the maze domain
suggests that even if the advantage were less elsewhere, it could
still be significant.

NA-IEC also may be important for more than just optimization.
In some spaces, such as in morphological brain-body evolution or
with sophisticated encodings, we may be more interested in what is
possible than in achieving a particular end result. The apparent syn-
ergy that results from humans combined with novelty search could
be leveraged in the future to show us more about such spaces than
trying to solve specific problems. With all the limitations recently
shown for objective-based search, NA-IEC provides an alternative
without relinquishing our desire to have some say in the process.



7. CONCLUSION

This paper introduced the novelty-assisted interactive evolution-
ary computation (NA-IEC) approach, wherein the intuitive ability
of human users to identify promising candidate behaviors is aug-
mented by an agnostic stepping stone generator (i.e. novelty search)
seeded with the behaviors selected by the user. In this way, the
advantages from IEC and novelty search create a complementary
effect that offsets each other’s limitations. Humans in this study
only spent up to ten minutes to make a few dozen selections among
thousands of evaluations, much of which was automated by novelty
search. This novel incorporation of single mutational steps, short-
term novelty search, and fitness-based optimization into a single
evolutionary tool resulted in an effective synergy that allowed hu-
man users to realize what was important for a given domain during
evolution. Furthermore, such serendipitous exploration found so-
lutions in fewer evaluations, at lower genomic complexities, and in
significantly less time overall than the fully-automated processes
(i.e. novelty search, fitness-based search, and the directed fitness
search alone), while also reducing fatigue when compared to IEC
without the novelty component. Thus the key contribution of the
NA-IEC approach is that it can accelerate the rate and quality of
evolution by leveraging human-level domain knowledge without
burdening the user with the responsibility of evaluating every can-
didate created during evolution.
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