
A Machine Learning Evaluation of
an Artificial Immune System

Matthew Glickman glickman@cs.unm.edu
Department of Computer Science, University of New Mexico, Albuquerque, NM
87131-1386, USA

Justin Balthrop judd@cs.unm.edu
Department of Computer Science, University of New Mexico, Albuquerque, NM
87131-1386, USA

Stephanie Forrest forrest@cs.unm.edu
Department of Computer Science, University of New Mexico, Albuquerque, NM
87131-1386, USA and

Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

Abstract
ARTIS is an artificial immune system framework which contains several adaptive
mechanisms. LISYS is a version of ARTIS specialized for the problem of network in-
trusion detection. The adaptive mechanisms of LISYS are characterized in terms of
their machine-learning counterparts, and a series of experiments is described, each of
which isolates a different mechanism of LISYS and studies its contribution to the sys-
tem’s overall performance. The experiments were conducted on a new data set, which
is more recent and realistic than earlier data sets. The network intrusion detection
problem is challenging because it requires one-class learning in an on-line setting with
concept drift. The experiments confirm earlier experimental results with LISYS, and
they study in detail how LISYS achieves success on the new data set.

Keywords
Anomaly detection, artificial immune systems, machine learning, immune system, net-
work intrusion detection, computer security.

1 Introduction

The natural immune system uses a variety of evolutionary and adaptive mechanisms
to protect organisms from foreign pathogens and misbehaving cells in the body. Artifi-
cial immune systems (AIS) seek to capture some aspects of the natural immune system
in a computational framework, either for the purpose of modeling the natural immune
system or for solving engineering problems. In either form, a fundamental problem
solved by most AIS can be thought of as learning to discriminate between “self” (the
normally occurring patterns in the system being protected, e.g., the body) and “non-
self” (foreign pathogens, such as bacteria or viruses, or components of self that are
no longer functioning normally). Almost any set of patterns that can be expressed as
strings of symbols can be placed into this framework, for example, the set of normally
occurring TCP connections in a local area network (LAN) and the set of TCP connec-
tions observed during a network attack. This is the example on which we will focus in
this paper.

c©2003 by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

LISYS

Hofmeyr introduced an artificial immune system framework called ARTIS, which
he specialized for the problem of network intrusion detection in a system known as
LISYS (Lightweight Intrusion detection SYStem) (Hofmeyr, 1999; Hofmeyr and Forrest,
2000). In that work, he focused on explaining the analogy between real immunology
and the LISYS artifact and reported early experiments demonstrating how well the
system performed.

Hofmeyr’s results from this immune-inspired architecture were encouraging, and
there are several related projects in in network intrusion detection based on AIS (Das-
gupta, 1999; Williams et al., 2001; Kim and Bentley, 1999a). However, LISYS is a com-
plex architecture, similar in complexity to learning classifier systems (Holland et al.,
1986), and the task of understanding and predicting its behavior is challenging. The
research reported in this paper is focused up three complementary goals: (1) to connect
LISYS with the broader context of Machine Learning, (2) to further the empirical eval-
uation of LISYS’ performance, and (3) to deepen understanding of the contributions
made by LISYS’ many components to its overall performance.

Machine Learning: LISYS sends an alert to an operator when it detects anomalous
network packets, potentially indicating intrusion attempts. LISYS’ detection mecha-
nism does not rely on preprogrammed knowledge. Rather, it observes an initial sam-
ple of network traffic, builds a model of normal traffic patterns, and then compares
the model against subsequent traffic. Because new connections frequently occur on a
LAN, LISYS must generalize from previously observed traffic to assess whether newly
observed packets are anomalous. This capacity—that of an artificial system to cope
with novelty via generalization from experience—is the domain of Machine Learning
(ML).

Examining LISYS in the context of machine learning is important for emerging
fields such as artificial immune systems, so that a common language can be identified
and results communicated between fields. Here, we are interested in discovering what
might be novel about LISYS from an ML point of view, and in what insights ML can
give us about LISYS. In particular, one objective of this paper is to isolate the LISYS
mechanisms so that they could potentially be used in other more traditional ML frame-
works.

LISYS introduces several novel learning mechanisms, and we show that some
of them improve performance dramatically. At its core, LISYS resembles a simple
memory-based (also called “instance-based”) learning algorithm. We examine each
of LISYS’ mechanisms as extensions to this simple learning algorithm, and assess how
each mechanism addresses issues of interest in the more general machine learning com-
munity and computer security domain.

Evaluation: A preliminary study was conducted in the context of a small and well
controlled data set (Balthrop et al., 2002b; Balthrop et al., 2002a), which focused on a
limited number of LISYS mechanisms. Here, we extend that work to a more realistic
and larger data set, and and we consider the complete LISYS architecture.

Our new data set represents data collected over a 62-day period from a subnet
behind a firewall with 17 active machines. The scale of this network and its placement
behind a masquerading firewall are typical of small enterprise networks. This setting,
which is more controlled than the original data collected by Hofmeyr, allows us to
isolate specific network events which affect LISYS performance and to be more certain
that our core training data are free of attacks

Experiments assessing individual mechanisms: Although the essential idea of
LISYS is quite simple, there are a variety of mechanisms incorporated into the full sys-

2 Evolutionary Computation Volume x, Number x

LISYS

tem, each of which was originally inspired by some aspect of the biological immune
system. The contributions to overall system performance made by each mechanism
have until now been unclear. We report a number of new experiments designed to
assess the relative contribution of LISYS’ many components.

We begin by comparing the performance of LISYS with that of a “null algorithm”
that performs no generalization from experience. We then conduct experiments with a
set of variant algorithms covering the spectrum between the null algorithm and LISYS.
In some cases, we incrementally add individual features into the null algorithm, while
in others we subtract features from full LISYS (known as ablation experiments).

As an ML algorithm, the performance of LISYS reflects the validity of its assump-
tions about inference in its domain of application. Thus, the aggregation and ablation
experiments reported here reveal the validity of the assumptions represented by each
of LISYS’ individual mechanisms in the given network intrusion-detection domain.

The remainder of the paper is organized as follows. Section 2 gives some back-
ground material on intrusion-detection systems, machine learning used for intrusion
detection, LISYS, and other immunologically inspired approaches to intrusion detec-
tion. Section 3 examines LISYS from the perspective of machine learning; Section 4
describes the data set used for our experiments, and section 5 presents the experiments
themselves. In section 6, we discuss the experimental results, LISYS’ current limita-
tions, and ideas for extension and improvement. We summarize our conclusions in
section 7.

2 Background

Several areas of research are relevant to the work reported here. In this section,
we briefly review earlier work on intrusion detection, discuss machine-learning ap-
proaches to this application domain, give an overview of LISYS, and review other AIS
approaches to network intrusion-detection.

2.1 Intrusion Detection

Intrusion detection systems (IDS) vary widely, but they all seek to protect an informa-
tion system (e.g., a single computer, a database, a server, or a network of computers)
from violations of the system’s security policy. Debar et al. (Debar et al., 1999) defined
a taxonomy of IDS, distinguishing between behavior-based (often called anomaly-
based) and knowledge-based (also known as signature) IDS. LISYS is an example of
an anomaly IDS in which a model is constructed of the normal (legal) operation of the
system and discrepancies from the model are labeled anomalous. The model of normal
behavior can be based on any observable behavior of the system. Audit logs, patterns of
network traffic, user commands, and system-calls are all common choices. Such an ap-
proach can work well if the anomalies in normal operation are correlated with security
violations. The extent to which this is true is a topic of debate in the intrusion-detection
community.

A second relevant distinction is whether an IDS defines the set of allowable behav-
iors (known as positive detection) or the set of disallowed behaviors (known as nega-
tive detection) (Forrest et al., 1994; Esponda et al., 2004). Because knowledge-based sys-
tems use knowledge of specific attacks or classes of attacks to identify intrusion events,
we refer to them as negative-detection schemes. The knowledge can be represented
many different ways. One common approach is to define a set of rules in a produc-
tion system which is used to deduce the state of the monitored system. Examples of
this approach include EMERALD (Porras and Neumann, 1997) and NSM (Heberlein

Evolutionary Computation Volume x, Number x 3

LISYS

et al., 1990; Mukherjee et al., 1994). Alternatively, knowledge of attacks is often com-
piled into simple “signatures” or syntactic patterns which can be readily recognized
in a data stream. Signature detection is computationally efficient, and thus forms the
basis of many commercial products, for example, ISS’ RealSecure Network Sensor (ISS,
2000).

Behavior-based systems typically treat intrusions as deviations from a profile of
normal behavior (i.e. they employ a positive detection scheme). The most common
way to obtain such a profile is by constructing a statistical model based on observa-
tion. Examples of this approach include HAYSTACK (Smaha, 1988), NIDES (Anderson
et al., 1995), Helman and Liepins (Helman and Liepins, 1993), and NSM (Heberlein
et al., 1990; Mukherjee et al., 1994). Lane (Lane, 2000) used both instance-based models
and hidden Markov models to model normal sequences of commands used by specific
users. A normal profile can also be prespecified rather than constructed empirically
through observation, as in AT&T’s ComputerWatch (Dowell and Ramstedt, 1990).

LISYS is best characterized as a negative-detection, behavior-based system. How-
ever, the secondary response of LISYS implements a form of signature-based detec-
tion (see Section 2.4.4). Following the taxonomy of Debar et al., LISYS can be further
classified as passive in terms of counter-measures, net-based (packet-level) rather than
host-based; and as a passive observer (rather than actively generating queries).

2.1.1 Evaluating intrusion-detection systems

IDS performance can be evaluated in several ways, including efficiency, training time,
ease of use, ability to adjust to changing conditions, and accuracy of discrimination
between allowed and disallowed behaviors(NIST, 2003; Gaffney and Ulvila, 2001;
McHugh, 2000). Here, we focus on the accuracy criterion.

There are two kinds of errors a detection system can make: false negatives (mis-
takenly identifying abnormal patterns as legitimate) and false positives (mistakenly
identifying normal patterns as abnormal). These are known as Type I and Type II er-
rors respectively in the statistical decision theory literature. It is trivial to minimize
either Type I or Type II errors, e.g., by labeling everything as anomalous or everything
as normal. Therefore, any measure of IDS performance needs to take both types of
errors into account. The tradeoff between false- and true-positives is often displayed
using the “Receiver Operating Characteristics” (ROC) curve (Egan, 1975).

An important property of an IDS is tunability, that is, how easy it is to choose where
on a given ROC curve a particular IDS will be deployed. This property is important
because in some applications (e.g., a secure military installation), it is so important to
catch all true positives that a high rate of false positives can be tolerated, while in other
applications (say a university department) the inconvenience and cost of managing
false positives outweighs the risk of a security breach. Although these tradeoffs are
important, IDSs have historically suffered unacceptably high false-positive rates, and
much work in IDS focuses on the problem of reducing false positives without unduly
compromising true-positive detection ability (Axelsson, 2000).

There are several factors which complicate the evaluation and comparison of
anomaly IDSs: The asymmetry between normal and intrusive data sets, differences
in the amount of training data needed for different learning systems, and inconsisten-
cies in how different IDS systems define false- and true-positives. In most data sets,
normal data are plentiful and intrusion data are rare. As a consequence, it can be dif-
ficult to estimate the sensitivity of an IDS, and there are inherent asymmetries in the
commonly reported ROC curves (e.g., strong discontinuities on the true-positive axis).

4 Evolutionary Computation Volume x, Number x

LISYS

A related complication is that true positives are often measured differently from false
positives. To detect an intrusion, we require only that the anomaly signal exceed a pre-
set threshold at one point during the intrusion event. However, in an on-line system,
low false-positive rates can be obtained only if the system makes many correct deci-
sions over the entire sample of normal behavior. Another complication arises because
different methods require different amounts of normal data in order to construct an
accurate model. Thus, a straight comparison of two different IDS methods on identical
data sets is not always fair. Different anomaly-detection methods record anomalies dif-
ferently. For example, a system that records anomalies on a per-packet basis will likely
achieve different false- and true-positive rates than one which records anomalies on a
session basis.

A final consideration in evaluating the accuracy of an IDS is what role a detection
event plays in the overall system. In some “miss-nothing-pyramid” security architec-
tures, all detection events are passed upstream to other decision processes which eval-
uate the likelihood that an event is a false or true positive, e.g. (Porras and Neumann,
1997; Balasubramaniyan et al., 1998). In these settings, a relatively high false-positive
rate can be tolerated at the IDS level. If, on the other hand, the IDS is deployed in a non-
hierarchical collection of mostly autonomous systems, then false positives are additive
(and therefore costly), but false negatives are not so important, because another process
might catch it. This is the situation with LISYS, and consequently, we emphasize the
analysis of false-positive rates in the following sections. This appears to be the more
biological scenario, where autoimmunity is costly and there are many redundant de-
tection mechanisms in the body. This scenario also seems more practical for computer
systems that are unprotected now, where many intrusions succeed already and there
are few resources available for sifting through false positives.

2.2 Machine Learning and Network Intrusion Detection

The LISYS system learns to classify network connections (SYN and SYN ACK pack-
ets) as either normal or anomalous. In this section we discuss the network intrusion-
detection problem from a machine learning perspective. In Section 3 we use this per-
spective to analyze LISYS as a machine learning algorithm.

Within the domain of machine learning, learning such a binary classification task
typically falls under the heading of supervised learning, although LISYS receives external
feedback only intermittently. In supervised learning, the goal is to learn a mapping
from inputs to outputs. For example, the inputs might be visual data from a camera
and the outputs might be appropriate commands to a robot motion system. If LISYS
were a classical supervised learner, it would learn from a set of training data made
up of both normal and anomalous packet traffic. Each training example would pair
a specific input value, the packet, with its associated target output value or label, i.e.
normal or anomalous. After training, the system would be presented with new inputs
(which might or might not have been observed during training) and asked to infer the
target output values.

To infer appropriate outputs for input values not presented during training, a sys-
tem must incorporate an inductive bias (Mitchell, 1980), i.e. some assumption about the
mapping that is to be learned: “a learner that makes no a priori assumptions regarding
the identity of the target concept has no rational basis for classifying any unseen in-
stances.” [(Mitchell, 1997), p. 42]. The need for inductive bias arises from the fact that
there are many possible mappings from inputs to outputs (labels) that are consistent
with the observed training examples, and some set of assumptions or bias is necessary

Evolutionary Computation Volume x, Number x 5

LISYS

to choose among them.
In a binary classification problem, the range of possible mappings or target con-

cepts consistent with the observed training examples is bounded by a maximally spe-
cific choice at one extreme and by a maximally general one at the other. In the example
of LISYS as a classical supervised learner, the maximally specific choice would be to
assume that normal traffic is limited only to the normal packets observed during train-
ing, and that all other packets—including all those not observed during training–are
anomalous. The maximally general choice, on the other hand, would be to treat all
packets as normal, excepting those observed during training that were explicitly la-
beled as anomalous.

In most classification problems, it is assumed that the learning system will be pro-
vided with at least one input value in each target class during the training period. In
the intrusion-detection problem, however, we lack representatives of all the possible at-
tacks (because new attacks are constantly being devised), and there is a risk of biasing
the system against detecting novel attacks if we rely on the corpus of current attacks
for training. In this case, it may be preferable to use only observations of normal pack-
ets (positive examples of the target concept) to infer the target class. This is known as
one-class learning and is the approach used by LISYS. Although LISYS classifies packets
into two classes, it assumes during learning that all exemplars are normal, and it must
infer the anomalous class without examples. This represents a deviation from classical
supervised learning.

One-class learning is an open problem in machine learning research. Learning in
the absence of training examples from one class leaves the range of target concepts con-
sistent with the data much more open, making the job of the learner more difficult. In
the case of LISYS, seeing only normal packets leaves the range of concepts consistent
with the data unbounded up to the maximally general hypothesis, i.e. the hypothesis
that all packets are normal. In the absence of examples from one class in a binary clas-
sification problem, an algorithm such as back-propagation of error (Rumelhart et al.,
1987) applied to artificial neural networks will often gravitate toward such extreme hy-
potheses. In general, the expanded range of possible target concepts that arises with
one-class learning serves to amplify the importance of the proper inductive bias.

Language inference is an area of machine learning in which has studied one-class
learning. Gold (Gold, 1967) showed that not even the restricted class of regular lan-
guages can be learned in the limit from an arbitrary, finite-length sequence of positive
examples. Nonetheless, children are observed to learn language based almost entirely
on positive examples. This testifies to the quality of their inductive bias (Pinker, 1984),
a bias developed through evolutionary time.

Angluin (Angluin, 1980) later showed that learning from positive examples is pos-
sible within restricted classes of target concepts (“pattern languages” in Angluin’s ex-
ample). More recently, Muggleton (Muggleton, 1996) proposed a Bayesian framework
within which many concept classes can be learned from positive examples with ar-
bitrarily low expected error. Lane (Lane, 2000) addressed the problem of one-class
learning in IDS. He developed a method in which the user adjusts the generality of the
learned concept through a specified threshold value.

A notion related to one-class learning is that of outlier detection in statistics. Here,
the goal is to build a description or model of data generated by some process. The
point of outlier detection is to exclude from the model data points that are overly af-
fected by phenomena other than the process being studied. Most often, such points are
artifacts of the data collection process, e.g. occasional spurious points generated by a

6 Evolutionary Computation Volume x, Number x

LISYS

faulty piece of equipment. Thus, the goal of outlier detection is similar to that of intru-
sion detection in that we seek to identify anomalies from unknown sources. However,
in intrusion detection the goal of building the model—characterization of normal—is
specifically to detect “outliers,” whereas in outlier detection the point is to prevent con-
tamination of a model designed for other purposes.

Another challenge of the intrusion-detection domain is that normal behavior of-
ten changes over time, known in machine learning as concept drift. In the presence of
concept drift some amount of invariance in the target concept must be assumed; if the
target concept can change arbitrarily quickly, then there would be no rational basis for
training. Consequently, some assumptions need to be made about the rate at which a
concept can drift. Mitchell et al. (Mitchell et al., 1994) take a practical approach, em-
pirically determining the length of a “window” of past training examples to be used
for periodic retraining. A more theoretical approach, taken by Helmbold and Long
(Helmbold and Long, 1991), derives an upper bound for the rate of drift that can be
tolerated by any learner observing a given window size of past examples. Klinkenberg
and Joachims (Klinkenberg and Joachims, 2000) proposed a method for support vector
machines that periodically adjusts its window size using analytical means to estimate
what window size is most likely to maximize generalization performance. Lane (Lane,
2000) addressed concept drift by training only on normal examples that are near the ab-
normal boundary. LISYS’ approach, described below, is known as “detector turnover,”
in which old detectors are deleted and replaced by newly trained detectors. The de-
tector set at any given time is composed of detectors trained upon many fixed-size
windows of varying age. The system’s assumption about the rate of drift is thus pa-
rameterized by a single number. This number determines the probability of any given
detector being recycled during any single time-step.

2.3 Other AIS Approaches to Network IDS

Kim and Bentley describe an architecture for an AIS-based network IDS and report the
results of experiments conducted with some of the overall system’s key components
(Kim and Bentley, 1999a; Kim and Bentley, 1999b; Kim and Bentley, 2001). As in LISYS,
anomalies are detected via a repertoire of negative detectors distributed among mul-
tiple hosts. Unlike LISYS, detector generation is centralized at a single node (more
closely resembling the natural immune system), and the decision about whether to
signal an anomaly relies on communication between nodes. Also similar to LISYS is
the choice of monitoring TCP connections, although the Kim and Bentley system mon-
itors all packets in a connection, rather than only SYN packets. This gives the sys-
tem more potentially relevant data, including temporal information such as packet rate
within a connection. However, the costs include preprocessing (aggregating packets
into connections and clustering connections into “profiles”) as well as an extensive en-
coding/decoding process for mapping feature values into dynamic categories. Kim
and Bentley’s detector-generation process is more complicated than that of LISYS, in-
volving a genetic algorithm, niching, and feedback from matched detectors to boost the
diversity and utility of detectors. Later work (Kim and Bentley, 2002a; Kim and Bentley,
2002b) introduces mechanisms for adapting to changing self sets, managing memory
detectors, and using old memory detectors to seed the immature detector population.

A second example of an immune-inspired network IDS, known as CDIS (Com-
puter Defense Immune System), is reported by Williams et al (Williams et al., 2001).
Like LISYS, CDIS processes the data-stream at the packet level (rather than at the level
of connections). CDIS extends LISYS by monitoring packets for three different pro-

Evolutionary Computation Volume x, Number x 7

LISYS

tocols: TCP, UDP, and ICMP. Accordingly, the precise set of fields used in the packet
representation employed by CDIS varies depending upon the protocol to which it per-
tains. In general, the number of fields represented is significantly larger than that used
by LISYS (28 features for TCP, and 16 features for UDP and ICMP).

Detectors in CDIS are explicit templates for packets. As in LISYS, immature detec-
tors are initially generated randomly and then filtered using negative selection. Subse-
quent to negative selection, however, detectors undergo affinity maturation in which a
genetic algorithm is used to evolve detectors that cover as many potential packets as is
possible without matching self (this process takes place off-line, prior to engaging the
detection process). Another unique feature of CDIS is co-stimulation between detec-
tors rather than via interaction with a human operator. Recently (Anchor et al., 2002),
CDIS has been extended to use more sophisticated detectors in the form of finite state
transducers that are initially trained using an evolutionary algorithm.

Dasgupta (Dasgupta, 1999) described an immune-inspired architecture for general
intrusion detection. The system is composed of multiple, mobile agents which are spe-
cialized for functions such as monitoring system state and responding to intrusions,
along with agents specialized to help other agents to communicate. A goal of the sys-
tem is to synthesize information from multiple domains, such as the system level, the
user level, and the network level. When an intrusion is detected, the system may un-
dertake any number of actions, including blocking a particular IP address, changing
users’ action privileges and/or informing system administrators.

Dasgupta and Gonzales (Dasgupta and Gonzalez, 2002) described an immunolog-
ically inspired approach to detecting anomalies in network traffic by examining the
volume of various types of network traffic over time. Successive time windows of traf-
fic data are encoded as vectors of real-valued traits, and negative detectors in the form
of hyper-rectangles are evolved to cover as much of non-self space as possible. Later
work (Gomez et al., 2003) extends this approach to use fuzzy logic-based detectors.

2.4 LISYS

LISYS monitors traffic on a local-area network (LAN). At its core, LISYS consists of a
set of detectors, which are analogous to lymphocytes in the immune system. The detec-
tors are continually compared against network packets. When one of the comparisons
results in a match between a detector and event, the match is interpreted as an anomaly,
potentially signaling a network-based attack.

The current implementation of LISYS monitors TCP connections, specifically the
two initial SYN packets in a TCP connection (an initial SYN packet followed by a
SYN/ACK packet in response). Following the immune system analogy, self is the set
of normal pairwise TCP/IP connections between computers, and non-self is the set of
connections, potentially an enormous number, which are not normally observed on the
LAN. A connection can occur between any two computers in the LAN as well as be-
tween a computer in the LAN and an external computer. A connection is defined in
terms of its “data-path triple”—the source IP address, the destination IP address, and
the port by which the computers communicate (Mukherjee et al., 1994; Heberlein et al.,
1990). This definition of self is quite restricted, and alternative definitions are certainly
possible in this domain, as discussed in section 6.

The data path triple is compressed in two ways to form a single 49-bit string
(Hofmeyr, 1999), shown in figure 1. First, it is assumed that one of the IP addresses
is always internal, so only the final byte of this address needs to be stored. The port
number is also compressed from 16 bits to 8 bits by re-mapping the ports into several

8 Evolutionary Computation Volume x, Number x

LISYS

Local Address Remote Address Compressed Port

0 7 8 39 40 41 48

Incoming/Outgoing Bit

Figure 1: The LISYS 49-bit SYN packet compression scheme.

10010001 10010001
10110000 10110010

Match No match

Figure 2: Using the r-contiguous bits matching rule with r = 4, the two strings on the
left constitute a match. The two on the right, with a maximum of 3 matching contiguous
bits, do not match.

different classes. 67 commonly assigned privileged ports are each allocated their own,
unique ID number (from 0 to 66), while all other ports are each assigned to one of three
classes: all other privileged ports (ID number 67), commonly assigned non-privileged
ports (ports 6000-6063, ID 69), and all other non-privileged ports (ID 68).

The detectors are also 49-bit strings, along with a small amount of local state. A
perfect match between a detector and a bit string representing a TCP connection means
that at each location in the 49-bit string, the symbols are identical. However, LISYS
uses partial-match detection so that it can generalize from its sample of observed normal
traffic. LISYS uses a matching rule known as r-contiguous bits matching in which two
strings match if they are identical in at least r contiguous locations, illustrated in figure
2 (Percus et al., 1993).

2.4.1 The Detector Lifecycle

Detectors in LISYS undergo a multi-stage lifecycle with the following stages: imma-
ture (analogous to immature lymphocytes undergoing negative selection in the thy-
mus), mature (analogous to naive B-cells that have never been activated), activated
(and awaiting co-stimulation), memory, and death. This lifecycle is illustrated in figure
3.

Detectors in LISYS are created randomly and immediately enter the immature
phase where they remain for the tolerization period. The tolerization period lasts ei-
ther for a fixed number of observed packets or a specific length of time, depending on
a system parameter. If the detector matches a TCP connection during this phase, it is
discarded and a new, random detector is generated in its place. An immature detector
that fails to match any connections during its tolerization period becomes mature. This
process, known as negative selection, is patterned after the tolerization process that oc-
curs in the immune system (Forrest et al., 1994). A detector that fails to match any TCP
connections during its tolerization period is presumed unlikely to misidentify normal
packets as anomalous (that is, it has learned to tolerate normal traffic).

Detectors that survive negative selection and become mature have several possi-
ble fates. All mature detectors have a fixed probability of dying randomly on each
time step. The finite lifetime of detectors, when combined with detector re-generation
and tolerization, results in rolling coverage of the self set analogous to B-cell turnover
in the body. Thus, a mature detector that fails to become activated eventually dies.
Alternatively, a detector that matches a sufficient number of connections during its

Evolutionary Computation Volume x, Number x 9

LISYS

Immature

Death Naive, mature

ActivatedMemory Detector

Match

No activation in finite period

Not costimulated

tolerization period
No matches during

Exeeds activation
threshold

Random regeneration

Match

Costimulated

Start

Figure 3: The LISYS detector lifecycle.

mature phase becomes activated. Unlike negative selection, where a single match is
sufficient to kill the detector, a mature detector must match several connections before
it becomes activated (see Section 2.4.3). Once a detector is activated, it must receive
co-stimulation within a fixed period of time (see Section 2.4.4). A detector which re-
ceives co-stimulation becomes a memory detector, and a detector that fails to receive
co-stimulation dies, analogous to second signaling systems in the immune system.

2.4.2 Detector Sets

Detectors in LISYS are typically grouped into autonomous detector sets, distributed
among separate computers. This has several potential advantages. First, there is no
central point of failure, as each node can operate independently. Second, individual
nodes do not need to communicate among themselves or with a higher level controller
in order to make a decision about an individual packet, potentially improving per-node
efficiency. Distributing detectors among multiple nodes allows us to trade off coverage
per node against the computational overhead per node. Finally, each node uses its own
unique representation, allowing diversity of detection abilities throughout the system.

Diversity is achieved because each detector set uses a slightly different representa-
tion for its detectors, known as a secondary representation. Secondary representations
approximate MHC diversity in the natural immune system. Secondary representations,
combined with r-contiguous bits matching, allow each node to generalize differently
from observed network traffic. As a result, some packets considered normal by one
host will be flagged as anomalous by another. The overall effect of multiple secondary
representations is to increase LISYS’ discrimination abilities, decreasing the aggregate
generalization of the entire system. The selection or adaptation of secondary represen-
tations to yield a more favorable inductive bias is the subject of ongoing research.

The secondary representation is a remapping applied to strings encoded in the
base representation shown in figure 1. Although secondary representations may be
generated many different ways, the experiments reported here follow (Hofmeyr, 1999),

10 Evolutionary Computation Volume x, Number x

LISYS

hh h h h h hh

Initial String

Final String

1212 114 16671 18 37 9123

247 103 167 141 248 238 1

238 247 167 103 248 14146 25

25 46

Figure 4: A substring-hash has two components: A random hash function, h, which
maps each value from [0..255] to another, unique value in [0..255], and a random per-
mutation of 6 elements. The 49-bit string is divided into 6 bytes, with one remaining
bit. Each of the 6 bytes is remapped using h. The 6 bytes are then permuted, and the
49th bit is passed through unchanged.

assigning each host a unique randomly generated substring hash (see figure 4) to the
base representation.

2.4.3 Activation Thresholds and Sensitivity Levels

Each detector records the number of packets it matches (the match count). A detector is
activated when the number of matches exceeds the activation threshold. This mechanism
also has a time horizon: Over time, in the absence of further matches, the match count
probabilistically decays to zero.1 Thus, only repeated occurrences of structurally sim-
ilar and temporally clustered packets trigger the detection system. Activation thresh-
olds are loosely analogous to lymphocyte activation in the immune system, which re-
quires a sufficient number of receptors to be bound sufficiently tightly to become acti-
vated.

A related mechanism, sensitivity levels, crudely approximates the local sensitization
signals used in the immune system. There is one sensitivity level for each detector set.
Whenever the match count of a detector goes from zero to one, that detector set’s sen-
sitivity level is incremented. The higher the sensitivity level, the lower the threshold
for activation: A node’s effective activation threshold is equal to the nominal threshold
value minus the sensitivity level, i.e. τeffective = τ −Ω, where τ is the activation thresh-
old and Ω is the sensitivity level2. Sensitivity levels decay probabilistically toward zero.

2.4.4 Co-Stimulation and Memory Detectors

External feedback is supplied to LISYS by the co-stimulation signal, similar to co-
stimulation in immunology. When a detector becomes activated, a message is sent au-
tomatically to a human operator. The operator has the option of providing confirmation
that the detector has correctly identified an anomalous event of interest. If no confir-
mation is received (i.e. there is no “co-stimulation”), the activated detector is presumed

1In LISYS’ original specification, when a detector raised an alarm its match count was reset to zero.
2Sensitivity levels in LISYS were originally capped to prevent the effective activation threshold from

falling to zero or lower. Although this restriction is removed in the current implementation of LISYS, the
fact that match counts are not reset to zero after signaling an alarm—and are therefore very unlikely to go
from zero to one repeatedly within a short interval—prevents sensitivity levels from rising to high values in
practice.

Evolutionary Computation Volume x, Number x 11

LISYS

to be autoreactive and is deleted. If a detector does receive co-stimulation, the detector
enters the memory state. Memory detectors are LISYS’ analog of memory cells in the
immune system. They are long-lived (no longer subject to random detector death), and
they are more easily activated than mature detectors detectors (implemented with a
lower activation threshold, τmem = 1).

Co-stimulation helps eliminate auto-reactive detectors, thereby further reducing
false positives. The co-stimulation signal also serves as a trigger for generating memory
detectors. Memory detectors are analogous to the secondary response in immunology
(providing a swifter and more aggressive response than the primary response), and
they are analogous to signature-based detectors in intrusion detection. Co-stimulation
allows LISYS to take advantage of external expert advice (such as that from a human
operator or an independent intrusion-detection mechanism) when it is available.

3 LISYS as a Machine Learning Algorithm

LISYS resembles an instance-based (or memory-based) machine learning algorithm. In
instance-based learning, training consists of storing training examples. After training,
the output value associated with a given input is inferred using some function of the
stored training examples and their respective distances from the given input value. For
example, the k-nearest neighbor algorithm chooses an output value based upon the k
stored training examples found to be nearest to the presented input value, i.e. the input
value’s k nearest “neighbors.” For discrete valued outputs, as in a classification task,
the algorithm selects the output value that is most common among the k nearest stored
training examples. For continuous valued outputs, the output is typically calculated
by taking the mean of these same k output values.

Any notion of distance can be used in an instance-based learner. For continuous
valued inputs, Euclidean distance is a common choice, along with variants in which
input attributes are weighted. For discrete inputs, such as we use in LISYS, rules like
Hamming distance are common, in which the distance between two points is equal to
the number of the corresponding attributes that have the same value.

A highly simplified version of LISYS could be viewed as a modified form of 1-
nearest neighbor. The class of a 49-bit string representing a TCP SYN packet is inferred
by first calculating the distance between the string and each (mature) detector, where
the distance is the greatest number of contiguous bits the two strings have in common.
If the detector (neighbor) nearest to the presented 49-bit string is at a distance of r or
less, the string is classified as anomalous. Otherwise, it is considered to be normal. We
call this minimal version of LISYS ”minimal LISYS.”

So described, there are two essential differences between minimal LISYS and 1-
nearest neighbor: the use of an r threshold, and the negative-selection procedure. Other
features of LISYS can be treated as extensions to the nearest neighbor framework. Some
features exploit specific features of the domain to improve generalization, while others
address challenges that any machine learning algorithm must cope with in this domain,
such as one-class learning, on-line learning, and concept drift. Finally, the distribution
of detectors among independent nodes makes the system more robust to attack. These
differences are discussed in the remainder of this section.

3.1 Inductive Bias, Concept Drift, and One-Class Learning

The inductive bias of an instance-based learner depends on three factors: (1) the no-
tion of distance, (2) how distance is used to weight the influence of stored examples
when inferring an output value, and (3) which observed training examples are actually

12 Evolutionary Computation Volume x, Number x

LISYS

retained for later use. All three of these factors are realized in novel ways by LISYS.
Distance has two components: the set of input features presented to the learner

and the match rule that compares different instances based on the input features. In
the first case, the use of data-path triples reflects a bias that the client address, server
address, and service port are the relevant features for classifying TCP connections. In
the second case, bias is introduced by using a bit-based representation and ordering the
input features in a particular way (at least, for LISYS running without secondary rep-
resentations). Both of these choices could be changed without affecting the underlying
LISYS architecture.

The bit-based representation used in LISYS disrupts strict numerical distance, e.g.
7 is closer to 8 than to 15 numerically, but 7 and 15 have a greater number of bits in
common (contiguously or otherwise) than do 7 and 8. This property is sometimes re-
ferred to as a “Hamming cliff” (Caruana and Schaffer, 1988). LISYS’ contiguous-bits
matching rule extends the bit-based bias in that features (or bits) that are grouped more
closely together on the string are presumed to be more correlated for the purposes of
classification. In the example shown in figure 2 (without the use of secondary represen-
tations) we can see that LISYS reflects the bias that the bits comprising the local address
and those of the compressed port representation are unlikely to be correlated. Chang-
ing bit order, as occurs with secondary representations, can have a significant effect on
inductive bias (Balthrop et al., 2002a). The r-contiguous bits match rules have several
other unusual properties, which distinguish their generalization abilities from other
rules such as Hamming Distance. For example, the class of languages recognized by
r-contiguous bits match rules, augmented with permutations, properly contains that
recognized by Hamming Distance (Esponda et al., 2004).

The effect of substring hashing (see figure 4) on distance is difficult to quantify. Al-
though the remapping of individual strings can be drastic, there is some correlation be-
tween strings before substring-hashing and after. The bit-wise hash, however, obscures
this binary similarity. Finally, substring hashing permutes bytes, which is important
because of LISYS’ r-contiguous bits matching rule.

The second factor affecting inductive bias, how distance is used to weight the in-
fluence of stored examples (detectors), is straightforward both in k-nearest neighbor
and in LISYS. The k-nearest neighbors (one-nearest neighbor in the case of LISYS) have
an effect on classification, and others do not. In LISYS, activation thresholds and sen-
sitivity levels complicate this characterization, introducing a form of distance-based
weighting related to the temporal distance between presented strings.

The effect of activation thresholds on inductive bias is subtle. The direct effect is
to reduce the overall number of detected anomalies, thus increasing the size of the one-
class generalization. That is, activation thresholds tend to reduce false positives and
increase false negatives, reflecting the bias that false positives are more harmful than
false negatives. When combined with probabilistic decay of per-detector match counts,
activation thresholds introduce a bias toward temporally clustered anomalies, a well-
known characteristic of intrusions. Activation thresholds introduce an additional bias.
Because match counts are maintained on a per-detector basis, a temporally clustered
set of strings that matches a single detector is more likely to trigger an anomaly signal
than a temporally clustered set of strings that are heterogeneous, each string matching
a different detector. Sensitivity levels, however, attenuate this third bias by temporarily
lowering the effective activation threshold when multiple, distinct detectors (present at
a single node) are matched within some interval.

Finally, we turn to the third factor determining the bias of an instance-based

Evolutionary Computation Volume x, Number x 13

LISYS

learner, how examples are retained. In LISYS, this third form of bias is related to on-
line learning and concept drift. In on-line learning, training is interleaved with testing
(classification), for potentially two different reasons. First, in many real applications,
a learner must act or respond while relevant training data continue to arrive. The sec-
ond reason is to cope with concept drift. Learners are often operating in nonstationary
environments, in which the concept being learned can change over time. In this case,
continuing to train while new data arrive is essential for the learner to track the chang-
ing boundaries between classes. Intrusion-detection systems operate in environments
where both constraints apply, but the concept-drift problem is generally the more press-
ing.

Approaches to concept drift include fixed- and adaptive-length window schemes,
as well as weighting (see section 2.2). LISYS uses an adaptive window scheme, where
the longer it has been since a normal pattern has been observed (i.e. the more rare the
data string), the more likely it is that a mature detector in the population will match it.
Thus, the more recently an example has been seen, the greater its effect on classification,
and the heavier its weight. How quickly these implicit weights decay is related to the
probability of random detector death (average lifespan of a detector), and possibly the
tolerization period. Factors such as the value of r and the variation in observed traffic
can affect the balance between immature and mature detectors, but we do not yet have
a formal characterization of how these various factors are related.

The need for inductive bias is amplified in the case of one-class learning. As dis-
cussed in Section 2.2, learning with examples of a single class is problematic because
increasingly general characterizations of the class are always possible. In the extreme,
the class that includes all observable inputs is consistent with any training set. In LISYS,
as in other instance-based approaches to one-class learning, e.g. (Lane, 2000), a solution
is to establish a tunable threshold which restricts generality. The r threshold in LISYS
plays this role. It determines how distant a match is required in order to be labeled a
member of the normal class. In practice, nearly all the other parameters of LISYS inter-
act with r to determine the effective threshold, but controlling r is the most direct way
to affect the extent to which LISYS generalizes.

3.2 Resistance to Attack

One of the fundamental differences between minimal LISYS and 1-nearest neighbor is
the negative-selection algorithm, used to produce negative detectors from a stream of
positive (i.e. normal or self) examples. This modification to 1-nearest neighbor is not ab-
solutely necessary to implement a simple form of LISYS. It is possible to store positive
examples, as in the standard k-nearest neighbor, and then use the positive examples,
together with an r threshold, to label strings that match the stored detectors as normal,
and others as anomalous. This very simple positive detection was studied theoretically
in Esponda et al. (Esponda et al., 2004); in Section 5 we report experimental results on
its performance.

Negative detectors make LISYS resistant to attack because detectors can be dis-
tributed among many nodes (computers), eliminating single points of failure. If every
node in the network has incomplete coverage (because it only has a small number of
detectors), then negative detectors are more easily distributed than positive detectors
because no communication is required to identify an anomaly, a property we call dis-
tributed detection. In the case of positive detectors distributed throughout a network,
with the detector set on each node providing only partial coverage of self, an anomaly
is detected when all the detectors on all the nodes fail to match the same event. This

14 Evolutionary Computation Volume x, Number x

LISYS

requires that the nodes communicate with one another to determine if an anomaly has
been observed. This extra communication represents an efficiency penalty. Further, if
a node is disabled, the mostly likely result will be an increase in the number of false
positives.

We consider an increase in false negatives to be a more desirable failure mode than
an increase in false positives for several reasons. First, any intrusion-detection system
with too many false positives quickly becomes unusable. Although false negatives
are also undesirable, a system that can detect some attacks remains useful even if it
is degraded. If the system is run in conjunction with other independent intrusion-
detection systems, an increase in false negatives on one system will not interact with the
performance of the other systems. Finally, in the intrusion-detection problem normal
traffic is much much more prevalent than attack traffic. Thus, any increase in the false-
positive rate will have a large impact.

4 The Data Set

LISYS was originally tested on data collected from a subnet in the Computer Science
department at the University of New Mexico (UNM) (Hofmeyr, 1999; Hofmeyr and
Forrest, 2000). 50 computers were active on this subnet and data were collected for a
period of 50 days. More recent experiments with LISYS were also conducted using a
second data set (Balthrop et al., 2002b). Data were collected for a period of two weeks
from an internal broadcast network of six computers in our own research lab. Connec-
tivity to the internet passed through a firewall using network address translation.

The experiments reported in this paper use a third data set. As with the second
data set, our goal was to collect data in a context that was as controlled as possible,
but still realistic. We again used an internal network in our research lab, but this time
data were collected for a significantly longer period (62 consecutive days), on a larger
network (12 static hosts plus five distinct dynamic IP addresses), and with a greater
number of more active users (about ten).

The internal restricted network from which the data were collected is much more
controlled than the external university or departmental networks. In this environment
we can understand all of the connections that occur, and we can be relatively certain
that there were no attacks during the normal training periods3. Moreover, this envi-
ronment is realistic. Many corporations have intranets in which activity is somewhat
restricted and external connections must pass through a firewall. This environment
could also model the increasingly common home network (albeit with a large number
of hosts) that connects to the Internet through a cable or DSL modem and has a single
external IP address. Attacks are a reality in environments such as these, and the attack
scenarios we tested correspond to plausible occurrences in this class of environment.

4.1 Normal Data

The data set contains a total of 415,274 TCP SYN packets (including SYN/ACK packets)
and roughly 55% of this is web traffic. There were approximately 6,700 packets per day
during the normal period.

In (Hofmeyr, 1999), network connections to web and ftp servers were removed
from the data, as well as all traffic involving hosts with local, dynamically assigned
IP addresses. Although such traffic is highly irregular (because web and ftp servers
are intended to accept connections from widely varying locations), we were interested

3Rolling coverage and negative detection help LISYS withstand attacks during training. However, train-
ing on attack-free data makes the experimental results easier to interpret.

Evolutionary Computation Volume x, Number x 15

LISYS

.

1 2 3 4 5

Attack
Sequences

Day 41 Day 42 Day 43 Day 44 Day 45Day 40

Figure 5: The five attacks were inserted into the normal data beginning after the 40th
day and with 24 hours of real traffic separating each successive attack.

in assessing how well LISYS could function in the presence of such traffic. Instead of
completely removing web connections, the current data set simulates the behavior of
a proxy server. All outgoing connections to port 80 (http) or port 443 (https) are re-
mapped to port 3128 on the proxy machine. This is very close to what the traffic would
have been like if we were using the web proxy cache SQUID (Squid,). Traffic involving
ftp and internal addresses assigned via DHCP was left undisturbed.

4.2 Attack Data

We followed Hofmeyr’s method (Hofmeyr and Forrest, 2000) for incorporating attacks
into the data set. By examining his 50 days worth of collected data, Hofmeyr identified
several attacks that had taken place during the collection period. He then isolated and
removed the continuous sequence of packets corresponding to each attack. Each se-
quence began and ended with the first and last packets associated with the attack, and
contained all packets that appeared in between, including both normal and attack pack-
ets. These attacks were then reinserted into the normal data stream at well-controlled
locations, as shown in figure 5.

We drew our attacks from the collection of eight individual attack events de-
scribed in Ref. (Balthrop et al., 2002b). We chose these attacks because they
were common attacks at the time and supported by Nessus, a free security scanner
(http://nessus.org) which we used to perform the attacks. All of the attacks, with
the exception of one denial-of-service attack, were performed using a laptop connected
to the internal network. The laptop was able to acquire a dynamic IP address because it
had a physical connection to the internal network. The eight attacks included a denial
of service (from an internal computer to an external computer), a firewall attack, an
ftp attack against an internal machine, an ssh probe against several internal machines,
an attack probing for specific services, a TCP SYN scan, an nmap tcp connect() scan
against several internal computers, and a full nmap port scan. Of these eight attacks,
we chose to include five, discarding the TCP SYN scan and nmap attacks, which were
each comprised of an extremely large volume of packets (about 75,000 total between
the three) and could be easily detected by a packet-flood sensor.

Like Hofmeyr, each isolated attack sequence began with the first packet associated
with the attack, ended with the last packet of the attack, and included all packets in
between (many of which were legitimately normal). Also following Hofmeyr, we took
care to label each individual packet that appeared within the attack sequence as either
self or non-self. The packets in each attack sequence were further re-mapped to reflect
the current network configuration. Finally, we inserted each of the attacks into our

16 Evolutionary Computation Volume x, Number x

LISYS

data, with the first sequence beginning after the 40th day and each of the remaining
sequences inserted after each successive day.

5 Experiments

In this section we describe a series of experiments conducted on the data set described
above. Although we collected the data set on-line in a production network, the ex-
periments themselves were conducted in an off-line set of simulations performed on
a single computer. This made it possible to compare performance across many algo-
rithmic variants as well as different parameter values. The programs used to generate
the results in this paper are available from http://www.cs.unm.edu/∼immsec. The
programs are part of the LISYS package and are found in the LisysSim directory.

After describing the parameter settings used in the experiments, we begin our
experiments with a null model of learning and compare the performance of the null
model to that of full LISYS. We then describe a series of experiments which incremen-
tally modify these two extremes and test the performance of several intermediate vari-
ants.

5.1 Anomaly identification without generalization: “Packet Hash”

As we have seen, LISYS is a complex algorithm with many components. Before apply-
ing LISYS to the new data set, one might ask just how challenging the data set really is.
How well might we detect the attacks in this data set with an approach that is a great
deal simpler than LISYS?

To address this question, we study the performance of a null algorithm called
packet hash (Chao, 2001). Packet hash is a form of the one-nearest neighbor algorithm,
modified for one-class learning and with a matching threshold that requires an exact
match. Packet hash provides a baseline for comparison from an ML point of view
because it performs no generalization whatsoever. During the fixed-length training
period, packet hash records every unique packet it observes. After training, packet
hash labels any novel packet—that is, any packet it did not observe during training—
as anomalous. Packet hash thus reflects an extreme inductive bias, namely, that all
possible members of the class are observed during training. This choice represents the
maximally specific bound on the set of all possible target concepts consistent with the
observed data (see section 2.2).

To run packet hash, it is necessary to specify the length of the training period. For
these experiments, we trained on the first 30 days of data. During training, packet
hash examined every SYN packet (of which there were 225,470) and stored a copy of
each unique packet (there were 860 unique packets in this case). After training, every
observed packet was compared to the list of stored packets. All packets not exactly
matching one of the previously stored packets were flagged as anomalies. In contrast
to LISYS’ negative detection scheme, packet hash uses positive detection, storing a rep-
resentation of self rather than of non-self. It can be thought of as a 1-nearest neighbor
learning algorithm with an exact matching requirement.

As expected, the packet-hash algorithm performed excellently in terms of true
positives, identifying 97.7% of all attack packets4. The cost, however, is a mean false-
positive rate of 101.7 packets per day. In most settings, a false positive rate of 101.7 per
day would be an unacceptably high price to pay for such a good true-positive rate.

42.3% of the attack packets (packets observed during the time of an attack) were identical to normal
packets observed during training.

Evolutionary Computation Volume x, Number x 17

LISYS

Hofmeyr &
Parameter Description Value Forrest’s Value
l string length 49 bits 49 bits
r match length 12 bits 12 bits
τ activation threshold 100 matches 10 matches
1/γmatch match decay period 1 day 1 day
ω per-match sensitivity increment 1.5 1.5
1/γω sensitivity decay period 0.1 days 0.1 days
T tolerization period 20 days 4 days
Ts co-stimulation delay 1 day 1 day
1/pdeath life expectancy 14 days 14 days
nd number detectors per node 100 100

Table 1: LISYS parameter values: Column 1 gives the parameter symbol, column 2
gives a brief description of the parameter, column 3 lists the value used for our exper-
iments, and column 4 gives the values used in the experiments reported in (Hofmeyr
and Forrest, 2000). Although many parameters are expressed in days, they are in prac-
tice specified in terms of the number of packets seen, where a day corresponds to 6,200
packets in the current experiments and 25,000 in the earlier study. Decay times are the
expected time for the value to decay by one.

5.2 The performance of LISYS

A simulated run of LISYS consisted of 50 nodes, each node with its own randomly
generated substring-hash and 100 detectors. Each simulation ran for the duration of the
entire data set. Differences in performance between runs arose from random variations
in certain operations, such as generating substring-hash functions and detectors.

In contrast to packet hash, LISYS does not have distinct training and testing phases.
However, until the initial tolerization period has passed, no detectors will have yet
become mature and able to label packets. Once some detectors mature, LISYS both
trains and identifies anomalies continuously. As with packet hash, we began recording
true and false positives after 30 days of simulated data.

LISYS relies on several parameters to control its behavior, and we do not yet have
extensive knowledge about how to use these parameters. One reason for experiment-
ing with yet another data set was to study how much parameter tuning is necessary to
achieve acceptable results on new data sets. Beginning with Hofmeyr’s (Hofmeyr and
Forrest, 2000) original values, we found a set of parameters that worked well on the
new data set with minimal experimentation (see Table 1 and Section 6.1). The param-
eter tuning consisted of only three runs of LISYS, in which tried small variations from
Hofmeyr’s original parameters scaled to our new data set (e.g. based upon a different
average number of SYN packets per day). In addition, we conducted the parameter
tests using only the first 42 days of data and not the full 68 days. Of the ten parame-
ters listed, we changed only two values—activation level and tolerization period—to
achieve reasonable performance. Of the remaining eight parameters, four values were
unchanged and the other four, specified in days, were simply rescaled to account for
the lower median number of packets per day in our data set (6,200) compared to that of
Hofmeyr. The two values that were adjusted were directly related to controlling false

18 Evolutionary Computation Volume x, Number x

LISYS

Fraction of runs in which at least
Attack Total # of attack packets one attack packet was flagged
Firewall 12 (out of 12 total) 1/120
“Useless Services” 27 (out of 27 total) 99/120
ssh 56 out of 60 (total) 83/120
D.O.S. 284 (out of 301 total) 119/120
ftp 576 (out of 664 total) 109/120

Table 2: LISYS performance on the five attacks in the data set: Performance is reported
as the fraction of runs in which one or more packets from each attack were flagged

positives.5

The resulting performance was quite good. LISYS detected the majority of attack
packets while generating only a handful of false positives per day. Out of 120 runs,
LISYS flagged on average 61.4% of all attack packets as anomalous while incurring
4.1 ± 0.7 (95% confidence interval) false positives per day averaged over the final 32
days of data, as shown in figure 6 and more fully explained in the next section. Packet
hash’s false-positive rate over this same period was 24 times that of LISYS.

A more important aspect of performance is the ability to detect some anomalous
packets in each attack sequence. LISYS performed well in this respect as well, detecting
at least one packet from the large majority of runs in four of the five attacks (see table
2). The one attack on which LISYS failed to flag almost any packets was the shortest,
consisting of a total of only 12 packets.

The comparison between packet hash and LISYS suggests that generalization is
a crucial mechanism for controlling false positives. Most of the architectural features
of LISYS contribute to its generalization performance, including: activation thresholds
and sensitivity levels, co-stimulation, approximate matching with r-contiguous bits,
multiple secondary representations, rolling coverage, memory detectors, and negative
selection/detection. In the remainder of section 5, we present a series of experiments
designed to assess the contribution of these mechanisms. We begin by extending the
original packet hash algorithm, progressively incorporating three of the simplest and
most intuitively straightforward mechanisms: activation thresholds, co-stimulation,
and approximate matching.

5.3 Adding activation thresholds to packet hash

We added an activation threshold to the packet-hash algorithm in the following way: A
single global count is maintained during the testing phase which is incremented every
time an anomalous packet is identified. As with match counts in LISYS, there is a decay
parameter that controls how quickly the global match count decays. When the global
count exceeds the specified threshold, an anomaly is signaled. The global activation
count does not account for per-detector similarity between suspicious packets, and thus
it is not exactly equivalent to the activation threshold used in LISYS. The packet-hash
activation threshold is global because of positive detection. Because the algorithm only

5The co-stimulation delay also controls false positives, but it is properly a parameter of the experimen-
tal simulation rather than the LISYS system itself. Lowering this value would likely further reduce false
positives, but it would also change our assumptions about how frequently the system can expect human
intervention.

Evolutionary Computation Volume x, Number x 19

LISYS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Fr
ac

tio
n

of
 n

on
-s

el
f p

ac
ke

ts
 d

et
ec

te
d

Number of false positives per day, last 32 days

0.0

0.01
0.1

0.2

0.5

LISYS
Pure packet hash (τ = 1)

Packet hash, τ = 2
Packet hash, τ = 4

Figure 6: Pure Packet Hash and Activation Thresholds: Performance of LISYS (shown
with a 95% confidence interval) compared with that of packet hash. The performance
of packet hash is shown for activation threshold values of 1 (equivalent to pure packet
hash), 2, and 4, each with match-count decay probabilities varying from 0.5 (farthest
left) through 0.2, 0.1, 0.01, and ending with 0.0 (farthest right).

flags an anomaly when a test packet fails to match any cached packets, there is no
detector to associate with the mismatch, as there is with a match in LISYS.

Figure 6 shows the performance of packet hash with activation thresholds for vary-
ing threshold values and match-count decay probabilities. Results are included for sev-
eral threshold values and match count decay parameters. LISYS’ performance using
the parameter values from table 1 is also shown. All points reflect the mean perfor-
mance over ten independent runs6. Error bars are given for LISYS which show the
95% confidence level for values measured on each axis. Because packet hash is more
deterministic than LISYS, the associated confidence bounds are so small that they are
difficult to display and were omitted.

In the case where the activation level is set to one (pure packet hash), only a single
point was plotted, because the decay parameter has no effect. For activation levels
two and four, however, as the match count decay probability is increased the match
count decays more quickly, making it less and less likely that the activation threshold
will be reached. The net result is that as the decay probability increases, fewer overall
anomalies, either true or false positives, are signaled. This effect can be seen in the
graph, as the plotted points are closer to the origin (0 false positives, 0 true positives)
for higher decay values. A qualitatively similar result is observed as the activation
threshold is increased, as can be seen by comparing the points for activation threshold
4 with those of activation thresholds of 2 and 1.

When the decay rate is set to zero, activation thresholds simply divide the overall

6Unless otherwise noted, all reported results for packet hash in this paper were averaged over ten runs.

20 Evolutionary Computation Volume x, Number x

LISYS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Fr
ac

tio
n

of
 n

on
-s

el
f p

ac
ke

ts
 d

et
ec

te
d

Number of false positives per day, last 32 days

LISYS
Pure packet hash

Costimulation packet hash
Packet hash, τ = 2

Costimulation packet hash, τ = 2
Packet hash, τ = 4

Costimulation packet hash, τ = 4

Figure 7: Co-stimulation: Performance of LISYS (shown with a 95% confidence in-
terval) compared with that of Packet Hash with activation thresholds, both with and
without co-stimulation.

number of anomalies signaled by some constant factor, and the system’s discrimination
ability remains unchanged. However, as the decay rate is increased, so is the bias that
true attacks are correlated with temporally clumped anomalies. The extent to which
this bias accurately reflects our data is revealed by observing the results of increasing
the decay rate; as the rate increases from zero, the points representing performance
move further to the left than they do down, indicating a greater reduction in false posi-
tives than in true positives. However, as the bias toward temporal clustering increases,
the true-positive rate is reduced at a significant rate as well, indicating that there is a
limit to the tight clustering of attack packets.

These experiments show that activation thresholds coupled with a well-chosen
match decay rate significantly improve packet hash’s discrimination ability. However,
by the time the false-positive rate is reduced to a level commensurate with that of
LISYS’ (say, below ten per day), the true-positive rate is far lower than that of LISYS.

5.4 Adding co-stimulation

Next, we incorporated co-stimulation into packet hash. Co-stimulation uses an addi-
tional source of information (feedback from a human operator), making it an excellent
candidate to improve performance. Furthermore, because feedback from the human
operator is ongoing, incorporating co-stimulation into packet hash allows training to
extend beyond the initial training period.

Similar to the case with activation thresholds, co-stimulation necessarily takes a
different form in packet hash due to the differences between negative and positive
detection. Activated detectors that correspond to false positives fail to receive co-
stimulation, and they are eliminated from the detector pool within 6,200 packets of

Evolutionary Computation Volume x, Number x 21

LISYS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Fr
ac

tio
n

of
 n

on
-s

el
f p

ac
ke

ts
 d

et
ec

te
d

Number of false positives per day, last 32 days

LISYS
Costimulation packet hash, h = 49, τ = 1
Costimulation packet hash, h = 47, τ = 1
Costimulation packet hash, h = 45, τ = 1
Costimulation packet hash, h = 49, τ = 2
Costimulation packet hash, h = 46, τ = 2
Costimulation packet hash, h = 49, τ = 4
Costimulation packet hash, h = 46, τ = 4

Figure 8: Approximate Matching: Performance of LISYS compared to that of packet
hash with activation thresholds and co-stimulation, both with and without approxi-
mate matching using Hamming distance.

their “first offense”, i.e. approximately one day later in simulation time. Because packet
hash uses positive detection, the equivalent mechanism involves adding detectors (i.e.
cached packets) after a false positive. Whenever a packet is flagged as anomalous, and
is determined to be a false positive, that same packet is added to the list of cached
packets 6,200 packets later.

The results of this extension are shown in figure 7. For comparison, we also show
results for LISYS and for packet hash without co-stimulation (repeating some results
from figure 6). As the figure shows, co-stimulation clearly improves performance; the
false-positive rate is reduced without degrading performance on true positives. How-
ever, LISYS maintains superior performance on true positives and comparable perfor-
mance on false positives.

5.5 Approximate Matching

We now consider the inductive bias arising from LISYS’ approximate matching be-
tween detectors and packets. LISYS assumes that similar packets are likely to be sim-
ilarly anomalous or normal. This is reflected in the match count, which is maintained
on a per-detector basis. However, the exact nature of the bias is determined by r-
contiguous bits matching. Because non-self is vastly larger than self for any interesting
application, including the TCP SYN-packet domain, some kind of approximate match-
ing is required to support negative detection. This is because it would be infeasible to
store an exact detector for every single possible non-self packet.

Adding approximate matching to the packet-hash algorithm is straightforward.
We tested two different matching rules for packet hash: Hamming distance and r-
contiguous bits. Both rules allow packet hash to generalize because some packets other

22 Evolutionary Computation Volume x, Number x

LISYS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Fr
ac

tio
n

of
 n

on
-s

el
f p

ac
ke

ts
 d

et
ec

te
d

Number of false positives per day, last 32 days

LISYS
Costimulation packet hash, h = 47, τ = 1
Costimulation packet hash, r = 32, τ = 1
Costimulation packet hash, r = 31, τ = 1
Costimulation packet hash, h = 46, τ = 2
Costimulation packet hash, r = 33, τ = 2
Costimulation packet hash, h = 46, τ = 4

Figure 9: Hamming distance vs. r-contiguous bits matching: Performance of LISYS
compared to that of packet hash with approximate matching, activation thresholds, and
co-stimulation, both with Hamming distance and with r-contiguous bits matching.

than those observed during training (i.e. those which are similar to those observed)
are considered self. In the testing phase, a packet is flagged as anomalous under the
Hamming distance rule if it fails to match any of the cached self packets in at least the
number of bits specified by the Hamming threshold, h. The behavior for r-contiguous
bits is exactly as described for LISYS.

Figure 8 shows the result of adding approximate matching to packet hash. For
comparison, we again include the results for LISYS. Figure 8 shows results for several
Hamming thresholds as well as for exact matching, equivalent to a Hamming threshold
of 49. The Hamming threshold results were calculated with an activation threshold of
1 (no activation thresholds). A false-positive rate around 20 per day is achieved with
a true-positive rate of 80 - 98%. In a context where this false-positive rate were toler-
able, the performance of packet hash with fuzzy matching and co-stimulation would
be preferable to that of LISYS. However, if lower false-positives are required (say, less
than ten per day), then LISYS’ performance remains preferable.

Figure 9 compares approximate matching using Hamming distance to that using
r-contiguous bits. The results show that r-contiguous bits further improves packet
hash’s generalization ability, but still does not achieve LISYS’ rate of less than ten false
positives per day.

5.6 Ablation Experiments with LISYS

We have now considered the effect of adding three out of the seven mechanisms listed
in section 5.2 to packet hash, namely activation thresholds, co-stimulation, and ap-
proximate matching. At this point, to measure the contributions to performance of the
remaining mechanisms it was more straightforward to perform ablation experiments,

Evolutionary Computation Volume x, Number x 23

LISYS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

Fr
ac

tio
n

of
 n

on
-s

el
f p

ac
ke

ts
 d

et
ec

te
d

Number of false positives per day, last 32 days

(2)

(3)

(4a)

(5) (1)

(4b)

Costimulation packet hash, r = 32, τ = 1
LISYS

LISYS w/single secondary rep
LISYS w/single secondary rep, w/o rolling coverage

LISYS w/30-day tolerization period
Costimulation packet hash, r = 32, τ = 2

Figure 10: Representation Diversity and Detector Turnover: Performance of LISYS (1)
compared with that of (2) LISYS without representational diversity (same represen-
tation at every node); (3) LISYS with neither representational diversity nor detector
turnover; (4) packet hash with approximate matching, co-stimulation, r-contiguous bits
matching (r = 32), and activation threshold values of 1 and 2 (4a and 4b, respectively);
and (5) LISYS with a 30-day tolerization period. Note that the X-axis ranges from 0 to
20, instead of 0 to 120 as in figures 6-9.

24 Evolutionary Computation Volume x, Number x

LISYS

removing mechanisms from LISYS, rather than to continue adding similar mechanisms
into packet hash7.

In the first such experiment, memory detectors were disabled. Upon co-
stimulation, detectors were not promoted to be memory detectors; the only effect of
co-stimulation was that the given detector was not killed. Disabling memory detectors
had no significant effect upon performance. This finding appears to result from how
attacks are distributed in the data. Recall that what distinguishes memory detectors is
that they are long-lived and have a low activation threshold, signaling an anomaly as
soon as they match. Note also that in these experiments the match count of a normal
mature detector is not reset to zero once the detector is activated and flags an anomaly
(section 2.4.3). With the match count expected to decay once per day (table 1) and at-
tacks spaced apart by one day (figure 5), detectors activated by earlier attacks are likely
to remain activated when they encounter subsequent attacks, regardless of whether
they have been promoted to memory detectors. If the attacks were spread further apart
in time, the memory detectors would likely provide a significant benefit.

In the second ablation experiment, we eliminated representational diversity from
LISYS. In a normal run of LISYS, there are 50 independent nodes, each with its own
secondary representation. For comparison, we conducted an additional 120 runs of
LISYS in which, for each run, the same randomly generated substring-hash function
was used at each of the 50 nodes. That is, a different randomly generated secondary
representation was used in each of the 120 runs, but within a given run each of the 50
nodes used the same representation as all of the other nodes. As was the case with
eliminating memory detectors, the results (shown in figure 10, labeled “(2)”) do not
reveal a significant change in mean performance.

Unlike the other mechanisms considered so far, the effect of multiple represen-
tations in LISYS is not so much to decrease the false-positive rate as it is to increase
the overall number of matches, i.e. for both true and false positives. Because there are
limits to what can be detected using any single representation and match rule, one ex-
pected effect of multiple secondary representations is to increase the overall number
of matches, i.e. for both true and false positives. However, this assumes that there are
real limits to what can be detected using a single representation. Because we do not ob-
serve significantly greater coverage with multiple representations, it is possible either
that these limits are not reached by the given data set or that reaching them would re-
quire a greater number of detectors per node. In any case, there is one observable effect
of multiple secondary representations that does not appear in figure 10. Employing a
variety of representations within a single run rather than committing to a single one
results in a lower variance about the mean between runs: With a single representation
per node, the standard deviation in the number of false positives per day is 5.34, while
that with multiple representations is 3.87 (interestingly, the variance in true positives
remains essentially the same). Additional effects of different secondary representations
in LISYS were reported in (Balthrop et al., 2002a).

A final ablation experiment was designed to assess the effect of detector turnover
and rolling coverage in LISYS (see figure 10, label “(3)”). As in the previous abla-
tion experiment, 120 runs of LISYS were conducted, each with one randomly chosen
substring-hash function replicated over all 50 nodes. However, the detector lifecycle
was “frozen” at the end of the first tolerization period. At the beginning of a run, 100
detectors were generated per node. These 100 detectors were subsequently subjected

7As with the unablated LISYS results, all results of ablation experiments reported reflect the average of
120 runs, displayed with a 95% confidence interval.

Evolutionary Computation Volume x, Number x 25

LISYS

to negative selection during the tolerization period. Of the initial 100 detectors per
node, those which survived negative selection became mature detectors at the end of
the initial tolerization period. At this stage, the detector set was frozen, meaning that
no further immature detectors could become mature and no mature detectors were
subject to probabilistic death or death by failure to be co-stimulated. This configura-
tion resembles packet hash with activation thresholds and approximate matching, only
with negative instead of positive detectors. As LISYS in this configuration has a fixed
training period, it was set to 30 days to match that of packet hash, for ease of compari-
son.

Several observations can be made about this final result. First, the performance of
“static LISYS” and the maximally enhanced form of packet hash is quite close. At this
point, by incrementally enhancing packet hash and degrading LISYS, we have almost
closed the gap between them, both algorithmically and performance-wise. Nonethe-
less, there is still a statistically significant difference between the performance of the
two algorithms (the performance of packet hash lies outside the 95% confidence inter-
val on the mean of LISYS’ performance). LISYS appears to maintain a better balance
between true and false positives. Although this result might not carry over to other
data sets, this final performance gap must be attributed to one significant remaining
algorithmic difference: negative vs. positive detection.

This is a surprising result, because the principal advantage attributed to negative
detection in LISYS is that it supports distributed detection (section 3.2). Moreover, the-
oretical work (Esponda et al., 2004) has shown that for a maximal number of positive
and negative detectors, with full-length r-contiguous bits, coverage is nearly equiv-
alent from a generalization standpoint. The difference possibly stems from the fact,
discussed in section 3.1, that match counts are maintained on a per-detector basis with
negative detection, introducing a slightly different inductive bias from the activation
thresholds used with positive detection. The bias favors multiple related packets which
match the same detector. Although it is interesting that negative detection provides this
detection ability, it remains to be seen whether this bias would be helpful in other data
sets. If this bias were found to be undesirable in some circumstance, it could be reduced
in LISYS with sensitivity thresholds.

A second surprising result from this last experiment was that eliminating rolling
coverage reduced the number of true positives without significantly changing the num-
ber of false positives. Normally, because the object of rolling coverage is to account for
changing self, we would expect leaving it out to produce higher false-positive rate. In
this case, the increase in tolerization period from 20 to 30 days may have affected the
result. To test this hypothesis, we ran full LISYS with a 30-day tolerization period.
In comparison to full LISYS with a 30-day tolerization period (figure 10, label “(5)”),
LISYS without rolling coverage (figure 10, label “(3)”) does indeed incur a higher false-
positive rate, confirming the hypothesis.

6 Discussion

The empirical results presented in this paper are important for two reasons. First, by
making the connection to machine learning explicit, we have shown how several of the
mechanisms of LISYS could be incorporated into other machine-learning frameworks,
in particular, to methods based on k-nearest neighbors. By quantifying the contribution
of each individual mechanism and analyzing the nature of its contribution, it should
be easier to make good decisions about how to combine the mechanisms of other ML
mechanisms with those of LISYS. Secondly, we have set the stage for further mathemat-

26 Evolutionary Computation Volume x, Number x

LISYS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Fr
ac

tio
n

of
 n

on
-s

el
f p

ac
ke

ts
 d

et
ec

te
d

 0

 20

 40

 60

 80

 100

 120

Nu
m

be
r o

f f
al

se
 p

os
itiv

es
 p

er
 d

ay
, l

as
t 3

2
da

ys

+C
o−stim

ulation
+H

am
m

ing m
atching

+r−C
ontiguous bits m

atching

−R
olling coverage

−S
econdary representations

F
ull LIS

Y
S

P
ure packet hash

+A
ctivation T

hresholds

True Positives

LISYSPacket hash

LISYSPacket hash

False Positives

+C
o−stim

ulation
+H

am
m

ing m
atching

+r−C
ontiguous bits m

atching

−R
olling coverage

−S
econdary representations

F
ull LIS

Y
S

P
ure packet hash

+A
ctivation T

hresholds

Figure 11: The differential contributions made by each mechanism, in terms of both
false and true positives, for a chosen set of representative parameters.

ical investigations of the properties of the various LISYS mechanisms and their careful
comparison with similar methods in machine learning. Although the theoretical prop-
erties of the r-contiguous bits match rule and negative selection have been studied ex-
tensively, the other mechanisms, such as activation thresholds, detector turnover, and
co-stimulation, have not.

6.1 Experimental Results

Due to the great variety of mechanisms that comprise the LISYS architecture, together
with their interactions, formal analysis of the complete system is a daunting task. Al-
though LISYS has been tested experimentally on other data sets, there has been a need
for more complete experimental testing. We tested the contribution of LISYS’ com-
ponents by progressively integrating them into a stripped-down version of LISYS or
deleting (ablating) them from the full system. With the exception of multiple secondary
representations, each mechanism contributes an observable performance benefit and
all are necessary to maximize performance. The relative contributions made by each
mechanism are shown in figure 11.

Measuring the performance of the entire system on our data set, which is extensive
but still well-controlled and understood, is a further contribution to the empirical eval-
uation of LISYS. LISYS’ performance on the new data set has significantly reinforced
our confidence in the system’s potential, relevance, and interest. At the most elemen-
tary level, having achieved good performance in a third, distinct network context is
encouraging. Although this data set was collected at the same institution (UNM) and
the same department (CS), it differs from Hofmeyr’s original data set in several im-
portant ways. It was collected from a well-controlled but production subnet behind
a firewall, and it was collected after four years of subsequent technological evolution.
Finally, it was collected over a longer period of time, using data from active users and
hosts on the network.

Experiments conducted with this data set were also more challenging than

Evolutionary Computation Volume x, Number x 27

LISYS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Fr
ac

tio
n

of
 n

on
-s

el
f p

ac
ke

ts
 d

et
ec

te
d

Number of false positives per day, last 32 days

Figure 12: The performance of 120 independent runs of LISYS.

Hofmeyr’s experiments in some ways. In order to simulate network traffic for longer
than the 50-day collection period, Hofmeyr randomly resampled self (non-attack) pack-
ets from the original data set for all experiments on the full LISYS system. This method
was necessary to fully test certain aspects of the dynamic detector lifecycle, and the
packets in the resulting data stream all occurred with the same frequency at which they
had occurred during training. However, this approach eliminated the temporal struc-
ture present in the original self data. Although attack packets generally appear closely
clustered in time, we have observed that false-positive packets can also be temporally
clustered. Thus, the experiments in this paper, which all use normal data in the original
order of occurrence, present a more challenging test for LISYS. Also, we performed less
filtering of highly variable data-paths such as incoming http connections.

Although the successive versions of packet-hash performed worse than LISYS’ av-
erage score (to a statistically significant degree), LISYS’ performance was much more
variable (see scatterplot in figure 12). In cases where the performance level of packet
hash is acceptable, it’s greater consistency would be an advantage over LISYS. How-
ever, LISYS’ consistency could likely be improved with further research. In particular, if
a way were found to filter out lower performing points (e.g., using evolutionary meth-
ods to eliminate poor secondary representations) early on, LISYS’ mean performance
would increase significantly.

In assessing implications of the experiments, how parameters were tuned is an im-
portant issue. One one hand, it was encouraging was that LISYS yielded reasonable
performance in this next context after very little adjustment to the parameters used
by Hofmeyr. However, these experiments did not follow the strictest methodology in
that results from using the full data set, attacks and all, were used to guide parame-
ter adjustment. In machine-learning terms, full cross-validation was not performed.
Were an IDS deployed in a production context, what would be available for parameter

28 Evolutionary Computation Volume x, Number x

LISYS

tuning would be a sample of normal data along with, perhaps, some sample attacks.
After tuning, the true value of the system would be calculated from its performance
on subsequent normal data along with any attacks which occurred. Thus, the fact that
the results reported here are for the same data set on which the parameters were tuned
does limit our ability to predict how well LISYS might perform in a production context.

This shortcoming is mitigated by the fact that the parameter adjustments were
minimal and only involved two out of the many parameters in LISYS. The tuning was
directed towards false positives, and only those parameters most relevant to this issue
were adjusted. However, a stricter cross-validation methodology would be an impor-
tant feature in future experiments.

6.2 Extensions to LISYS

Since the original LISYS experiments were conducted, switched networks have become
much more prevalent. There are many ways LISYS might be adapted to switched net-
works. Hosts could share SYN packet headers with each other, either through the
switched network or through a secondary, dedicated broadcast network (loosely analo-
gous to the biological lymph system). A second option would be to deploy LISYS in the
switch, which would likely work well, although it would turn LISYS into a centralized
system. Perhaps the simplest approach would be to do nothing, allowing the detectors
on each host to see only the traffic relevant to that host. This would reduce redundancy
of coverage provided by multiple hosts examining the same data, but could lead to an
interesting form of diversity. Technology continues to change, and the spread of wire-
less networks now presents even greater challenges and opportunities for configuring
LISYS in a network environment.

Another LISYS design decision carried over into this paper is the focus on TCP
SYN packets, and in particular on the data-path triple of sender, receiver, and target
port. Although there are certainly many attacks that cannot be caught at the SYN-
packet level, there are the advantages of simplicity and efficiency, as well as allowing
comparisons with earlier results. LISYS performs surprisingly well, even with such a
limited data stream. The restriction to SYN packets in LISYS is not hard-wired, and the
system could be easily extended to other aspects of network traffic. Although LISYS
performs well in the SYN-packet domain, some of the attacks we studied would likely
be caught by other, less adaptive mechanisms such as signature scanners.

LISYS models the adaptive immune system. In nature, the adaptive immune sys-
tem works together with the innate immune system. The innate immune system copes
with attacks that do not require adaptation in an organism’s lifetime—that is, those that
are stable enough that evolution has adapted to them. For instance, because there are
particular polysaccharides bacteria are obliged to express, the innate immune system
has hardwired detectors for them. It is impressive that LISYS can learn to catch attacks
which make use of completely unused ports or exhibit other obvious attack signatures,
but following the natural immune system, it would be interesting to integrate LISYS
with an analog of the innate immune system, i.e. a signature-based IDS such as Snort
(Caswell and Roesch,).

7 Conclusions

In conclusion, the work reported in this paper had three complementary goals: To ex-
tend the empirical evaluation of LISYS’ performance to new and more challenging data
sets, to deepen our understanding of the contributions made by each component of
LISYS to its overall performance, and to connect LISYS with the broader context of

Evolutionary Computation Volume x, Number x 29

LISYS

machine learning.
We described experiments with a new data set and found that LISYS performed

well with minimal tuning of its original parameters. When we studied the relative con-
tributions of the many components of LISYS’ architecture, we found that nearly every
component positively affects performance. We also examined the various LISYS com-
ponents in a machine-learning context. We conclude that many of the components that
help LISYS perform well in the intrusion-detection domain could prove valuable in
other challenging ML domains which involve one-class learning, concept-drift, and/or
on-line learning. These components include: co-stimulation and memory detectors,
rolling coverage; activation thresholds and sensitivity levels, r-contiguous bits match-
ing, and secondary representations.

Co-stimulation is a mechanism for incorporating feedback from an expert teacher
during system operation, and memory detectors are a mechanism for storing this feed-
back for future use. Together, they enhance LISYS’ capacity for on-line learning and ex-
tend LISYS beyond a strict one-class learning framework. Rolling coverage addresses
concept drift. In contrast with fixed- and adaptive-window schemes, the probabilis-
tic deletion and regeneration of detectors produces a window which is probabilistic,
decaying gradually with time. Coupled with co-stimulation, the window size is also
adaptive. Activation thresholds and sensitivity levels bias the system against occa-
sional or sporadic alarms and towards high-frequency bursts of anomalies. The princi-
pal role of these mechanisms is to reduce false positives. Similar mechanisms may be
useful in other anomaly-detection domains where some stream of data is being mon-
itored, particularly when false positives are costly. The r-contiguous bits matching
rule was found to be more powerful than Hamming distance matching in LISYS. r-
contiguous bits matching permits more fine-grained distinctions to be made between
self and non-self (Esponda et al., 2004), and may provide for a form of automatic fea-
ture selection (Esponda et al., 2004). Another attractive property of bit-based matching
rules such as r-contiguous bits is that they are easily and efficiently implemented in
digital logic circuits (Bradley and Tyrell, 2001). Multiple representations are currently
used to increase overall coverage and reduce generalization. In the future, they may be
used to tune inductive bias, i.e. learning to learn (Pratt and Jennings, 1997).

The LISYS system incorporates several different learning mechanisms, some of
which we understand better than others. Negative vs. positive detection and r-
contiguous matching have both been theoretically analyzed. In this paper we have
begun the process of understanding the remaining mechanisms, although an important
area of future work is to characterize formally activation thresholds, on-line learning,
and the effect of permutations.

LISYS was designed to operate in an environment in which false positives are
known to be a significant problem. As we showed in the analysis of LISYS’ induc-
tive bias, many of the learning algorithms in LISYS support this bias. Returning to
the ARTIS framework mentioned in the introduction, it will be interesting to see how
ARTIS performs in other settings where false positives may not be critical.

Acknowledgments

The authors gratefully acknowledge the support of the National Science Foundation
(grants ANIR-9986555, CCR-0311686, and DBI-0309147), Defense Advanced Projects
Agency (grants AGR F30602-00-2-0584 and F30602-02-1-0146), the Intel Corporation,
and the Santa Fe Institute.

Many people contributed to LISYS and made helpful comments and advice over

30 Evolutionary Computation Volume x, Number x

LISYS

the past three years, including Dennis Chao, Fernando Esponda, Paul Helman, Hajime
Inoue, Steven Hofmeyr, Todd Kaplan, Anil Somayaji, and Jason Stewart.

References

Anchor, K. P., Zydallis, J. B., Hunch, G. H., and Lamont, G. B. (2002). Extending the
computer defense immune system: Network intrusion detection with a multiobjec-
tive evolutionary programming approach. In Timmis, J. and Bentley, P. J., editors,
Proceedings of the 1st International Conference on Artificial Immune Systems (ICARIS),
pages 12–21, University of Kent at Canterbury. University of Kent at Canterbury
Printing Unit.

Anderson, D., Frivold, T., , and Valdes, A. (1995). Next-generation intrusion detection
expert system (nides): A summary. Technical Report SRI-CSL-95-07, Computer
Science Laboratory, SRI International, Menlo Park, CA.

Angluin, D. (1980). Inductive inference of formal languages from positive data. Infor-
mation and Control, 45(2):117–135.

Axelsson, S. (2000). The base-rate fallacy and the difficulty of intrusion detection. ACM
Transactions on Information and System Security, 3(3):186–205.

Balasubramaniyan, J., Garcia-Fernandez, J. O., Spafford, E. H., and Zamboni, D. (1998).
An architecture for intrusion detection using autonomous agents. Technical Report
Coast TR 98-05, Purdue University.

Balthrop, J., Esponda, F., Forrest, S., and Glickman, M. (2002a). Coverage and general-
ization in an artificial immune system. In GECCO-2002: Proceedings of the Genetic
and Evolutionary Computation Conference.

Balthrop, J., Forrest, S., and Glickman, M. (2002b). Revisiting lisys: Parameters and nor-
mal behavior. In CEC-2002: Proceedings of the Congress on Evolutionary Computing.

Bradley, D. W. and Tyrell, A. M. (2001). The architecture for a hardware immmune
system. In Proceedings of the 3rd NASA/DoD Workshop on Evolvable Hardware, pages
193–200.

Caruana, R. A. and Schaffer, J. D. (1988). Representation and hidden bias: Gray vs.
binary coding for genetic algorithms. In MACHLERN5, San Mateo, California.
Morgan Kaufmann.

Caswell, B. and Roesch, M. Snort: The open source network intrusion detection system.
http://www.snort.org/, Downloaded 2003.

Chao, D. (2001). Personal Communication.

Dasgupta, D. (1999). Immunity-based intrusion detection system: A general frame-
work. In Proceedings of the 22nd National Information Systems Security Conference.

Dasgupta, D. and Gonzalez, F. (2002). An immunity-based technique to characterize
intrusions in computer networks. IEEE Transactions on Evolutionary Computation,
6(3).

Debar, H., Dacier, M., and Wespi, A. (1999). Towards a taxonomy of intrusion-detection
systems. Computer Networks, 31(8):361–378.

Evolutionary Computation Volume x, Number x 31

LISYS

Dowell, C. and Ramstedt, P. (1990). The computerwatch data reduction tool. In Pro-
ceedings of the 13th National Computer Security Conference.

Egan, J. P. (1975). Signal Detection Theory and ROC Analysis. Academic Press, New York.

Esponda, F., Forrest, S., and Helman, P. (2004). A formal framework for positive and
negative detection schemes. IEEE Transactions on System, Man, and Cybernetics,
34(1):357–373.

Forrest, S., Perelson, A. S., Allen, L., and kuri, R. C. (1994). Self-nonself discrimination
in a computer. In Proceedings of the 1994 IEEE Symposium on Research in Security and
Privacy, Los Alamitos, CA. IEEE Computer Society Press.

Gaffney, J.E., J. and Ulvila, J. (2001). Evaluation of intrusion detectors: a decision theory
approach. In 2001 IEEE Symposium on Security and Privacy. S&P 2001, 14–16 May
2001, Oakland, CA, USA, pages 50–61, Los Alamitos, CA, USA. IEEE Computer
Society.

Gold, E. (1967). Language identification in the limit. Information and Control, 10:447–474.

Gomez, J., Fonzalez, F., and Dasgupta, D. (2003). An immuno-fuzzy approach to
anomaly detection. In Proceedings of the 2003 IEEE International Conference on Fuzzy
Systems. IEEE Press.

Heberlein, L. T., Dias, G. V., Levitte, K. N., Mukherjee, B., Wood, J., and Wolber, D.
(1990). A network security monitor. In Proceedings of the IEEE Symposium on Security
and Privacy. IEE Press.

Helman, P. and Liepins, G. (1993). Statistical foundations of audit trail analysis for the
detection of computer misuse. IEEE Transactions on Software Engineering, 19(9):886–
901.

Helmbold, D. P. and Long, P. M. (1991). TRACKING DRIFTING CONCEPTS BY MIN-
IMIZING DISAGREEMENTS. Machine Learning, 14:27–45.

Hofmeyr, S. (1999). An immunological model of distributed detection and its application to
computer security. PhD thesis, University of New Mexico, Albuquerque, NM.

Hofmeyr, S. and Forrest, S. (2000). Architecture for an artificial immune system. Evolu-
tionary Computation Journal, 8(4):443–473.

Holland, J., Holyoak, K., Nisbett, R., and Thagard, P. (1986). Induction: Processes of
Inference, Learning, and Discovery. MIT Press.

ISS (2000). RealSecure Product Datasheet. Internet Security Systems, Atlanta, GA.
Available at http://www.iss.net/customer care/resource center/pro
duct lit/.

Kim, J. and Bentley, P. (1999a). The artificial immune model for network intrusion
detection. In 7th European Conference on Intelligent Techniques and Soft Computing
(EUFIT’99), Aachen, Germany.

Kim, J. and Bentley, P. (1999b). Negative selection and niching by an artificial immune
system for network intrusion detection. In GECCO-99: Proceedings of the Genetic
and Evolutionary Computation Conference, pages 149–158.

32 Evolutionary Computation Volume x, Number x

LISYS

Kim, J. and Bentley, P. J. (2001). An evaluation of negative seelection in an artificial
immune system for network intrusion detection. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), pages 1330–1337, San Francisco, CA.
Morgan-Kauffman.

Kim, J. and Bentley, P. J. (2002a). Immune memory in the dynamic clonal selection
algorithm. In Timmis, J. and Bentley, P. J., editors, Proceedings of the 1st International
Conference on Artificial Immune Systems (ICARIS), pages 59–67, University of Kent
at Canterbury. University of Kent at Canterbury Printing Unit.

Kim, J. and Bentley, P. J. (2002b). A model of gene library evolution in the dynamic
clonal selection algorithm. In Timmis, J. and Bentley, P. J., editors, Proceedings of the
1st International Conference on Artificial Immune Systems (ICARIS), pages 182–189,
University of Kent at Canterbury. University of Kent at Canterbury Printing Unit.

Klinkenberg, R. and Joachims, T. (2000). Detecting concept drift with support vector
machines. In Langley, P., editor, Proceedings the 17th International Conference on Ma-
chine Learning, pages 487–494. Morgan Kaufmann.

Lane, T. D. (2000). Machine Learning Techniques for the Computer Security Domain of
Anomaly Detection. PhD thesis, Purdue University, West Lafayette, IN.

McHugh, J. (2000). The 1998 Lincoln Laboratory IDS evaluation—a critique. In Debar,
H., Me, L., and Wu, S., editors, Recent Advances in Intrusion Detection. Third Inter-
national Workshop, RAID 2000, 2–4 Oct. 2000, Toulouse, France, pages 145–61, Berlin,
Germany. Springer-Verlag.

Mitchell, T. (1997). Machine Learning. McGraw Hill.

Mitchell, T. M. (1980). The need for biases in learning generalizations. Technical Report
CBM-TR-117, Rutgers University, New Brunswick, New Jersey.

Mitchell, T. M., Caruana, R., Freitag, D., McDermott, J., and Zabowski, D. (1994). Expe-
rience with a learning personal assistant. Communications of the ACM, 37(7):80–91.

Muggleton, S. (1996). Learning from positive data. In Proceedings of the 6th International
Workshop on Inductive Logic Programming, volume 1314 of Lecture Notes in Artificial
Intelligence, pages 358–376. Springer-Verlag.

Mukherjee, B., Heberlein, L. T., and Levitt, K. N. (1994). Network intrusion detection.
IEEE Network, pages 26–41.

NIST (2003). An overview of issues in testing intrusion detectin systems. NIST IR 7007.

Percus, J. K., Percus, O., and Perelson, A. S. (1993). Predicting the size of the antibody
combining region from consideration of efficient self/non-self discrimination. Pro-
ceedings of the National Academy of Science, 90:1691–1695.

Pinker, S. (1984). Language learnability and language development. Harvard University
Press.

Porras, P. and Neumann, P. G. (1997). Emerald: Event monitoring enabling responses
to anomalous live disturbances. In Proceedings of the National Information Systems
Security Conference.

Evolutionary Computation Volume x, Number x 33

LISYS

Pratt, L. and Jennings, B. (1997). A survey of connectionist network reuse through
transfer. In Thrun, S. and Pratt, L., editors, Learning to Learn, chapter 2. Kluwer
Academic Publishers.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1987). Learning internal represen-
tations by error propagation. In Rumelhart, D. E., McClelland, J. L., et al., editors,
Parallel Distributed Processing: Volume 1: Foundations, pages 318–362. MIT Press,
Cambridge.

Smaha, S. E. (1988). Haystack: An intrusion detection system. In Proceedings, IEEE
Fourth Aerospace Computer Security Applications Conference.

Squid. Squid web proxy cache. http://www.squid-cache.org/, Downloaded
2003.

Williams, P., Anchor, K., Bebo, J., Gunsch, G., and Lamont, G. (2001). Cdis: Towards a
computer immune system for detecting network intrusions. In Lee, W., Mé, L., and
Wespi, A., editors, RAID 2001, volume 2212 of Lecture Notes in Computer Science,
pages 117–133, Berlin. Springer-Verlag.

34 Evolutionary Computation Volume x, Number x

