
Evolving Software Traders and
Detecting Community Structure in

Financial Markets

by

Todd D. Kaplan

A.B., Biology, Brown University, 1993
Diploma, Computer Science, Cambridge University (UK), 1996

M.Sc., Applied Mathematics, Oxford University (UK), 2002

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

May, 2011

c©2011, Todd D. Kaplan

iii

Dedication

I dedicate this work to my grandparents – Henrietta and Ralph Kaplan along with

Morris and Edith Lotner – all of whom passed during this endeavor. If not for their

love and sacrifices, this journey would not have been possible. I also memorialize

my friend Jonathan Collins Hoare, whose grace, friendship, and spirit are not

forgotten by those he touched.

iv

Acknowledgments

Firstly, I would like to thank my committee. My chair, Stephanie Forrest, kept
her faith in me despite trying moments. She provided me the academic freedom to
explore and find my own path – and, in the end, she helped me reach the finish
line. For both, I am grateful. Before starting my Ph.D., I had read a book about
Doyne Farmer – it insprired me to undertake this journey. It was a privilege to work
with him and he helped me improve myself from scientific tourist to practitioner.
Cristopher Moore and Terran Lane both provided needed encouragement at key
times.

The Adaptive Computation Group at the University of New Mexico, led by
Stephanie Forrest, has been my home for quite some time. A lot of the names
and faces have changed and there are many to thank. I greatly credit our weekly
seminar meetings for helping me develop both as a scientist and a colleague.

I would not have reached this goal without the friendship and mentorship of
my good friend Derek J. Smith. From Albuquerque to Las Vegas to California to
England, he made science “fun”. I had a Neuroscience professor at Brown University
that deemed himself a “neuro cowboy”. In that light, I nominate Derek for the title
of “computation cowboy”. Derek taught me that no question is too simple. Oh, and
D, they call it a “court”, not a “pitch”. And, each team has five players on the court
at all times.

Fernando “Don Futbol” Esponda deserves many thanks. His friendship and scien-
tific comradery helped me persevere. However, I must qualify this acknowledgment:
Nando’s theory that tequila cures the common cold is a farce. Certainly, do not
apply the methodology the night before delivering a talk.

Finally, I would like to thank the University of New Mexico Center for High Per-
formance Computing for providing computational cycles to conduct the experiments.

v

Evolving Software Traders and
Detecting Community Structure in

Financial Markets

by

Todd D. Kaplan

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

May, 2011

Evolving Software Traders and
Detecting Community Structure in

Financial Markets

by

Todd D. Kaplan

A.B., Biology, Brown University, 1993

Diploma, Computer Science, Cambridge University (UK), 1996

M.Sc., Applied Mathematics, Oxford University (UK), 2002

Ph.D., Computer Science, University of New Mexico, 2011

Abstract

A trophic network, commonly referred to as a food web, describes the feeding rela-

tionships between different groups of species in an ecosystem. Ecologists construct

trophic networks to aid their understanding of ecosystems. In the realm of financial

markets, trophic networks can serve an analogous role. Their use could potentially

illuminate underlying dynamics responsible for commonly observed macro-level phe-

nomena. For example, one might hypothesize that periods of market volatility occur

after a keystone trader species becomes inactive and the trophic network subse-

quently restructures itself. The primary topic in this research investigates whether

it is possible to detect trophic structure within real-world financial markets. Sec-

ondarily, the efficacy of using genetic programming to evolve software traders in a

simulated stock market (continuous double auction) is examined.

vii

The research to follow is split into three parts. In Part I, new tools for detecting

community structure in complex networks are developed. First, a two-phase macro-

strategy for community detection is introduced. The approach is unique in that

it can be used in combination with any existing community detection algorithm to

provide high-yield, robust results. Second,the resolution limit inherent to the com-

munity structure measurement known as modularity is illustrated experimentally.

To overcome this limitation, a fine-granularity community structure measure called

divisionality is developed. Third, a dual-assortative measure (DAMM) of commu-

nity structure is established. DAMM extends the domain of networks that can be

analyzed for community structure to include those with negatively weighted edges.

Part II focuses on the evolution of software agents that compete in an artificial

financial market. The evolutionary framework is based on a stack-based language

(Staq) that was developed for genetic programming (GP). The genetic programs of

two evolved agents, each based on a different fitness function, are examined. One

of these evolved traders, known as clear & hoist (CH), reveals a limitation of the

simulated market: a lack of fundamentalism. Two value-based strategies are devel-

oped to address this shortcoming. The effect of each strategy on the CH trader is

independently examined.

In Part III, the community structure tools developed in Part I are used to de-

tect trophic species in financial market data. After introducing the trophic detec-

tion algorithm, a methodology for assessing the significance of detected structure is

described. The efficacy of the approach is demonstrated using simulated data. Fi-

nally, real-world data from the London Stock Exchange (LSE) is examined using the

trophic detection framework. Although significant structure is detected in subsets

of the real-world data, the results are inconsistent. However, given limitations of

the LSE data, the lack of consistent detection is not surprising. Most notably, each

trader in this data represents an entity acting on the behalf of many individuals and

viii

institutions having different strategies. Due to this aggregation, the trading actions

of individuals are obfuscated and thus the trophic structure is as well. Examination

of real-world data with greater specificity – detailing trades at the level of individuals

– is warranted.

ix

Contents

List of Figures xvi

List of Tables xix

Glossary xxi

1 Introduction 1

2 Literature Review 7

2.1 Tools for detecting community structure in complex networks 7

2.2 Evolving traders in a simulated financial market 9

2.2.1 Genetic programming (GP) 9

2.2.2 Santa Fe Artificial Stock Market (SFASM) 10

2.2.3 Genetic programming applied to finance 10

2.2.4 Zero-intelligence traders . 12

2.2.5 Automated Trading Projects 13

x

Contents

2.2.6 Fundamentalism . 14

2.3 Recovery of trophic species in financial market data using community

detection . 15

I Tools for detecting community structure in complex

networks 17

3 Community detection optimization with induced fractures and

merges 18

3.1 Introduction . 18

3.1.1 Contribution . 19

3.1.2 Simple illustrative example . 21

3.1.3 Advantages of the macro-strategy algorithm 23

3.2 Methods . 24

3.2.1 Divisive algorithms . 24

3.2.2 Agglomerative methods . 28

3.3 Results . 30

3.3.1 High yield . 30

3.3.2 Robustness . 32

3.3.3 Speed . 33

3.4 Summary and conclusions . 35

xi

Contents

4 Divisionality: a measure for fine granularity community structure 43

4.1 Introduction . 43

4.1.1 An example . 44

4.2 Methods . 46

4.2.1 Mathematical definition of divisionality 46

4.2.2 Mathematical comparison to modularity 48

4.3 Results . 49

4.3.1 Major League Baseball (2005) 50

4.3.2 National Football League (2005) 52

4.3.3 National Basketball Association (2006) 53

4.3.4 National Hockey League (2004) 54

4.3.5 NCAA Football (2005) . 55

4.3.6 NCAA Basketball (2006) . 56

4.4 Concluding remarks . 58

5 A dual assortative measure of community structure 63

5.1 Introduction . 63

5.2 Methods . 66

5.2.1 The dual assortative modularity measure 66

5.2.2 Optimizing DAMM with the extremal optimization algorithm 69

5.2.3 Measuring communal overlap 72

xii

Contents

5.3 Experimental Results . 73

5.3.1 Experiment I: independent contributions of positive and neg-

ative edges . 73

5.3.2 Experiment II: the impact of false positives and false negatives 76

5.3.3 Experiment III: 2005 National Football League schedule . . . 80

5.4 Summary and conclusions . 84

II Evolving traders in a simulated financial market 89

6 Evolving traders in an artificial market ecosystem 90

6.1 Introduction . 90

6.2 Defining the market ecosystem . 91

6.2.1 The environmental infrastructure: a continuous double auction 91

6.2.2 The organisms . 92

6.3 Genetic programming framework . 95

6.3.1 Genetic programming architecture 95

6.3.2 Staq: A stack-based GP language 97

6.4 Experimental results . 100

6.4.1 Experiment I: Sharpe ratio inspired fitness 101

6.4.2 Experiment II: Inventory controlled fitness function 106

6.5 Summary & conclusions . 110

xiii

Contents

7 Incorporating fundamentalism 118

7.1 Motivation . 118

7.2 Methods . 119

7.2.1 Dynamic value process . 119

7.2.2 A value-based limit order noise trader (VLONT) process . . . 120

7.2.3 A value trader for the CDA 121

7.3 Results . 124

7.3.1 Value LONT results . 125

7.3.2 Value trader results . 126

7.4 Discussion . 128

III Recovery of trophic species in financial market data

using community detection 139

8 Recovery of trophic species from financial market data 141

8.1 Methods . 142

8.1.1 Temporal detection of trophic species 142

8.1.2 Testing the significance of the detected trophic structure . . . 146

8.2 Results . 148

8.2.1 Trophic detection on simulated data 149

8.2.2 Trophic detection on LSE Shell data 154

xiv

Contents

8.3 Discussion . 157

9 Discussion & conclusions 164

A Appendix for Community detection optimization with induced

fractures and merges 169

A.1 Calculating ∆Qu and ∆2Qum . 169

A.2 Divisive results . 170

A.3 Agglomerative results . 171

A.4 Evolution of community detection algorithms 172

B Appendix for A dual assortative measure of community structure173

B.1 Derivation of ∆QD,u . 173

B.2 Derivation of ∆2QD,um . 178

References 182

xv

List of Figures

3.1 Comparison of agglomerative to divisive approach. 20

3.2 Karate club network. 22

3.3 Karate club dendrogram. 38

3.4 Comparison of modularity values for karate network. 39

3.5 Illustration of an induced merge for divisive approach. 40

3.6 Illustration of an induced fracture for an agglomerative approach. . . 41

3.7 Comparison of modularity versus time for the email network. 42

4.1 Community structure for the 2005 Major League Baseball schedule

network based on modularity optimization. 59

4.2 Schedule composition for the different leagues. 60

4.3 Community structure for the 2005 Major League baseball schedule

network based on divisionality optimization. 61

4.4 Dendrogram of the MLB 2005 schedule network based on divisional-

ity optimization. 62

xvi

List of Figures

5.1 Comparison of networks with different types of assortativity. 85

5.2 Community overlap comparison for computer generated networks. . 86

5.3 Comparison of false positives and false negatives. 87

5.4 Community overlap measures for the 2005 NFL schedule network. . 88

6.1 Illustration of the limit order book. 93

6.2 Overview of the GP architecture. 111

6.3 Mechanics of a short Staq program. 112

6.4 Storyboard for the clear & hoist agent. 113

6.5 GP fitness of the clear & hoist agent. 114

6.6 Performance of the clear & hoist agent. 115

6.7 Illustration of the market maker strategy. 116

6.8 Performance of the market maker GP agent. 117

7.1 Comparison of how the LONT and VLONT traders choose limit prices.131

7.2 Mechanics of the value trader strategy. 132

7.3 Value vs. price for the VLONT trader. 133

7.4 Clear & hoist trader in a market inhabited by the the VLONT and

MONT traders. 134

7.5 Comparison of midpoint price to perceived value for the value trader. 135

7.6 Performance of the value trader in a market inhabited by the LONT

and MONT traders. 136

xvii

List of Figures

7.7 Clear & hoist performance in a market inhabited by the VT, LONT,

and MONT traders. 137

7.8 Performance of the GP evolved market maker in a market environ-

ment inhabited by the LONT, MONT, and VT traders. 138

8.1 Two-dimensional trophic community plots for an analysis with E =

20000 and W = 100. 159

8.2 Two-dimensional trophic community plots for an analysis using a

single indicator based on net trading. 160

8.3 Trophic detection results for the simulated data. 161

8.4 Lifespan of traders in the LSE Shell data. 162

8.5 Trophic detection results for the LSE Shell data. 163

xviii

List of Tables

3.1 Advantages and empirical measurements for assessing the efficacy of

the macro-strategy. 24

3.2 Comparison of ratio indicators for extremal optimization (EO), de-

terministic division (DD), and CNM agglomeration (CNM). 32

3.3 Time ratios of EO to DD. The computed ratio compares the time at

which EO reaches the maximum modularity value attained by DD

to the DD time required. 35

4.1 Comparison of divisionality and modularity values 50

5.1 Results for false positives and negatives. 79

6.1 General experimental parameters. 101

7.1 Value trader parameters . 122

7.2 Thresholds for value trader strategy activation 122

8.1 An example strategy matrix for a trend trader based on the last two

price movements. 150

xix

List of Tables

A.1 Results for extremal optimization. 171

A.2 Results for deterministic division. 171

A.3 Results for the CNM agglomerative algorithm. 171

A.4 Best modularity results from existing literature. 172

xx

Glossary

agglomerative algorithm A community structure algorithmic approach whereby

each node is initially declared to comprise an independent commu-

nity. Thereafter, on each step of the algorithm, two communities are

joined. The algorithm halts once it is no longer possible to improve

the prescribed community structure measure. When viewing a den-

drogram, an agglomerative algorithm follows a bottom-up approach.

ask price The highest buy price at any time t. Denoted as a(t).

assortativity The tendency for nodes to be attached to other nodes that are like

(or unlike) them in some way.

bid price The lowest selling price at any time t. Denoted as b(t).

continuous double auction (CDA) The continuous double auction is the most

widely used market clearing mechanism in modern financial mar-

kets. The auction is considered double because traders can submit

both buy and sell orders, and it is considered continuous because

traders may submit orders at any time. Orders supplied to the CDA

are cleared using a limit order book (LOB). Figure 6.1 illustrates a

LOB.

xxi

Glossary

clustered volatility Refers to large market price swings grouped within a short time

period.

CNM An agglomerative algorithm introduced by Clauset, Moore, and New-

man [11].

communal overlap A measure of similarity between known and detected communi-

ties that I develop in section 5.2.3. Denoted as Ω.

deterministic division (DD) Deterministic division is a divisive community detec-

tion algorithm that I establish in section 3.

degree The number of edges connected to a node. In a directed network,

degree is sub-classified into in-degree and out-degree.

dendrogram A tree-like representation of the hierarchical organization of data; in

the context of networks, the vertices of the network are arranged as

the leaves of the tree, with the branches of the tree denoting their

hierarchical clustering. Can be drawn in either Cartesian or polar

coordinates.

divisionality A fine-granularity measure of community structure that I developed.

Divisionality is introduced in Chapter 4. It is denoted as D.

divisive algorithm A community structure algorithmic approach whereby all nodes

are initially placed into a single community. Thereafter, each com-

munity is recursively divided until an improvement in the prescribed

community structure measure can no longer be improved. At that

point, a community is declared indivisible. Once all communities

have been declared indivisible, the algorithm halts. When viewing a

dendrogram, a divisive algorithm follows a top-down approach.

xxii

Glossary

extremal optimization (EO) Extremal optimization is a stochastic algorithm which

is used in this dissertation to optimize measures of community struc-

ture (e.g. modularity or divisionality).

fundamentalist A trader that trades according to discrepancies in the perceived

value of a stock and the market price. If the trader believes a stock

is undervalued, it is inclined to buy in anticipation that the price

will rise. If the trader believes a stock is overvalued, the trader is

inclined to sell. A fundamentalist is sometimes referred to as a value

trader.

limit order book (LOB) The data structure used in a CDA to cache limit orders.

Orders are prioritized first by price and then by time.

limit order An that order specifies the following fields: the quantity of shares to

be traded, whether to buy or sell, a limit price, and an expiration

time. Limit orders do not generate immediate transactions. Rather,

they are cached on a limit order book according to price and time of

arrival.

liquidity The ability of a market to accept large transaction with minimal to

no impact on price stability.

LONT A noise trader that places limit orders only.

LSE London Stock Exchange.

market order Market orders specify only two fields: the quantity of shares to be

traded and whether to buy or sell. Significantly, market orders do

not designate a transaction price. Market trigger immediate trans-

actions. The transaction price is dictated by the best available price

on the opposing side of the limit order book.

xxiii

Glossary

midpoint price The midpoint of the bid and ask prices, p(t) = a(t)+b(t)
2

. It is com-

monly used as an approximation of the market price.

modularity A statistical measure of community structure proposed by Newman

and Girvan that is widely adopted in the complex network commu-

nity. It is denoted as Q.

MONT A noise trader that places market orders only.

mutual information An information theoretic concept that measures the mutual

dependence of two random variables.

market maker A trader that simultaneously buys and sells with the intent of secur-

ing a roundtrip profit. The market maker enacts the proverb “buy

low, sell high”.

noise trader A trader that places market orders according to a stochastic process.

Also referred to as a zero-intelligence trader. Introduced in Chapter

6.

spread The gap between the bid and ask prices, denoted as s(t) = a(t)−b(t).

Staq A stack-based language that I designed for genetic programming.

Staq provides functionality for both extensible data types and dy-

namic function creation.

symmetric uncertainty A normalized variant of mutual information.

trend trader A trader that places market orders based on patterns observed in

market data. In the context of this work, trend traders place orders

based on patterns of past price movements. Sometimes referred to

as technical traders. Introduced in chapter 8.

xxiv

Glossary

trophic species Ecologically, trophic species are functional groups containing organ-

isms that both consume and are consumed by identical species within

a food web. Trophic species differ from taxonomic species, which are

grouped according to morphology.

trophic web A network used to describe the feeding relationships between differ-

ent species within an ecosystem. Commonly referred to as a food

web.

value trader See fundamentalist.

VLONT A limit order placing noise trader that maintains a perceived value

of the asset being traded. The trader uses this value to establish the

prices at which it places orders.

zero-intelligence trader See noise trader.

xxv

Chapter 1

Introduction

A stock market resembles an ecosystem [15]. An ecosystem is defined by the inter-

action of its organisms and the environment. In financial markets, the organisms

are traders and the environment is defined by the state of the market through which

traders interact. Feedback loops exist between organisms and their environment.

Traders affect their environment through trades. Changes in the market environ-

ment affect future decisions of traders. Ecosystems, as well as financial markets,

display many of the traits associated with a complex adaptive system [32]: aggrega-

tion, adaptation, feedback loops, and nonlinearity.

A trophic network, commonly referred to as a food web, describes the feeding re-

lationships between different groups of species in an ecosystem. Ecologists construct

trophic networks to aid their understanding of ecosystems. In the realm of financial

markets, trophic networks can serve an analogous role. Their use could potentially

illuminate underlying dynamics responsible for commonly observed macro-level phe-

1

Chapter 1. Introduction

nomena1. For example, one might hypothesize that periods of clustered volatility2

occur after a keystone trader species3 becomes inactive and the trophic network

subsequently restructures itself. The main objective of my research investigates the

following question: is it possible to detect trophic structure within a real-world fi-

nancial market? Secondarily, I examine the efficacy of using genetic programming to

evolve software traders in a simulated continuous double auction4.

The material presented in this dissertation is split into three parts. Part I intro-

duces new algorithms and statistical measures for detecting community structure in

complex networks. Part II focuses on the evolution of software agents that compete

in an artificial financial market. Part III represents a confluence of the first two

parts; I use the tools developed in Part I to analyze financial market data with the

objective of unveiling trophic structure. Below, I introduce the content chapters to

follow. Chapter 2 provides a literature review; Chapter 9 summarizes and concludes.

As noted, Part I focuses on tools for community detection in complex networks.

Networks are comprised of nodes and edges. Nodes represent independent entities.

Edges, which may or may not be weighted, represent interactions between nodes. For

example, consider a friendship network. Here, people are represented with nodes.

Friendships between individuals are represented by edges. The term “complex net-

work” refers to a network that has non-trivial topological properties. A lattice, which

has roughly the same degree (number of connected edges) at each node, is not consid-

1Basic stylized facts [22] commonly ascribed to financial markets include: fat-tailed
probability distributions of price returns, fast decay of autocorrelation of price returns, slow
decay of autocorrelation of absolute value of price returns, slow decay of autocorrelation
of square of price returns, and clustered volatility.

2Clustered volatility refers to the phenomena of large price swings occurring in a short
time span.

3A species critical to the operation of an ecosystem. In a biological setting, one example
is that of the field vole, the main prey of very wide predators of woodland edges and
farmland, such as barn owls.

4See glossary for explanation.

2

Chapter 1. Introduction

ered a complex network because it has trivial topological structure. Characteristics

commonly ascribed to complex networks include heavy-tail degree-distribution [37],

high clustering coefficient [37], small geodesic distance [37], assortativity of node

connections [36] [35], and the presence of community structure [40].

Community structure within a complex network refers to the existence of groups

of nodes that are highly connected – more highly connected than had edges of the

network been randomly distributed. For example, in a friendship network, a group

of people demonstrating a greater than expected number of friendships could be

considered a community. The task of community detection involves two important

components. First, a mathematical definition of community must be determined.

Without such a measure, it would be impossible to quantify the success of detection.

Second, an algorithm for the detection process is required. In the three chapters

of Part I, I address limitations in the existing tools for community detection and

propose improvements.

Chapter 3 presents a two-phase strategy for the detection of communities in

complex networks. In the first phase, any of the existing algorithms for community

detection are applied. In the second phase, the initial result is optimized by inducing

fractures (for divisive approaches), or merges (for agglomerative approaches), in the

detected communities and then optimizing the resulting constituents. I demonstrate

that the two-phase approach achieves consistent, high yield results. Using the second

phase alone, it is possible to incrementally improve upon an existing community

detection result. As a final contribution, I introduce a divisive algorithm, called

deterministic division, that provides fast, high yield results when used in combination

with the macro-strategy.

In Chapter 4, I demonstrate experimentally that modularity suffers from a res-

olution limit. Because of this limit, optimization of modularity only detects coarse-

granularity community structure. I introduce a new measure of community structure,

3

Chapter 1. Introduction

called divisionality, that allows for the detection of fine-granularity community struc-

ture. The efficacy of the two measurements is demonstrated and compared on graphs

with known structure.

Current community detection algorithms operate by optimizing a statistic called

modularity, which analyzes the distribution of positively weighted edges in a net-

work. Modularity does not account for negatively weighted edges. In Chapter 5,

I introduce a dual assortative modularity measure (DAMM) that incorporates both

positively and negatively weighted edges. After defining and explaining the DAMM

statistic, its utility is illustrated using a community detection algorithm. I evaluate

the efficacy of the algorithm on both computer generated and real-world networks,

showing that DAMM broadens the domain of networks that can be analyzed by

community detection algorithms. Additionally, I introduce a statistic called com-

munal overlap, which measures the similarity between known and detected sets of

communities.

In Part II, I shift focus from complex networks to financial markets. These

two chapters (6 and 7), provide stepping stones towards coevolving a population of

traders. In Chapter 6, I describe a stack-based genetic programming implementation

for evolving market trading strategies. A generational genetic programming approach

is used to evolve a single trader that can regularly profit in a continuous double

auction market environment inhabited by noise traders. Two fitness functions are

investigated. The first function is based on the economic utility measure known

as Sharpe ratio. The second function incorporates a penalty for lack of inventory

control. The genetic programs of two exemplar agents, each relating to a different

fitness function, are described. The market performance of each agent is examined.

Despite their vastly different strategic approaches, both agents achieve consistent

profits at the expense of the noise traders.

Chapter 7 addresses a limitation inherent in the simulated market environment.

4

Chapter 1. Introduction

Without the inventory control penalty, a consistent GP solution evolves. This evo-

lutionary strategy, that I call clear & hoist (CH), succeeds due to a lack of fun-

damentalism5 in the simulated market. To remedy this shortcoming, I introduce

two value-based trading strategies for the continuous double auction (CDA). The

mechanics of both strategies are described and each is independently examined in

a market environment inhabited by noise traders. After establishing that both ap-

proaches successfully encourage the market price to track a perceived value6, the

effect that each strategy has on the CH trader is examined. The merits of the two

value-based approaches are compared.

In Part III, I apply the tools developed in Part I to financial market data with the

goal of detecting trophic structure. First, methods used for detecting trophic species

in financial market data are introduced. Then, I discuss a methodology for assessing

the significance of the detected structure. The efficacy of the methods is examined

using two types of data. First, I demonstrate that the methods successfully detect

different trader types in data generated by the simulator used in Chapters 6 and 7.

In this study, all of the software traders are hard-coded – no evolutionary agents are

included. Next, I examine data from the Shell (SHEL) stock of the London Stock

Exchange (LSE). I demonstrate that it is indeed possible to detect significant trophic

structure within month-long segments of the real-world data. However, significant

structure is not detected in all of the examined periods. The lack of consistent

detection is not surprising given limitations of the LSE data. Most notably, each

trader in this data represents an entity acting on the behalf of many individuals

and institutions having different strategies. Because this aggregation, the trading

patterns of individual traders are obfuscated and thus the trophic structure is as

well. Ideally, data with greater specificity – detailing the trading of individuals –

5Fundamentalist traders associate a perceived value with the asset being traded.
6Each value-based trader associates a perceived value with the asset being traded. The

actions of each value-based strategy encourage market price to converge towards this per-
ceived value.

5

Chapter 1. Introduction

would be analyzed7.

7Data with this level of specificity was not available for this research.

6

Chapter 2

Literature Review

This chapter gives an overview of the literature relevant to my dissertation. It is

split into three sections, each associated with one of three parts of this dissertation.

Where applicable, the reader is referred to material in the main content chapters for

more complete descriptions.

2.1 Tools for detecting community structure in

complex networks

Newman and Girvan introduced the concept of community structure in complex

networks in [40]. Hierarchal clustering [59] [49], the traditional method for detect-

ing structure of this kind, fails to correctly identify community structure in certain

cases [40]. In particular, hierarchal clustering frequently isolates peripheral nodes

and places them in their own community, rather than associating them with com-

munities to which they are attached [40]. Newman and Girvan present an algorithm

that iteratively removes edges for detecting communities and suggest an explana-

7

Chapter 2. Literature Review

tion for community structure based on assortative mixing. In [34], Newman and

Girvan propose the statistical measure of community structure called modularity.

Further, they describe three algorithms for the detection of community structure.

Each of these algorithms involves removing edges based on a measure called edge

betweenness. The best algorithm has an asymptotic running time of O(m2n), where

m represents the number of edges and n represents the number of nodes. In that

research, the authors use modularity to quantify the success of a community par-

titioning after the completion of an algorithm. Newman [33] shifts the algorithmic

approach by introducing an agglomerative approach that optimizes modularity. The

algorithm improves asymptotic running time to O((m+n)n). Brandes et al [8] show

that maximizing modularity is NP-complete. Clauset et al [11] describe a hierar-

chal agglomerative algorithm (CNM) that runs in O(md · log(n)), where d represents

the depth of the resulting dendrogram1. Duch and Arenas [14] introduce a divisive

approach based on extremal optimization [6] [7] that runs more slowly than CNM

but provides markedly better results. In [39] [38], Newman introduces spectral-

based methods that provide competitive results to that of Duch and Arenas. A

Kernighan-Lin [24] optimization is used to refine the result of each spectral-based di-

vision. Reichardt and Bornholdt [45] propose a community detection method based

on a q-state Potts model. They show that communities can be evaluated using the

Hamiltonian of a modified Potts spin glass model. My macro-strategy of Chapter 3

presents an orthogonal approach that can be combined with any existing algorithms,

whether it be agglomerative or divisive.

With regards to statistical measures of community structure, Fortunato [18] illus-

trates the resolution limit inherent to modularity through analysis. Because of this

limit, optimization of modularity yields a coarse-grained community partitioning.

Kumpula [28] et al show that a resolution limit exists for the methods of Reichardt

1A dendrogram is a branching diagram used to represent the hierarchal relationships
between communities.

8

Chapter 2. Literature Review

and Bornholdt as well. Arenas et al [2] present a measure that can be used to detect

community structure at different scales. A parameter, r, is required to specify the

scale at which to detect structure. My divisionality measure of Chapter 4, developed

independently, presents a fine-granularity community structure measure.

Newman [35] [36] demonstrates assortativity, the tendency for nodes to be at-

tached to other nodes that are like (or unlike) them in some way. I build on this

concept to establish the dual-assortative community structure measure (DAMM)

presented in Chapter 5. With reference to clustering algorithms, Bansal et al [4]

establish a clustering measure that integrates the contributions of both positive and

negative weights. In [30], rather than concentrating on edge weights, Leicht and

Newman focus on detecting community structure in directed networks.

2.2 Evolving traders in a simulated financial mar-

ket

2.2.1 Genetic programming (GP)

In Part II, I adopt genetic programming as a framework for evolving software traders.

Koza [25] [27] [26] founded the GP using a tree-based approach. The stack-based

language that I built for GP (called Staq and introduced in Chapter 6), bears strong

resemblance to the Push [55] language designed by Spector, which descended from

Forth [48]. Like Push, Staq provides functionality for extensible types, dynamic func-

tion creation, and looping constructs. Construction of Staq began before publication

of Push; however, an effort was made to align the Staq instruction set to that of the

second version of Push.

9

Chapter 2. Literature Review

2.2.2 Santa Fe Artificial Stock Market (SFASM)

One of the earliest computational models of a stock market is the Santa Fe Artificial

Stock Market [3] [41] [42]. The SFASM is based on a centralized market maker

clearing mechanism, as opposed to a continuous double auction (CDA). Each trader,

or agent, maintains a strategy represented as a ternary string of market indicators.

Strategies are evolved using a genetic algorithm. Agents are given the choice to

either invest in a single available stock or leave their money in a bank. The stock

pays a stochastic dividend and its price fluctuates according to agent demand. The

bank pays a fixed interest rate.

The objective of the SFASM experiments was to examine whether or not the

agents settle into behavior predicted by general equilibrium theory or rather the

more complex behavior found in real financial markets. The answer is that both are

possible; however, the rational expectations behavior is a local attractor that requires

both restricted initial parameter settings and a low exploration rate by the genetic

algorithm. The dominant attractor for market behavior is that of the complex regime

of real markets – displaying fat tails in price returns and higher trading volume.

2.2.3 Genetic programming applied to finance

Andrews and Prager [1] were among the first to apply genetic programming in the

realm of computational finance. A simplified double auction (DA) environment is

employed. In each experiment, a single GP trader is evolved in a market inhabited

by hand-coded strategies2. For each auction game, four traders are designated as

buyers and four others as sellers. The GP agent always assumes the role of a seller.

The game is played in a series of rounds. Tokens are the commodity traded. Prices

2The strategies were successful entrants from the double auction tournaments held at
the Santa Fe Institute in 1990 [46] [47].

10

Chapter 2. Literature Review

are represented in integer units. At the beginning of a game, each trader is assigned

values for the tokens that they are to buy or sell. Trading takes place in discrete

time steps. At the start of each time step, traders are told the current bid and offer,

a history of previous trades, and the identities of the last traders. Then, they return

their own bid (or offer) values. The new holders of the current bid and offer are

then given the option of executing a trade. GP programs are represented by tree

structures. The terminal set consists of seven tokens. Six functions comprise the

functional set. Each GP trader independently competes in games with the hand-

coded strategies. Fitness is determined by comparing the profits of the GP trader to

those of the others. A population of 300 GP traders was employed – the fitness of

each GP trader by competing in independent games with the hand-coded strategies.

Experiments terminate either when a predetermined number of rounds transpired

or once a GP strategy matching or exceeding the performance of the hand-coded

strategies is identified. Andrews and Prager found that in 65% of their experiments,

the GP traders achieved performance exceeding or matching that of the hand-coded

traders.

The work of Phelps et al [43] is relevant to coevolving a population of traders.

The authors explore the simultaneous coevolution of auction pricing mechanisms and

trading strategies using genetic programming. The objective was to discover auction

pricing models that are robust to a wide range of trading behaviors. GP programs

are represented by tree structures. For trading strategies, the terminal set contained

5 tokens and the functional set contained 10 functions. For auction pricing rules, the

terminal set contained 4 tokens and the functional set had a size of six. The fitness

of traders is determined by profits earned. The fitness of auction pricing rules is

determined by the ratio of profits earned to that theoretically available in competitive

equilibrium. The authors demonstrate that market efficiency is achieved faster by

the GP auction pricing mechanism in an environment inhabited by GP traders as

opposed to an environment inhabited by fixed trading strategies.

11

Chapter 2. Literature Review

2.2.4 Zero-intelligence traders

Farmer et al [52] [13] develop a statistical model for the continuous double auction

under the assumption of IID (independent, identically distributed) order flow. The

model is referred to as zero-intelligence because of the random order flow produced.

This noise trader approach differs from the traditional economics theory of perfect

rationality [51]. In Part II, I adopt the noise trader model proposed in [16], which

has two types of noise traders. One type places market orders; the other places limit

orders. A detailed explanation is provided in section 6.2.2.

Gode and Sunder [20] present an alternative noise trader model. They present

two zero intelligence traders referred to as ZI-U and ZI-C. The former represents

an unconstrained model and the latter is constrained. For both types, each trader

is provided an entitlement to buy or sell a number of units. Each of these units is

associated with a particular limit price. Prices range from 1 to 200 units of arbi-

trary currency. (The values are not of importance; however, I introduce them for

illustrative purpose.) ZI-U traders can place limit orders at prices anywhere within

this range. As such, they are vulnerable to entering loss-making deals. ZI-C traders

can only place buy limit orders at prices ranging between 1 and the limit price;

the prices of sell limit orders are constrained to range between the limit price and

200. Shout prices, the actual prices ascribed to orders, are drawn from a uniform

distribution across a trader’s prescribed range. The objective of the study is to deter-

mine whether the budget constraint of the ZI-C induces trading behavior resembling

the human subjects studied by Smith [53]. They find that the volatility of prices

ZI-C traders falls between that of ZI-U traders (more volatile) and human traders

(more stable). Further, they note that as expected from traders lacking memory

or adaptation mechanisms, there is no evidence of learning with the ZI-C trader.

Further, there is a slower convergence of ZI-C prices to equilibrium than observed

with humans. My VLONT trader of section 7.2.2 resembles the ZI-C trader – both

12

Chapter 2. Literature Review

draw prices uniformly from a constrained range, where one boundary is dictated by

a perceived value.

Cliff [12] presents a “more intelligent” zero-intelligence trader called zero-

intelligence-plus (ZIP). Two significant factors differentiate ZIP traders from the

other noise trader models. First, ZIP traders incorporate a notion of profit margin.

For example, a trader possessing a token with a perceived value of $1.00 may not

want to sell it unless a 20% profit is attainable. Accordingly, the trader would be

willing to sell the token for $1.20, but no less. Further, ZIP traders have an adaptive

mechanism for adjusting their profit margins. If the trader is unable to sell a token

with a given profit margin, the margin can be reduced to make the price more ap-

pealing to others. Conversely, if the trader is selling tokens easily, it can increase its

desired profit margin with the intent of securing a greater profit per transaction. The

objective of the study is to ascertain whether ZIP traders generate more human-like

dynamics than do ZI-C traders. Experiments show that market prices generated by

ZIP traders converge to equilibrium more rapidly than those associated with ZI-C

traders. Further, it is demonstrated that the ZIP traders exhibit better allocative

efficiency (defined in [54]) than do ZI-C traders. In conclusion, Cliff determines that

the performance of ZIP traders in experimental markets is closer to that of human

traders than is the performance of ZI-C traders.

2.2.5 Automated Trading Projects

Though not directly applicable to my research, automated trading competitions have

gained recent popularity. Here, competitors submit software agents that trade in

a simulated market environment. Agents are faced with complex tasks including

bidding strategy, market prediction, and resource allocation. Perhaps, the first such

competition was the Santa Fe Double Auction Tournament of 1990 [46] [47]. More

13

Chapter 2. Literature Review

recently, Wellman et al [61] [60] [56] have held widespread contests known as the

Trading Agent Competition. Kearns et al [23] take the concept a step further with

the Penn-Lehman Automated Trading Project (PLAT). The platform allows software

traders to compete in a simulated market that merges the orders of the automated

traders with those of a real-world, real-time limit order book (the Island3 exchange).

2.2.6 Fundamentalism

The work of Chiarella and Iori [10] [9] relates to Chapter 7. They develop an order-

driven market where traders use exogenously fixed rules to place both market and

limit orders. The model aims to replicate dynamics observed in empirical studies of

real markets: fat-tailed distribution of limit order placement from current bid/ask;

fat-tailed distribution of order execution-time, fat-tailed distribution of orders stored

in the order book; and long memory in the buy/sell indicator signs. Traders can place

orders of varying size, as dictated by either utility maximization or a random selection

process. They analyze the impact of both fundamentalist and chartist strategies on

the determination of both order price and order size, the shape of the order book, the

distribution of orders at distribution prices, and the distribution of order execution

time. Results from the model are compared to real market data. They find that

the model with risk-averse agents captures a number of stylized facts associated

with double auction markets, such as fat-tailed distribution of limit order placement

from current bid/ask, fat-tailed distribution of order execution-time, and fat-tailed

distribution of orders stored in the order book.

3www.island.com

14

Chapter 2. Literature Review

2.3 Recovery of trophic species in financial market

data using community detection

In [15], Farmer develops the idea of a market ecology, whereby the actions of a given

trading strategy affect those of other strategies. In Chapter 8, I introduce two studies

that attempt to identify ecological structure in real financial markets by examining

the actions of traders.

Lillo et al [31] examine the ecology of traders in the Spanish Stock Market. They

investigate four different stocks (BBVA, TEF, SAN, and REP) over four independent

year long periods (2001-2004). Like the London Stock Exchange, each firm repre-

sented in the data acts on the behalf of many individuals and institutions having

different strategies. The data is spliced into time intervals with each interval repre-

senting an independent day of trading. For each interval, the inventory variation for

each firm i is computed, denoted as vi(t) for day t. A correlation coefficient matrix,

based on ρ [vi(t), vj(t)] for each pair of traders i and j, is computed. The eigenvalue

spectrum of the correlation matrix is computed. Using methods based on random

matrix theory (RMT) [29], the largest eigenvalues are examined to test a null hy-

pothesis stating that the inventory variation is described by uncorrelated Gaussian

random variables. Lillo et al find that the first eigenvalue from the examined data

is not consistent with the null hypothesis and therefore claim that the inventory

variation is carrying information about the collective dynamics of firms.

Zovko and Farmer [65] examine behavioral similarity of members on the London

Stock Exchange (LSE). For an individual stock, they separate each month of trading

into hourly intervals. For each interval, they record whether the net trading of a given

trader is positive (buying) or negative (selling). From these indicators, a correlation

matrix (based on Spearman rank correlation) is computed. The largest eigenvalues

of the correlation matrix are compared with a null model containing no correlations.

15

Chapter 2. Literature Review

They conclude that for each month of trading for four stocks (AAL, AZN, LLOY,

and VOD), significant eigenvalues exist that are not consistent with uncorrelated

behavior of institutions. By applying a clustering algorithm to the correlations, they

group institutions and find that there often exists a minority group of institutions

that trades against the majority.

16

Part I

Tools for detecting community

structure in complex networks

17

Chapter 3

Community detection optimization

with induced fractures and merges

3.1 Introduction

In this chapter, I present a two-phase strategy for the detection of communities in

complex networks. In the first phase, I simply apply any of the existing algorithms

for community detection. However, in the second phase, the initial result is opti-

mized by inducing fractures (for divisive approaches), or merges (for agglomerative

approaches), in the detected communities and then optimizing the resulting con-

stituents. I demonstrate that the two-phase approach attains consistent, high yield

results. Further, in comparison to known approaches, these results can be attained

without an inflation in computational time. Using the second phase alone, it is

possible to incrementally improve upon an existing community detection result.

In 2002, Girvan and Newman highlighted the property of community

structure in complex networks [19]. Since that time, significant litera-

ture [34] [11] [21] [14] [44] [38] [33] has concentrated on methods for detecting such

18

Chapter 3. Community detection optimization with induced fractures and merges

sub-structure. Current approaches concentrate on optimizing modularity. The pro-

cess yields a set of communities with each individual node of the network associated

with a unique community. Because the state space of possible configurations grows

exponentially with the number of nodes, optimization of modularity through exhaus-

tive search is intractable for networks beyond a certain size. Community detection

is known to be NP-complete [8].

Existing algorithms for detecting community structure are classified into two

groups: divisive and agglomerative [11]. In a divisive scheme, all nodes are orig-

inally placed in a group, or community, and then recursively divided into smaller

groups. An individual community is deemed indivisible when a division cannot be

found that increases modularity. Communities are examined in either a breadth-first

or depth-first manner until all communities are declared indivisible. Conversely, in

an agglomerative approach, all nodes are initially placed in their own independent

communities. Thereafter, communities are iteratively merged to form larger commu-

nities. At each step of the algorithm, the merge that yields the greatest increase in

modularity is chosen. If no such increase is found, the agglomerative process halts.

Figure 3.1 shows a dendrogram, a hierarchal branching diagram of the community

structure for an example network, that illustrates the difference between divisive and

agglomerative approaches. A divisive scheme can be regarded as top-down; whereas,

an agglomerative approach can be described as bottom-up.

3.1.1 Contribution

This chapter introduces a post-detection optimization strategy that can be used

in conjunction with either a divisive or agglomerative approach. The optimization

algorithm has two phases. First, a traditional method is used to detect communities.

Thereafter, these communities are optimized using the method of induced fractures

19

Chapter 3. Community detection optimization with induced fractures and merges

Figure 3.1: Comparison of agglomerative to divisive approach. At the bottom of
the figure, each individual node of the network is represented as its own community.
As the figure is traversed upwards, the joins between communities are depicted by
horizontal line segments. At the top of the figure, a single line segment exists to
represent a lone community. A divisive scheme uses a top-down approach to produce
the dendrogram; whereas an agglomerative scheme follows a bottom up approach.

(for agglomerative approaches) or merges (for divisive approaches).

For the purpose of this chapter, I refer to the existing community detection algo-

rithms – both the divisive and the agglomerative – as micro-strategies. At each step

of operation, these approaches concentrate on local optimizations – either merging

two communities (agglomerative) or separating an existing one (divisive). The sec-

ond phase strategy introduced in this chapter operates at a higher level and uses

a micro-strategy to perform its local optimizations. For this reason, I refer to the

approach used in the second phase as a macro-strategy. The key to the strategy

involves which nodes should be examined at each step. It uses a micro-strategy to

perform local optimizations. However, whereas the existing micro-strategies only

consider merging or splitting existing communities and preserve nodal associations,

my approach allows for nodal associations to be broken and reformed. The mechan-

20

Chapter 3. Community detection optimization with induced fractures and merges

ics of the macro-strategy are provided in section 3.2.1 for divisive approaches and

section 3.2.2 for agglomerative approaches.

3.1.2 Simple illustrative example

Here, I provide a simple example that illustrates the advantages of my algorithm. The

Zachary karate club network is small (34 nodes) and has been extensively analyzed

in the micro-strategy literature. Figure 3.2 depicts the karate network. The best

configuration detected prior to this work contained 4 communities with an associated

modularity (mathematically defined in equation 4.7) value of Q = 0.4188. The

dendrogram of figure 3.3 depicts how the communities were recovered by a divisive

algorithm. Initially, the nodes were split into two communities. Thereafter, each of

these communities was divided once more – thus, yielding four communities.

Using the same divisive algorithm as a micro-strategy, the macro-strategy detects

a community configuration with an associated modularity value of Q = 0.49171.

Again, the configuration contains 4 communities. The improvement in modularity

results from the migration of a single node (node 10) to a new community. In the

dendrogram of figure 3.3, this migration is represented by a horizontal arrow. Note

that the initial division, depicted by the top horizontal line in figure 3.3 placed

node 10 on the left-hand side. The improved configuration is the result of node 10

migrating to a community located on the right-hand side. Such a migration would

not be possible with existing micro-strategies; however, it is with my method of

induced merges (or, fractures, for an agglomerative approach).

Figure 3.4 plots the modularity values at different stages of the algorithm (with

the x-axis representing the number of communities detected at a given stage). The

figure illustrates that the improved configuration, that detected by my method, re-

1Larger Q values indicate greater community structure.

21

Chapter 3. Community detection optimization with induced fractures and merges

1

2

3 4

5

6 7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26

27

28 29

30

31

32

33

34

Figure 3.2: The karate club network. Nodes of each community are represented
by differently shaped symbols. Edges between nodes represent friendships between
members of the karate club. The best community configuration detected prior to
this work, that depicted here, contained four communities and has an associated
modularity value of Q = 0.4188.

quires a sub-optimal initial division. More specifically, had node 10 been placed in

the community depicted on the right-hand side of the dendrogram in the initial divi-

sion, the associated modularity value following that split would be less than that for

the best configuration from the literature. In other words, if the improved configura-

tion were to be found using an existing micro-strategy, the detection of a sub-optimal

intermediate division would be required.

22

Chapter 3. Community detection optimization with induced fractures and merges

3.1.3 Advantages of the macro-strategy algorithm

My strategy provides several advantages: high yield, robust results, and incremental

improvement. These advantages are gained without increasing the theoretical run-

ning time of the adopted micro-strategy. Table 3.1 summarizes the criteria that I

will use to assess the efficacy of my strategy. Each criterion is associated with an

empirical measurement. The empirical measurements assume a set of community

detection results compiled on the same network – with each result based on applying

the identical algorithm using a different random number generator seed.

High yield refers to the characteristic of detecting a community configuration

associated with a high modularity value. In practice, yield is assessed by identify-

ing the maximum modularity value from a set of community detection results and

comparing this value to the best results from existing literature.

Robustness refers to the characteristic of an algorithm to provide consistent re-

sults – in this case, consistent modularity values. Robustness is measured by the

standard deviation of modularity values over a set of community detection results.

An algorithmic approach that provides both high yield and robustness implies

that the algorithm provides a consistently high yield. As such, a single application

of the algorithm should provide a sufficient result. In section 3.3, I demonstrate that

the macro-strategy provides both high yield and robustness.

Speed refers to the execution time of the community detection algorithm. My

strategy does not increase the theoretical running time of the original community

detection algorithm, and it provides both high yield and robustness with a reduced

execution time from that of the established method of extremal optimization.

Incremental improvement refers to the possibility of attaining an initial result and

then incrementally improving it. Current algorithms fall into one of two categories.

23

Chapter 3. Community detection optimization with induced fractures and merges

One category provides a quick, sub-optimal result without the option of improving

it [11] [33] and the second category category [14] provides higher yield results at

the expense of larger theoretical time complexities. The macro-strategy allows one

to utilize an algorithm of the first category, one that provides a “quick and dirty”

result, and then incrementally improve on the initial result. These improvements can

be monitored and the algorithm can be halted once a sufficient result is attained.

Table 3.1: Advantages and empirical measurements for assessing the efficacy of the
macro-strategy.

criterion explanation measures
yield optimal detection of communities max(Q)
robust average detection of communities sd(Q)
speed length of execution operation time

incremental time until initial result

The remainder of the chapter proceeds as follows. Section 3.2 describes the macro-

strategy. I also introduce a new “quick and dirty” community detection algorithm,

called deterministic division, that performs well with the macro-strategy. Section 3.3

gives results and comparisons using the metrics of table 3.1. Section 3.4 provides a

summary and concluding remarks.

3.2 Methods

3.2.1 Divisive algorithms

The first divisive algorithm, called extremal optimization (EO) [7] [6], is known to

provide high yield results [14]. Next, I introduce an algorithm called deterministic

division (DD). After explaining the mechanics of each algorithm, I demonstrate how

induced merges can be utilized by a divisive algorithm to optimize a community

24

Chapter 3. Community detection optimization with induced fractures and merges

detection result.

Extremal optimization

Extremal optimization (EO) is a divisive stochastic algorithm that has optimizes

modularity for the task of community detection. Initially, the nodes are randomly

assigned to one of two partitions. After the initial modularity is computed, a single

node is migrated from one partition to the other, and modularity is recomputed.

A counter, denoted K, tracks the number of moves since the last modularity

improvement. If modularity fails to improve following a migration, the counter is in-

cremented. Otherwise, the counter is reset to zero, and the partitioning is recorded

along with its associated modularity value. This partitioning represents the best

detected configuration. The process continues until the counter reaches a predeter-

mined threshold. For each division, the size of the original community, denoted |Ci|,

determines the stopping criterion such that the maximum allowable number of steps

is S = α|Ci| (α = 3 in the experiments of section 3.3). Once the counter reaches

the threshold, such that K = S, the process terminates and the best detected con-

figuration is retained. If the split has improved the modularity value, the global set

of communities is updated to reflect the division. Otherwise, it remains unchanged

and the original community is marked indivisible.

An important component of the EO algorithm is choosing which nodes to migrate.

Rather than choosing nodes at random, I associate a value ∆Qu (see equation A.1

of appendix A.1) with each node u. This method resembles hill-climbing used in

other settings and biases the search towards immediate improvements. The value

∆Qu represents the change in modularity that occurs by migrating the specified node.

This approach differs slightly from that of [14], which uses a heuristic to approximate

∆Qu.

25

Chapter 3. Community detection optimization with induced fractures and merges

A list containing the ∆Qu values is maintained. The list of ∆Qu values is ranked,

and a node is probabilistically chosen using a method known as τ -EO [14] [7]. Using

this process, a node of rank q is chosen with probability of P (q) ≈ q−τ where τ =

1+ 1
log |Ci|

. Note that the process of ranking the nodes costs O(nlogn), where n = |Ci|.

After each migration, all ∆Qu values need to be updated. Rather than recompute

the value for each node, it is more efficient to compute the change in ∆Qu induced

by migrating a node m, denoted as ∆2Qum (see appendix A.1 for a mathematical

description). The computational cost of computing ∆2Qum, O(1), is less than that

for ∆Qu, which is O(|Ci|).

Deterministic division

I introduce the method of deterministic division (DD) as an alternative to EO. On

its own, DD falls into the category of quick and dirty community detection algo-

rithms [11] [33]. However, DD performs well when paired with the macro-strategy.

DD differs from EO in the manner nodes are selected for migration. Whereas EO

chooses nodes probabilistically, DD always chooses the node with the highest ∆Qu

value. If more than one node shares the highest ∆Qu value, a single node from the

subset is chosen. The algorithm halts when there no longer exists a ∆Qu > 0.

For an individual migration, DD is less expensive than EO. As noted, after a

migration, the ∆Qu values need to be updated. This process costs O(n). In DD,

it is merely necessary to identify the best ∆Qu value prior to the next migration.

However, with EO, it is necessary to rank the entire ∆Qu list. The ranking process

costs O(nlogn). In section 3.3, I will demonstrate that the macro-strategy using DD

is capable of achieving similar results to the macro-strategy using EO, but in reduced

computational time.

26

Chapter 3. Community detection optimization with induced fractures and merges

Induced merges for divisive approaches

The first phase of the macro-strategy yields a set of communities. The second phase,

the post-detection phase, allows for nodes to be juggled amongst these communities.

For divisive algorithms, this process involves merging two communities and then

dividing the conglomerate, as illustrated in figure 3.5.

During the initial phase of the algorithm, once nodes are separated into different

communities, they may never be recombined. As demonstrated in section 3.1.2,

it may be the case that the separation of two nodes positively contributed to an

intermediate step of the algorithm, yet negatively contributes to global optimization.

The mechanics of the initial phase do not allow for recovery from such a deleterious

step. By inducing the merge of two communities and then dividing the conglomerate,

nodes that were formerly separated have an opportunity for recombination. These

potential recombinations allow for further global optimization.

Given |C| communities, an exhaustive search of all possible community recom-

binations yields |C|(̇|C|−1)
2

induced merges. The first phase of the algorithm requires

only |C| − 1 divisions. Thus, an exhaustive search of the possible merges entails

a large computational penalty. Ideally, the second phase of the algorithm should

improve modularity without increasing the running time. The initial operation time,

denoted as T1, represents the number of steps in the first phase. The operation time

of the second phase is denoted as T2. A parameter provided to the algorithm, de-

noted as ρ, dictates the ratio of operation time allowed for the second phase of the

algorithm as compared to that established in the first phase. When T2 ≥ ρT1, the

second phase of the algorithm is halted. In these experiments, I set ρ = 10 for EO

experiments and ρ = 50 for DD experiments. This ensures that the overall running

time of the algorithm increases by only a constant multiplier. As a result, the big-O

running time remains unaffected.

27

Chapter 3. Community detection optimization with induced fractures and merges

The pseudo-code provided in Algorithm 1 describes the second phase. The

while-loop is entered and continues while T2 < ρT1 (line 3). A list of all possi-

ble community pairs is required. Initially, this list is empty (line 4) and thus it is

created (line 5). A community pair is selected and then removed from the list (line

7). The pair of communities is merged (line 8) and then divided using a micro-

strategy (line 9). The fitness (modularity, in this case) resulting from the division is

compared to the pre-division fitness (line 10). If the fitness improves, the new com-

munity alignments are applied (line 11) and the fitness is updated (line 12). Further,

the list of community pairs is updated (line 13) such that any possible pair that

includes one of the altered communities is appended (given that it was previously

removed). Each function called within the while-loop, increments T2 (once for each

operation performed). If the list of community pairs is exhausted (line 4) before the

while-loop terminates, it is regenerated (line 5).

3.2.2 Agglomerative methods

The agglomerative method used in this chapter is the CNM algorithm [11]. Initially,

all nodes are placed into independent communities. The values of ∆Qij for all con-

nected communities i and j are calculated. The largest value for each community i is

placed into a max-heap. At each step, the largest ∆Qij value from the max-heap is

selected and the communities are i and j are combined. The modularity is updated

such that Qt+1 = Qt + ∆Qij and the max-heap is updated. The process continues

until only one community remains. At each step, if a community configuration with

a higher modularity value is encountered, it is recorded. The best identified configu-

ration is returned as the result. The theoretical running time of the CNM algorithm

is O(2md logn) = O(md logn), where n represents the total number of nodes, d

represents the depth of the resulting dendrogram, and 2m is the total degree in the

network.

28

Chapter 3. Community detection optimization with induced fractures and merges

Algorithm 1 Pseudo-code for the second phase of the macro strategy. T2 is incre-

mented within each function nested in the while-loop.

1: T2 ← 0

2: fitness← fitnessFromFirstPhase()

3: while T2 < ρT1 do

4: if isEmpty(pairsOfCommunities) then

5: listOfCommunityPairs← createAllPossibleCommunityPairs()

6: end if

7: communityPair ← choosePairFromListAndRemove()

8: mergedCommunity ← mergeCommunityPair()

9: [newFitness, newCommunityPair]← divideUsingMicroStrategy()

10: if newFitness > fitness then

11: applyNewCommunityPairAlignment()

12: fitness← newFitness

13: appendCommunityPairList()

14: end if

15: end while

Induced fractures for agglomerative approaches

Figure 3.6 illustrates the process of an induced fracture using an agglomerative pro-

cess. The post-optimization method employs a series of induced fractures, whereby

two existing communities are fractured into their nodal constituents. For exam-

ple, given two communities, community Ci and community Cj, the fracture yields

(|Ci| + |Cj|) independent communities, each containing a single node. Thereafter,

the agglomerative algorithm is applied to this subset of nodes – attempting to find

a community configuration that yields a higher modularity value than associated

with the pre-fracture configuration. If an improvement is found, the communities

are updated to reflect the change.

29

Chapter 3. Community detection optimization with induced fractures and merges

As described in section 3.2.1, the goal of the post-optimization phase is to improve

modularity without increasing the theoretical running time of the original algorithm.

As such, an exhaustive search of all possible fracture pairs is unreasonable. Therefore,

I adopt the same approach as previously outlined. The operation time from the initial

phase, denoted as T1, is recorded. The second phase terminates when T2 ≥ ρT1,

where T2 is the cumulative operation time of the second phase and ρ is a supplied

parameter. For the experiments of section 3.3, I set ρ = 30.

3.3 Results

To examine the efficacy of the macro-strategy, I independently employ each of the

micro-strategies introduced in section 3.2 within the macro-strategy and examine

five networks that have been extensively examined in previous literature. The size

of the networks graduates from 34 nodes for the Zachary karate club to 27519 nodes

for the condmat network that describes the collaborations of physicists. For each

network, I apply the macro-strategy using a specified micro-strategy 50 times, using

a different random number generator seed for each application. I independently

assess the characteristics of high yield, robustness, and execution speed.

3.3.1 High yield

Here, I demonstrate the characteristic of high yield for the post-detection optimiza-

tion techniques of section 3.2. For each algorithm – extremal optimization (EO),

deterministic division (DD), and CNM agglomerative (CNM) – I compute two indi-

cator ratios for each of the five networks. The M indicator, computed independently

for each algorithm type, compares the mean modularity value following the second

phase to that following the first phase. Mathematically, M = Q̄2/Q̄1, where Q̄1

30

Chapter 3. Community detection optimization with induced fractures and merges

represents the mean value over the set of modularity values following the first phase,

and Q̄2 represents the mean value over the set of modularity values following the

second phase. If M > 1, on average, the second phase improves the community con-

figuration discovered in the first phase. Otherwise, the second phase fails to improve

the initial result.

The second indicator computed for each algorithm is X = max(Q2)/max(QLIT),

where max() returns the maximum value and max(QLIT) represents the best mod-

ularity value for the specified network from previous literature. A value of X > 1

indicates that my algorithm improves upon the best result found in existing litera-

ture. Table A.4 in appendix A.4 compares results from previous literature.

Table 3.2 summarizes the M and X indicators (as well as others to be explained

later) for the EO, DD, and CNM agglomeration algorithms for the five networks.

The first four columns relate to the EO algorithm. The middle three columns relate

to the DD algorithm, and the final three columns relate to the CNM agglomeration

algorithm. For now, I concentrate on the first two columns of each section, those

labeled M and X .

First, observe the M values. For each of the algorithms, M > 1 for all networks.

These values demonstrate that the second phase consistently improves upon the

results detected by the first phase alone. Note that the DD and CNM indicator

ratios are greater than that for the EO algorithm – especially for the larger networks.

Recall that the DD and CNM algorithms fall into the category of “quick and dirty”

algorithms; whereas, EO does not. As a result, the results associated with these

algorithms show greater improvement during the second phase.

Secondly, with the exception of the jazz network, X > 1 for each algorithm on all

networks. Thus, by incorporating the second phase, my approach consistently detects

results that exceed those established in previous literature. The only other exception

31

Chapter 3. Community detection optimization with induced fractures and merges

is where XDD = 0.9956 for the PGP network. The modularity value detected by DD

ranked second when compared to the existing literature. In section 3.3.3, I will show

that DD is able to achieve this result in approximately one-tenth of the time required

by EO. It is possible that this DD result could improve by extending the length of

the second phase (increasing ρ).

Table 3.2: Comparison of ratio indicators for extremal optimization (EO), determin-
istic division (DD), and CNM agglomeration (CNM).

network Meo XEO NEO SEO MDD XDD NDD MCNM XCNM NCNM

karate 1.0176 1.0024 1.0024 0.0000 1.0589 1.0024 1.0024 1.1019 1.0024 1.0016
jazz 1.0127 0.9999 0.9996 0.0400 1.0242 0.9999 0.9994 1.0127 0.9993 0.9984

celegans 1.0724 1.0484 1.0421 0.2549 1.1542 1.0387 1.0280 1.1019 1.0420 1.0308
email 1.0518 1.0156 1.0119 0.1513 1.1212 1.0121 1.0065 1.1377 1.0068 1.0000
pgp 1.0462 1.0256 1.0228 0.1978 1.1120 0.9956 0.9873 1.0151 1.0175 1.0087

3.3.2 Robustness

To demonstrate the robustness introduced by the second phase of my algorithm, I ex-

amine two additional indicators. The first, referred to as S, compares the consistency

of modularity results following the second phase to those following the first phase.

Mathematically, S = sd(Q2)/sd(Q1), where sd() returns the standard deviation. Re-

call that robustness refers to the attribute of attaining consistent results over a range

of seeds. Standard deviation measures the consistency of results. When comparing

two standard deviations, a lower value indicates less variation and greater consis-

tency. Thus, S < 1 demonstrates that the second phase achieves more consistent

results.

I do not compute S for the deterministic algorithms – DD and CNM agglomera-

tion. Because of their deterministic nature, results for these algorithms do not vary

during the first phase. Stochastic implementations of these algorithms are possible,

32

Chapter 3. Community detection optimization with induced fractures and merges

but not used in this work. Results for these algorithms vary following the second

phase because of the stochastic process used to choose pairs of communities for each

fracture or merge.

The fourth column of table 3.2 provides the S values for the stochastic EO algo-

rithm. For each of the five networks, S < 1. The second phase optimization lowers

the standard deviation in each case. This result establishes that the macro-strategy

achieves robustness.

To further demonstrate robustness and high yield, I introduce the indicator N =

Q̄2/max(QLIT), which compares the the mean modularity following the second phase

to the best result from existing literature. I have demonstrated, with the X indicator,

that introduction of the second phase improves upon the best established results of

existing algorithms. The N indicator examines whether, on average, the established

values are exceeded. Examination of table 3.2 shows that N displays the same

pattern as X . For each algorithm/network pairing such that X > 1, the same is true

for N . This result demonstrates that the macro-strategy provides consistently high

yield results.

3.3.3 Speed

It is natural to assume that the incorporation of a second phase to the algorithm will

lead to an execution time penalty. My goal is to demonstrate that by using a “quick

and dirty” micro-strategy paired with the second phase optimization, a reduction in

execution time can be established. Towards this end, I compare the time consumed

by the macro-strategy using the DD algorithm to that using the EO algorithm.

Three definitions of time are examined: operation time, merge time, and mi-

gration time. Operation time refers to the number of fundamental computational

operations performed. Migration time refers to the cumulative number of node mi-

33

Chapter 3. Community detection optimization with induced fractures and merges

grations. Merge time refers to the number of community merges during the second

phase.

Figure 3.7 presents results for the email network. In each graph, the curve repre-

sented with inverted triangles represents the DD algorithm and the curve with circles

represents the EO algorithm. Further, the y-axis of each graph represents the mean

modularity value over all seeds at the indicated time. The x-axis represents time:

operation time on top, migration time in the middle, and merge time on the bottom.

The starting x-coordinate for each EO curve indicates the mean start time for the

second phase. The dashed vertical line in each graph indicates the time at which the

EO curve modularity value equates with the maximum modularity value attained by

DD.

With reference to the top graph of figure 3.7, it demonstrated that, on average, it

requires an approximate factor of 9 increase in operation time for EO to match the

maximum modularity value attained by DD. The middle graph illustrates that EO

requires approximately twice as many migrations to attain the maximum modularity

found by DD. The bottom graph shows that DD performs approximately 11 times

as many merges than does EO to reach the maximum DD modularity value.

Table 3.3 summarizes these time ratios for each network. In each case, the ra-

tio compares the time required by EO to that of DD to reach the maximum DD

modularity value. In each case, DD requires less operation time. However, on larger

networks, DD actually performs more migrations than does EO. Recall that an indi-

vidual migration costs less in DD than it does in EO. Thus, it is possible for operation

time and migration time ratios to vary inversely. For each network, DD performs

more merges – with this relationship positively correlated with the size of the net-

work. Because individual DD migrations are less expensive, the algorithm is able to

explore a greater number of merges than EO without incurring more operation time.

34

Chapter 3. Community detection optimization with induced fractures and merges

Table 3.3: Time ratios of EO to DD. The computed ratio compares the time at
which EO reaches the maximum modularity value attained by DD to the DD time
required.

operation migration merge
network time time time
karate 7.09 5.45 0.489
jazz 3.37 1.55 0.174

metabolic 5.11 1.18 0.043
email 8.99 1.99 0.093
pgp 9.93 0.61 0.028

3.4 Summary and conclusions

In this chapter, I introduced a two-phase methodology for detecting community

structure in complex networks. The first phase can be performed by any of the

community detection algorithms from existing literature. In the second phase, I

utilize induced fractures and merges of the existing communities to optimize the

result established in the first phase.

In section 3.3 I demonstrated that the macro-strategy provides high yield, robust

results. As a result, even with a single application of the method, a practitioner can

be confident with the result. Furthermore, when using a “quick and dirty” micro-

strategy such as DD or CNM agglomeration, the macro-strategy performs faster than

the known strategy EO while providing similar or better results.

A major advantage of the second phase is that of incremental improvement. The

method makes it possible to take an existing community detection result and improve

upon it. Furthermore, progress of the algorithm can be tracked and terminated once

a sufficient result is attained.

In this chapter, I independently examined the two divisive (EO and DD) al-

35

Chapter 3. Community detection optimization with induced fractures and merges

gorithms and the agglomerative algorithm (CNM). However, it is possible to “mix

and match” micro-strategies within the context of the macro-strategy. When using

a traditional approach and not utilizing the the second phase, it has been demon-

strated that the EO micro-strategy provides better results than do DD and CNM. It

would be possible to execute the macro-strategy using one of the “quick and dirty”

micro-strategies until the modularity value appears to asymptote. Thereafter, EO

(or another high yield approach such as [39]) could be adopted as the micro-strategy

to potentially optimize modularity further.

As an implementation detail, for the second phase, I employed a stochastic process

to choose pairs of communities for the induced fractures/merges. It could be the case

that a probabilistic selection process will yield faster improvements in modularity for

particular network structures. For instance, if the sizes of the underlying communities

of a network were to be power-law distributed, it might be more efficient to choose

communities probabilistically based on size. As such, larger communities would

likely be exposed to more optimization stages (divisions or merges) early in the

computation. The selection process warrants further examination.

Dendrograms provide a valuable tool for evaluating the hierarchal community

structure of a network. It is straightforward to construct a dendrogram when using

a traditional micro-strategy – each division or merge represents an intersection of

branches. However, the induced fractures/merges of the second phase corrupts the

structure of the dendrogram resulting from the first phase of the macro-strategy. It

is possible to reconstruct a valid dendrogram from the result of the second phase.

Each community can be collapsed into a super-vertex. Thereafter, using the CNM

agglomeration algorithm, super-vertices can be merged until a single community

remains. A trace of the merged communities provides the blueprint for a dendrogram.

The two-phase method proposed in this chapter can be used in conjunction with

any of the micro-strategies from existing literature. By utilizing the second phase

36

Chapter 3. Community detection optimization with induced fractures and merges

of induced fractures/merges, it is possible to improve any of the existing divisive

or agglomerative micro-strategies. This benefit comes at the expense of additional

computation. However, as demonstrated, incorporation of the second phase allows

a practitioner to utilize light-weight “quick and dirty” micro-strategies to establish

competitive results with a reduction in computation.

37

Chapter 3. Community detection optimization with induced fractures and merges

1 13 8 4 2 12 22 10 20 14 18 3 6 11 17 5 7 28 25 26 32 24 29 23 15 21 30 19 34 27 9 31 33 16

Figure 3.3: Karate club dendrogram. The dendrogram represents how the nodes were
divided to detect the four communities representing the best community configura-
tion from previous literature (Q = 0.4188). Using the macro-strategy, a configuration
with Q = 0.4197 was detected. The increase in modularity results from node 10 mi-
grating to a new community. This migration is represented by a horizontal arrow.
Note that the initial division, at the top of the dendrogram, delegated node 10 to
the left-hand side. The improved configuration results from migrating node 10 to
a community on the right-hand side. Such a migration would not be possible with
existing micro-strategies.

38

Chapter 3. Community detection optimization with induced fractures and merges

2.0 2.5 3.0 3.5 4.0

0.
37

0.
38

0.
39

0.
40

0.
41

0.
42

Karate network: number of communities vs. modularity

number of communities

m
od

ul
ar

ity
 (

Q
)

existing literature
macro−strategy

Figure 3.4: Comparison of modularity values for karate network. Modularity is rep-
resented on the y-axis. The x-axis represents the stage of the algorithm with the
number of communities detected at that point. The best result from previous liter-
ature (Q=0.4188) is represented by a solid curve. The improved result (Q=0.4197)
is represented by a dashed line. With regards to macro-strategy result, I present
the configurations that would have existed at each stage had node 10 initially been
placed on the right-hand side of the dendrogram.

39

Chapter 3. Community detection optimization with induced fractures and merges

merge

divide

Figure 3.5: Illustration of an induced merge for a divisive approach. Nodes of one
communities are depicted with circles, the other with triangles. First, the commu-
nities are merged into a single entity. Then, the divisive algorithm is applied to the
merged community. In this example, the division yields two new communities. If the
modularity value associated with the new configuration exceeds that of the original,
the new configuration is enforced and the modularity is updated accordingly.

40

Chapter 3. Community detection optimization with induced fractures and merges

fracture

agglomerate

Figure 3.6: Illustration of an induced fracture for an agglomerative approach. Nodes
of the original communities are depicted with either a circle or triangle. After the
fracture, each node represents an independent community. The agglomerative pro-
cess then combines the nodes to yield new communities. In this example, the resulting
communities are different than the original. If the modularity associated with the
new configuration exceeds that of the original, the new configuration is enforced and
the modularity value is updated accordingly.

41

Chapter 3. Community detection optimization with induced fractures and merges

0.0e+00 5.0e+08 1.0e+09 1.5e+09 2.0e+09

0.
54

5
0.

55
5

0.
56

5
0.

57
5

Operation time vs. fitness (email)

operation time

m
od

ul
ar

ity
 (

Q
)

DD
EO

0 500000 1000000 1500000 2000000

0.
55

0.
56

0.
57

0.
58

Migration time vs. fitness (email)

migration time

m
od

ul
ar

ity
 (

Q
)

DD
EO

0 1000 2000 3000 4000

0.
55

0
0.

56
0

0.
57

0
0.

58
0

Merge time vs. fitness (email)

merge time

m
od

ul
ar

ity
 (

Q
)

DD
EO

Figure 3.7: Comparison of modularity versus time for the email network. The y-
axis of each graph represents the mean modularity value over the set of community
detection results. The x-axis differs in each graph – operation time on the top,
migration time in the middle, and merge time on bottom. DD results are represented
by inverted triangles. EO results are represented by circles. The dashed horizontal
line in each plot indicates the time at which EO attains the maximum modularity
value attained by DD. The x-axis starting point of each EO curve approximates the
starting point of the macro-strategy second phase.

42

Chapter 4

Divisionality: a measure for fine

granularity community structure

4.1 Introduction

The majority of literature regarding community detection within complex networks

has focused on optimization of modularity, which allows one to quantify the success

of a partitioning. In this chapter, I experimentally demonstrate that modularity

suffers from a resolution limit, which was independently demonstrated through anal-

ysis by [18]. Because of this limit, optimization of modularity is only able to detect

coarse-granularity community structure. I introduce a new measure of community

structure, called divisionality, that allows for the detection of fine-granularity commu-

nity structure. The efficacy of the two measurements is demonstrated and compared

on graphs with known structure.

Modularity is merely one way to assess community structure. The task of iden-

tifying communities is not a clear cut endeavor. Consider defining the academic

communities within a university. One could identify communities as they are deter-

43

Chapter 4. Divisionality: a measure for fine granularity community structure

mined by departments: the English department community, the Physics department

community, and so on. However, communities often follow a hierarchic structure.

Consider a typical Computer Science department. Within this discipline, there gen-

erally exist groups specializing in either hardware, software, or theory. In this ex-

ample, partitioning at the level of the departments represents a coarse-grained level

of community structure. In contrast, the groups defined at the level of specialties

within a department represents a fine-granularity community structure partitioning.

In this chapter, I experimentally demonstrate the resolution limit inherent to

modularity. By optimizing modularity on a given graph, only coarse-granular com-

munities can be detected. It is possible to isolate finer-granularity community

structure through optimization of modularity; however, this requires isolating sub-

networks associated with communities of the original network and then recursively

optimizing modularity on these modules. A drawback of this modularity-based recur-

sive approach is that one cannot compare the modularity values of two independent

partitioning of the same network to assess which is better. Modularity will declare

the fine-granular communities sub-optimal. The alternative measure introduced in

this chapter, called divisionality, overcomes the resolution limit and allows for de-

tection of fine-granular structure. Further, optimization of divisionality provides

a self-contained method for detecting such structure – it is unnecessary to isolate

sub-networks and recursively optimize the measure. A final advantage of divisional-

ity is that it provides a global measure of community structure that allows for the

comparison of different fine-granular community partitionings on the same network.

4.1.1 An example

Here, I illustrate the resolution limit inherent in modularity. Figure 4.1 depicts a

network with known structure: the 2005 Major League Baseball (MLB) schedule.

44

Chapter 4. Divisionality: a measure for fine granularity community structure

Each node in the network represents a team. Each weighted edge indicates the

number of games played between a pair of teams. Edge weights contribute to both

modularity and divisionality. The higher the edge weight, the stronger the communal

strength between the associated nodes.

Before examining figure 4.1 further, I explain the structure of MLB and its sched-

ule. MLB consists of thirty teams split into two leagues. The American League (AL)

consists of fourteen teams; the National League (NL) is comprised of sixteen teams.

Within each league, teams are split into three divisions – yielding 6 divisions for the

entirety of MLB. Each team plays 162 games during the season. The schedule for

the MLB season fosters rivalries by imposing what is known as an uneven sched-

ule. The uneven schedule has teams playing more games against their division rivals

than other teams (between 33 − 48 percent of the 162 games depending on the di-

vision). Furthermore, of games not played against division rivals, the large majority

are played against other teams from the same league. Interleague games are a rarity

– comprising approximately ten percent of each team schedule. The MLB schedule

is of interest because it contains known, regular structure.

With reference to figure 4.1, the network contains two different sets of nodes,

each being represented by a different color. The sets represent the two communities

recovered by optimizing modularity on the network using the deterministic division

algorithm presented in section 3.2.1 (with ρ = 50). The nodes in the core of the

network (diamond shaped), represent teams from the AL; the nodes on the periph-

ery (rectangular) represent teams from the NL. The communities recovered through

modularity optimization match that of the known league split. For the sake of vi-

sual clarity, only edges attached to at least one of the AL teams are shown; edges

connecting two NL teams have been removed. The centrally located bold edges rep-

resent those of the highest weight. With regards to the MLB schedule, these edges

are known to exist between teams residing in the same division. The dotted edges

45

Chapter 4. Divisionality: a measure for fine granularity community structure

represent the edges with the lowest weight – the interleague games. Edges of medium

weight are represented by thin, solid lines.

The partitioning provided by modularity, that of the two leagues, is clearly de-

picted in the figure 4.1. All of the edges of medium to high weight (all non-dotted

edges) exist between teams of the AL (within the core of the network). All edges

between the two communities (that of the core nodes and the peripheral nodes), are

of the lowest weight (dotted edges). Modularity succeeds in identifying a coarse-

grained partitioning within the network – that existing at the league level. However,

it is known that there exists underlying community structure in the MLB network

not identified by modularity: the divisional structure. The leagues consist of ap-

proximately fifteen teams each. The divisions consist of approximately five teams

apiece. Thus, I regard the divisional structure to be more fine-grained. Divisionality

identifies community structure at the divisional level.

4.2 Methods

In this section, I mathematically define divisionality and compare it to modularity.

Both measures require a network and a set of communities, denoted {C}, as input.

Each community Ci ∈ {C} represents a set of nodes. Each node is a member of a

single community.

4.2.1 Mathematical definition of divisionality

Divisionality, D, is the weighted average of a local divisionality ratio Di computed

on each community. For simplicity of description, I assume an unweighted1 network

where ers ∈ {0, 1} edge weight between nodes r and s. I define Di as:

1The mathematics apply to weighted networks as well.

46

Chapter 4. Divisionality: a measure for fine granularity community structure

Di =
wii

T

(ai
T
)2

(4.1)

=
wiiT

a2i
(4.2)

.

Here, {wii =
∑

rs ers|r ∈ Ci, s ∈ Ci} represents twice the number of edges in

which both ends terminate at nodes belonging to community i. Further, ai =
∑

j wij

provides the sum of all edge weights with at least one end attached to a node residing

in community i, and T =
∑

i

∑

j wij is twice the total number of edges in the network.

The numerator of equation 4.1 represents the ratio of edges encapsulated by

community Ci. The denominator provides a null test. The fraction ai/T represents

the expectation that one end of a given edge will belong to community Ci. By

squaring this fraction, the expectation that both ends of a given edge reside in

community Ci is established. Thus, the ratio of 4.1 compares the actual edge weight

encapsulated by community Ci to the expectation for this value. A value of Di >

1 indicates that the edge weight encapsulated by community Ci is greater than

expected. The higher the value Di, the greater the community structure exhibited

by community Ci. Conversely, if Di < 1, the observed edge weight encapsulated by

community Ci is less than expected and indicates a lack of community structure.

Using Di, the global divisionality measure can be expressed as:

D =
1

N

∑

Ci∈{C}

|Ci|

N
Di (4.3)

where N represents the total number of nodes and |Ci| represents the number

of nodes in community Ci. The internal ratio |Ci|/N weights the contributions of

47

Chapter 4. Divisionality: a measure for fine granularity community structure

each Di term by the relative size of the community Ci. The Di terms of larger

communities are emphasized more than those of smaller communities. The 1/N

ratio outside of the sum normalizes the measure to indicate the community strength

per node. Although it is not valid to compare divisionality measures from different

networks, this normalization process provides for an intuitive basis comparison.

Combining equations 4.1 and 4.3, we establish the full mathematical description

of divisionality:

D =
1

N

∑

Ci∈{C}

|Ci|

N
Di (4.4)

=
1

N

∑

Ci∈{C}

|Ci|

N

wiiT

a2i
(4.5)

=
T

N2

∑

Ci∈{C}

|Ci|
wii

a2i
(4.6)

4.2.2 Mathematical comparison to modularity

In section 4.3, I present results and make consistent reference to modularity measures

and compare them to those of divisionality. For comparison, using similar notation

as in section 4.2.1, I present the mathematical definition of modularity in equation

4.7.

Q =
∑

Ci∈{C}

wii

T
− (

ai
T
)2 (4.7)

The mathematical measures of divisionality and modularity are similar. Both are

based on the same null test: the ai
T

2 term. However, while divisionality is based on

48

Chapter 4. Divisionality: a measure for fine granularity community structure

the ratio of wii

T
to the null test value, modularity computes the difference. A value of

Q > 0 indicates the presence of community structure; whereas, Q ≤ 0 indicates a lack

of it. Unlike divisionality, modularity does not weigh the individual contributions

of the terms inside of the summation. Because divisionality is based on a ratio (of

observed to expected encapsulated edge weight) as compared to a difference, it tends

to drive deeper into the community structure hierarchy than does modularity.

4.3 Results

In this section, I compare the results of applying the community structure measures

of modularity and divisionality to six different networks of known structure. Each

example is based on the schedule of a sports league. Teams are represented by nodes.

Games between teams are represented by weighted edges. The weights of the edges

indicate the number of games played between the two associated teams. The first

four networks are based on schedules from professional sports: Major League Baseball

(section 4.3.1), the National Football League (section 4.3.2), the National Basketball

Association (section 4.3.3), and the National Hockey League (section 4.3.4). Each

of these leagues is comprised of approximately thirty teams. The final two networks

are based on college sports: NCAA Football (section 4.3.5) and NCAA Basketball

(section 4.3.6). These networks consist of 119 and 324 teams respectively.

The results discussed throughout this section are presented in table 4.1. For

each network, the actual number of teams, divisions, and leagues are presented.

In addition, for each case, divisionality and modularity values are compared. For

each measure, three values are provided: Qopt, Qgov, and |CQ| for modularity and

Dopt, Dgov, and |CD| for divisionality. With regards to the divisionality statistics,

Dopt represents the best value found by optimizing divisionality on the network,

Dgov represents the divisionality value associated with the alignments imposed by

49

Chapter 4. Divisionality: a measure for fine granularity community structure

the governing body of the sports association, and |CD| indicates the number of

communities associated with the Dopt value. The Q values are defined similarly,

but with refer to modularity rather than divisionality. I used the my deterministic

division algorithm (ρ = 50) to conduct all of the optimizations.

Table 4.1: Comparison of divisionality and modularity values

league composition divisionality modularity
data set teams leagues divisions Dopt Dgov |CD| Qopt Qgov |CQ|
MLB 30 2 6 .0887 .0887 6 .39 .28 2
NFL 32 2 8 .0941 .0941 8 .38 .25 4
NBA 30 2 6 .0423 .0377 2 .13 .02 2
NHL 30 2 6 .0590 .0590 6 .28 .13 2
CFB 119 12 17 .0778 .0770 19 .65 .51 9
CBB 324 32 36 .0651 .0616 51 .618 .546 14

4.3.1 Major League Baseball (2005)

As described in section 4.1.1, Major League Baseball (MLB) is comprised of thirty

teams that are split into two leagues. Within each of these leagues, teams are divided

into three divisions, with the sizes ranging between four and six teams. Each team

plays 162 games during the season, with one third to one half of these games being

against division rivals. Only ten percent of the games pit teams residing in differ-

ent leagues. Figure 4.2 compares the schedule composition of the various leagues

discussed in this chapter according to the approximate percentage of games played

against three types of opponents: division rivals, league rivals not in the same divi-

sion, and inter-league (or inter-conference) opponents.

With reference to table 4.1, it is demonstrated that optimization of modularity

bisects the MLB network, with each partition representing one of the leagues (as

shown in figure 4.1). The bisection is associated with a with a modularity value

50

Chapter 4. Divisionality: a measure for fine granularity community structure

of Qopt = 0.39. In contrast, the modularity value for a network partitioned by the

actual MLB divisional alignment results in a modularity value of Qgov = .28. Given

that Qopt > Qgov, it can be said that modularity does not favor the MLB divisional

structure as the optimal community structure. In contrast, divisionality recovers six

partitions, with each representing an MLB division. With reference to table 4.1,

Dopt = Dgov, thus implying that optimization of divisionality accurately reflects the

official MLB divisional structure.

Figure 4.3 depicts the structure of the divisionality partitioning. Teams of each

independent division are represented by a unique shape. The diamond-shaped nodes

in the center of the network represent the teams of the NL East division (Braves,

Mets, Phillies, Marlins, and the Washington Nationals). For visual clarity, only

edges connected to this division are shown. The dotted edges represent edges of

the lowest weight and represent inter-league games. The dashed edges represent

edges of medium weight. With the exception of those connected to AL East teams

(Yankees, Red Sox, Devil Rays, Orioles, and Blue Jays), all of these middle weight

edges represent intra-league matchups with teams in different divisions. The bold

edges in the core of the network represent those with the greatest weight (sixteen

to eighteen games). All of these occur between teams of the NL East. Comparison

of figures 4.3 and 4.1 illustrates a difference between divisionality and modularity.

Divisionality identifies concentrations of nodes that encapsulate edges of the greatest

weight. In contrast, modularity isolates groups of nodes connected by all but the

weakest of edge weights.

Figure 4.4 provides an alternative depiction of the difference between division-

ality and modularity. The tree structure, referred to as a dendrogram, depicts the

community splits that occurred during the optimization of divisionality. At the top

of the tree (where the y-axis is indicates height = 6), all nodes are contained in one

partition. At the bottom of the tree (height = 0), the nodes are color coded accord-

51

Chapter 4. Divisionality: a measure for fine granularity community structure

ing to the community with which they are eventually associated. The forks in the

middle of the tree indicate how the partitions were split. At height = 2, the network

is split into two partitions, with each representing one of the MLB leagues. This level

in the tree accords with the termination point for modularity optimization. Whereas

modularity stops at height = 2, divisionality continues to dissect the network. At

height = 1, one of the three divisions in each league is cleaved from the other two

divisions (the orange division in the league on the left side and the green division on

the right side). Finally, at the bottom level, we see that each of the remaining two

divisions are split.

The dendrogram illustrates how divisionality forges deeper into the underlying

community structure than does modularity. Further, the dendrogram reveals that

it is possible to recover higher level community structure by climbing the tree. At

height = 2 of the divisionality dendrogram, the MLB leagues are recovered. Di-

visionality reveals a more complete picture of the hierarchal structure in the MLB

network. Not only does divisionality reveal the fine-granular divisions, but it is still

possible to identify the leagues (as achieved by optimizing modularity) by tracing

the divisionality dendrogram upwards.

4.3.2 National Football League (2005)

The National Football League (NFL) consists of thirty two teams split into two

conferences (analogous to the leagues of MLB). Within each conference, teams are

split into four divisions. In total the league contains eight divisions, each of size four.

The schedule consists of each team playing sixteen games. Six of these games are

based on intra-divisional play (37.5 percent of the games), as each team plays its

three division rivals twice. Furthermore, each division is pitted against one division

of the other conference. For these inter-conference divisional matchups, each team

52

Chapter 4. Divisionality: a measure for fine granularity community structure

of one division plays each team of the other division a single time (for a total of four

games per team). The final six games (37.5 percent) occur within the conference.

Four of these games result from an intra-conference divisional matchup. The final two

games for each team are assigned to create parity in the league. Strong teams from

the previous season are matched with other strong teams from the same conference.

Weak teams are matched with other weak teams of the same conference.

Modularity splits the NFL network into four partitions. Each of these parti-

tions contains the union of two divisions as dictated by either the inter-conference

or intra-conference divisional matchups – the pair of divisions is merged into a single

community. With reference to table 4.1, Qopt > Qgov for the NFL, thus confirm-

ing that modularity does not favor the official divisional alignments as the optimal

community structure for the network.

In contrast, divisionality partitions the NFL network into eight communities.

Each community represents one of the eight NFL divisions. Confirming this result,

Dopt = Dgov in table 4.1. This equality establishes that optimization of divisional-

ity favors the official NFL divisional alignments as best describing the community

structure based on team schedules.

4.3.3 National Basketball Association (2006)

The National Basketball Association (NBA) has thirty teams split into two confer-

ences. Within each conference, teams are split into three divisions consisting of five

teams apiece. Each team plays 82 games in a season. Unlike the MLB and NFL

leagues, each NBA team plays every other team. The network is fully connected.

Furthermore, unlike MLB, the weights of the NBA network are relatively balanced.

Each team plays their division rivals four times (20 games) while playing each team

of the opposing conference twice (30 games). The remaining thirty two games are

53

Chapter 4. Divisionality: a measure for fine granularity community structure

allocated to playing teams in the same conference (either three or four times). This

schedule composition is represented by approximate percentages in figure 4.2.

With reference to the NBA schedule, both modularity and divisionality bisect the

network. Note that Qopt > Qgov and Dopt > Dgov, indicating that according to both

measures, the NBA divisional alignments do not represent the optimal community

structure of the league. Rather, in both cases, the recovered partitions match that

of the conferences.

This result makes intuitive sense. The NBA divisional alignment is in a sense

false since a given team is equally likely to play a divisional foe as it is to play a

team from another division within the conference. However, despite the fact that

all teams play one another, a given team is twice as likely to play a team from its

own conference as it is a team from the opposing conference. Both modularity and

divisionality exploit this structure and split the network according to the conference

alignments.

4.3.4 National Hockey League (2004)

The National Hockey League (NHL) consists of thirty teams split into two confer-

ences. Within each conference, teams are divided into three divisions of five teams

apiece. Each team plays 82 games during the season. The network is fully connected,

as each team plays every other team. Teams play their division rivals six or seven

games (approximately 33 percent of schedule), teams in the same conference but

other divisions four times (49 percent), and teams in the opposing conference one or

two times (18 percent).

As shown in table 4.1, Qopt > Qgov, thus indicating that modularity does not re-

gard the NHL divisional alignments as representing the optimal community structure

for the network. Rather, modularity bisects the network according to the conference

54

Chapter 4. Divisionality: a measure for fine granularity community structure

alignments. In contrast, divisionality splits the network into six partitions. Note

from table 4.1 that Dopt = Dgov for the NHL, thus indicating that the recovered

partitions represent those dictated by the NHL divisional alignments.

4.3.5 NCAA Football (2005)

The NCAA college football (CFB) network contains 119 teams split into twelve con-

ferences (or leagues), for an average league size of 10 teams. Five of these conferences

are split into two divisions. As a result, the conference/division alignments create

seventeen partitions. For the sake of this analysis, I consider each partition – whether

it be a division or a conference – to be the equivalent of a conference. As a result,

figure 4.2 depicts only two bars for each college sport (including CFB and CBB of

section 4.3.6). Games are categorized as either intra-division (games against teams

from the same division/conference) or inter-league (games between teams of different

divisions/conferences).

Each team plays approximately twelve games with a strong bias for intra-

conference games (67 percent on average). The other third of the games are spread

amongst non-conference foes. In conferences that are split into divisions, teams play

all of the teams within their division and a few of the teams in the opposing di-

vision. With regards to schedule composition, all such games are categorized as

intra-division.

A final note of interest involves the Independents, a group of four teams. These

teams are grouped together; however, they are not regarded as a conference. Three

of the teams play two of the other Independents. Their remaining ten games are

played against teams from other conferences.

Modularity divides the NCAA football network into nine communities. The

smallest of these communities consists of eight teams – those representing the Big

55

Chapter 4. Divisionality: a measure for fine granularity community structure

East conference. The largest community contains twenty one teams, merging the two

divisions of the Big Twelve conference with eight teams of the Sun Belt conference as

well as the Independent team of Army. With reference to table 4.1, Qopt > Qgov, con-

firming that modularity does not regard the CFB divisional/conference alignments

to represent the optimal community structure for the network.

Similarly, Dopt > Dgov, indicating that divisionality does not regard the divi-

sional/conference alignments as optimal, either. However, divisionality splits the

NCAA football network into nineteen communities, two more than the seventeen

represented by official alignments. Fifteen of the seventeen actual alignments are

recovered exactly as defined by the NCAA. The remaining four divisionality com-

munities result from bisections of the Pac Ten and Big Ten conferences. Further

examination of the schedules of these conferences reveals the reason. In both cases,

teams of the conferences are not fully connected. In the Pac Ten, each team plays

every other team except for one. The Pac Ten bisection reflects this imbalance, as

each team in a given partition plays the four other teams in its partition but it does

not play one of the teams of the other partition. With regards to the Big Ten con-

ference (for which the name has remained unchanged for historical reasons despite

including eleven teams), each team plays eight of the other ten teams. With the

exception of Wisconsin, each team within a given partition plays all of the teams

within its partition but does not play two of the teams from the opposing partition.

Wisconsin does not play one team from each partition. In essence, the Big Ten is

split into virtual divisions and divisionality identifies this asymmetry.

4.3.6 NCAA Basketball (2006)

The NCAA college basketball (CBB) network contains 324 teams split into 32 confer-

ences (an average of ten teams per conference). Four of the conferences are bisected

56

Chapter 4. Divisionality: a measure for fine granularity community structure

into divisions, thus yielding 36 partitions by official alignment. The partition sizes

range from 5 to 16 teams. Similar to the the CFB network, there exists one con-

ference deemed the Independents, which contains ten teams in this case. Each team

plays approximately thirty games. On average, half of these games are played against

conference rivals. The exception to this rule involves the Independents. Teams within

this conference play one another anywhere from two to ten times.

Modularity splits the CBB network into 14 communities (see table 4.1). Six of

these communities represent actual conference alignments. The other partitions are

the result of merged conferences. The largest such community contains 57 teams and

is the result of combining 5 separate conferences. Interestingly, when conferences are

merged, they are generally from the same geographic region. The reason for this

geographic correlation is that teams play a greater number of their out-of-conference

games against teams from the same geographic region. Many of these games are based

on in-state or border-state rivalries. Others are based on old conference alignments

in which teams were formerly conference foes.

In contrast, divisionality splits the CBB network into 51 communities. Twenty

four of the thirty six actual alignments are recovered as they exist. One other commu-

nity (the Big West conference) is merged with UC Davis of the Independents. This

team played half of its games against the Big West and only two versus the other

Independents. Of the remaining eleven conferences, seven of them are bisected. The

final four conferences are split into three partitions. Examination of these confer-

ences revealed an imbalance in the intra-conference schedules: certain teams played

certain conference foes twice while playing others only once. Divisionality identified

these imbalances and split the conferences into smaller groups accordingly.

57

Chapter 4. Divisionality: a measure for fine granularity community structure

4.4 Concluding remarks

In this chapter, I introduced a fine-granularity measure of community structure called

divisionality. I presented the mathematics of divisionality and then examine its ef-

ficacy, in comparison to modularity, by optimizing it on a series of networks with

known structure: the schedule structure of six different sports leagues. I demon-

strated that divisionality identifies the known, low-level structure of these networks.

Further, I showed that the community structure recovered by optimization of divi-

sionality was of equivalent or finer-granularity than that detected by optimization of

modularity.

58

Chapter 4. Divisionality: a measure for fine granularity community structure

indians

rangers

twins

angels

tigers

athletics

white_sox

blue_jays

orioles

mariners

devil_rays

royals

yankees

red_sox

giants

padres

diamondbacks

rockies

reds

marlins

phillies

washington

astros

braves

dodgers

brewers

cardinals

mets

cubs

pirates

Figure 4.1: Community structure for the 2005 Major League Baseball schedule net-
work based on modularity optimization. The network is split into two communities.
The internal community (yellow nodes) represents the American League. The outer
community (green nodes) represents the National league. To aid visualization, only
edges with at least one end connected to an American League team are shown.

59

Chapter 4. Divisionality: a measure for fine granularity community structure

0
10

20
30

40
50

60

intra−division
intra−league
inter−league

MLB NFL NBA NHL CFB CBB

Figure 4.2: Schedule composition for the different leagues.

60

Chapter 4. Divisionality: a measure for fine granularity community structure

mets

marlins
phillies

washington

braves

giants

padres

diamondbacks

dodgers

rockies

yankees

cubs

pirates

brewers

cardinals

astros

reds

angels

athletics

marinersred_sox

indians twins tigers

white_sox

royals

blue_jays

orioles

devil_rays

rangers

Figure 4.3: Community structure for the 2005 Major League Baseball (MLB) sched-
ule network based on divisionality optimization. The network is split into six com-
munities. Each community represents one of the official MLB divisions. To aid
visualization, only edges with at least one end connected to a National League East
(NLE) team are shown. The red edges represent those of highest weight and all fall
between division rivals of the NLE.

61

Chapter 4. Divisionality: a measure for fine granularity community structure

Major League Baseball 2005

0
1

2
3

4
5

6

C
O

L

LA
D

A
R

I

S
F

O

S
D

P

A
T

L

W
A

S

P
H

I

N
Y

M

F
LA

C
IN

H
O

U

S
T

L

M
IL

C
H

C

P
IT

B
O

S

N
Y

Y

T
A

M

T
O

R

B
A

L

K
C

C
H

W

D
E

T

C
LE

M
IN

S
E

A

O
A

K

T
E

X

LA
A

Labels

Figure 4.4: This dendrogram of the MLB 2005 schedule network depicts the splits
resulting by optimizing divisionality. At the top level (at height 6), all of the nodes
are contained in a single partition. At the bottom (height 0), the nodes are parti-
tioned into six communities, each representing an MLB division. At height = 2, the
two partitions represent the leagues. Modularity failed to find community structure
beneath this level.

62

Chapter 5

A dual assortative measure of

community structure

5.1 Introduction

Current community detection algorithms operate by optimizing modularity, which

analyzes the distribution of positively weighted edges in a network. Modularity does

not account for negatively weighted edges. This chapter introduces a dual assorta-

tive modularity measure (DAMM) that incorporates both positively and negatively

weighted edges. First, I describe the the DAMM statistic and illustrate its utility in

a community detection algorithm. Then, I evaluate the efficacy of the algorithm on

both computer generated and real-world networks, showing that DAMM broadens

the domain of networks that can be analyzed by community detection algorithms.

A friendship network is a common example of a complex network. Nodes of the

friendship network represent people, and the edges, which are positively weighted,

represent friendships. Intuitively, communities are comprised of sub-graphs in the

network that are densely connected to one another but sparsely connected to the

63

Chapter 5. A dual assortative measure of community structure

outside. The term assortativity [35] [36] refers to the tendency for nodes to be

connected to others that are like, or unlike, them. In the case of the friendship

network, communities are based on positive assortativity because nodes are connected

to others with whom they share a positive connection (friendship). Panel A of figure

5.1 depicts a friendship network, where the solid edges are positively weighted and

represent friendships.

In this chapter, I incorporate the concept of negative assortativity, or disassor-

tativity, into the definition of community. Nodes are negatively assortative if their

connection is based on dissimilarity, rather than likeness. With regards to the friend-

ship network, negatively weighted edges represent the strength of adversarial rela-

tionships. I refer to a network that contains only negatively weighted edges as an

adversarial network. As previously described, all of the edges in the network shown

in panel A of figure 5.1 are based on friendships. However, let us assume that this

friendship information is unavailable and that instead a list of adversarial relation-

ships between nodes is provided. Further, assume that all pairings in the original

network that did not share friendships are now considered adversaries. The resulting

adversarial network is presented in panel B of figure 5.1. The dashed edges indicate

negative weights. The two networks, the friendship network (top left) and the ad-

versarial network (top right), provide similar but different information. It is not the

case that the adversarial network is always the reciprocal of the friendship network.

In this work, I combine the two concepts – both positive and negative assortativ-

ity – to form a single definition of community. Because this definition incorporates

the contributions of both negative and positive relationships, I refer to it as dual

assortative. The networks on the bottom of figure 5.1 illustrate this duality. They

contain both positive relationships (solid edges) and negative relationships (dashed

edges). Such networks may be fully connected, as is the case of the network in

panel C of figure 5.1. However, more commonly, only a fraction of the possible re-

64

Chapter 5. A dual assortative measure of community structure

lationships between nodes may be known (panel D of figure 5.1). An example of

a dual assortative network is one in which the edge weights are based on a simi-

larity measure, such as correlation, which can assume either a positive or negative

value. Consider a network where the nodes represent financial traders and the edge

weights indicate the correlation of trading behavior between a pair of traders. The

dual assortative modularity measure (DAMM) definition incorporates all available

information, positive and negative, to assess the strength of community structure.

Intuitively, there exists an asymmetry in the information provided by positive

and negative edges. A friendship between two people conveys a stronger bond than

sharing a common adversary. However, this is only true when there are three or

more communities. When only two real communities exist, a negative edge provides

the same amount of information as a positive edge. Consider the case of having two

communities, community Ca and community Cb. If two nodes share a negative edge,

it indicates that one node should belong to Ca and the other to Cb. However, in

the case of three or more communities, the negative edge simply indicates that the

nodes should reside in separate communities but does not indicate which particular

communities the nodes should belong. The information provided by a positive edge

is more specific than that for a negative edge.

The remainder of the chapter is organized as follows. In section 5.2, the math-

ematical framework for the dual assortative measure is introduced and explained.

Further, a community detection algorithm used for optimizing the DAMM is de-

scribed. In section 5.3, I assess the efficacy of optimizing the DAMM on both com-

puter generated and real networks, and section 5.4 summarizes and concludes.

65

Chapter 5. A dual assortative measure of community structure

5.2 Methods

This section introduces the mathematics of the dual assortative modularity measure

(DAMM), describes the extremal optimization algorithm for optimizing the DAMM

on a given network, and describes a measure, called communal overlap, which I use to

quantify the fidelity of a community detection result given that the real communities

are known and available for comparison.

5.2.1 The dual assortative modularity measure

Before describing the dual assortative modularity measure (DAMM), we review the

original modularity measure, which provides the foundation for the DAMM. I then

show how to quantify the negative assortative contributions of a network. The posi-

tive and negative components are then combined to establish the DAMM. Finally, I

introduce the algorithm used to optimize the DAMM on a network.

Positive assortativity

I denote an edge weight between node r and node s as ers. For simplicity of expla-

nation, I consider only networks with edges of weight ers ∈ {−1, 0, 1}, with ers = 0

implying that the edge is not present. However, in practice ers will often be a real

number, ers ∈ ℜ. Given a set of communities, denoted C, {wij =
∑

rs ers|ers >

0, r ∈ Ci, s ∈ Cj} denotes the cumulative positive edge weight between community

i and community j. Similarly, {w̄ij =
∑

rs ers|ers < 0, r ∈ Ci, s ∈ Cj} denotes the

cumulative negative edge weight between community i and community j.

Equation 5.1 provides the original modularity measure [34], denoted as Q+. The

implied edge weight domain is ers ∈ {0, 1}. The wii term represents twice the number

of positive edges in which both ends terminate at nodes belonging to community i.

66

Chapter 5. A dual assortative measure of community structure

Further ai =
∑

j wij gives the sum of all positive edge weights with at least one

end attached to a node residing in community i, and T+ =
∑

i

∑

j wij is twice the

total number of positive edges in the network. I use the term spoke to refer to

the terminal end of an edge. Using this terminology, ai represents the number of

positively weighted spokes connected to community Ci. Similarly, T+ represents the

total number of positively weighted spokes in the network.

Q+ =

|C|−1
∑

i=0

wii

T+
−

(ai
T+

)2

(5.1)

The summation in equation 5.1 iterates through the set of communities. For each

community, the difference (wii/T
+)−(ai/T

+)
2
reflects the strength of that particular

community. The first term, (wii/T
+), represents the ratio of intra-communal edges

to the total number of edges in the network. An edge is considered to be intra-

communal if both ends are connected to nodes residing in the same community. One

could mistakenly assume that the higher this ratio, the greater the strength of the

community. However, if it were, the ratio would be optimized by a single community

containing all nodes within the network. Thus, I compare the ratio found in the

first term to the expectation of its value, (ai/T
+)

2
. The ratio ai/T

+ represents the

ratio of positive edge spokes connected to the given community to the total number

of positive edge spokes, and thus its square gives the expectation. If the difference

of terms is positive, the observed ratio is greater than what would be expected if

the edges were placed randomly. The greater the (positive) difference, the greater

the communal strength. If the difference is negative, the communal strength is

found to be weaker than the expectation, suggesting no communal structure for the

community being investigated.

The DAMM is given in equation 5.5. It uses a modified form of equation 5.1

67

Chapter 5. A dual assortative measure of community structure

to assess the contribution of positively weighted edges. Specifically, I redefine T+

to be T =
∑

i

∑

j wij + |w̄ij|, so that both positively and negatively weighted edges

contribute to the total weight T . The original modularity measure does not account

for negative edge weights and thus T+ does not include the |w̄ij| term.

Negative assortativity

This measure is motivated by the idea that a shared adversary represents a com-

monality. In other words, if both Jack and Jill are both adversaries with Alice, they

share a commonality regardless of whether the pair are friends. In the case of posi-

tive weights, the difference between the ratio of edges encapsulated by a community

and its expected value (given random edge assignments) was quantified. Here, the

scenario is reversed. Adversarial relationships within a community are not desirable.

In a scenario of perfect community structure, all negative edges would occur between

communities.

Equation 5.2 defines the negative assortative component of the DAMM. The

equation resembles that of equation 5.1, except the order of terms is reversed and

we consider negatively weighted edges. Here, āi represents the cumulative negative

edge weight connected to nodes of community i. In other words, āi =
∑

j w̄ij and w̄ii

represents the cumulative negative edge weight encapsulated by community i. The

first term of equation 5.2 provides a null test.

Q− =

|C|−1
∑

i=0

(āi
T

)2

−
w̄ii

T
(5.2)

68

Chapter 5. A dual assortative measure of community structure

Dual assortative modularity measure (DAMM)

To establish the DAMM, I combine the negative assortativity contribution of equa-

tion 5.2 with the positive assortativity contribution of equation 5.1 (with T+ replaced

by T). I define DAMM as follows:

QD = Q+ +Q− (5.3)

=

|C|−1
∑

i=0

[

wii

T
−

(ai
T

)2
]

+

|C|−1
∑

i=0

[

(āi
T

)2

−
w̄ii

T

]

(5.4)

=

|C|−1
∑

i=0

(

wii − w̄ii

T

)

+

(

āi
2 − a2i
T 2

)

(5.5)

In the absence of negative edges, T = T+, w̄ii = 0, and āi = 0 for all i, and the

DAMM reduces to equation 5.1.

5.2.2 Optimizing DAMM with the extremal optimization al-

gorithm

I use extremal optimization (EO) [7] [6] to optimize the DAMM statistic and detect

communities in a network. EO is known to be effective for community detection using

the original modularity measure that is based solely on positive assortativity [14]. EO

is a divisive approach, in which all nodes are initially placed in a single community.

Thereafter, each community is divided recursively into two independent communities,

not necessarily of the same size. At each step, the division found to provide the

largest increase in modularity is applied, given that the increase is positive. If the

best division does not increase modularity, the community is declared indivisible.

When all existing communities are found to be indivisible, the algorithm halts.

69

Chapter 5. A dual assortative measure of community structure

Each division proceeds as follows. Initially, the nodes are randomly assigned to

one of two partitions. After all nodes have been assigned, the DAMM is computed.

Thereafter, a single node is migrated from one partition to the other, and the DAMM

is recomputed by adding ∆QD associated with the migrated node (section 5.2.2).

A counter, denoted K, tracks the number of moves since the last DAMM im-

provement. If the DAMM fails to improve, the counter is incremented. Otherwise,

the counter is reset to zero, and the partitioning is recorded along with its asso-

ciated DAMM value. This partitioning represents the best detected configuration.

The process continues until the counter reaches a predetermined threshold. For each

division, the size of the community, denoted |Ci|, determines the stopping criterion

such that the maximum allowable number of steps is S = α|Ci| (α = 3 in the exper-

iments of section 5.3). Once the counter reaches the threshold S, such that K = S,

the process terminates and the best detected configuration is retained. If the split

has improved the DAMM value, the global set of communities is updated to reflect

the division. Otherwise, it remains unchanged and is marked indivisible.

Calculating ∆QD

An important component of the EO algorithm involves choosing which nodes to

migrate. Rather than choosing nodes at random, a value ∆QD,u is associated with

each particular node u. This approach differs slightly from that of [14], which uses

a heuristic to ∆Q rather than the exact difference. The value ∆QD,u represents

the change in DAMM that occurs by migrating the specified node. This method

resembles hill-climbing used in other settings and biases the search for an optimal

division towards immediate improvements.

In practice, I maintain a list that associates a ∆QD,u value with each node u. To

select a node for migration, the list of ∆QD,u values is ranked and then a node is

70

Chapter 5. A dual assortative measure of community structure

probabilistically chosen using a method known as τ -EO [14] [7]. Using this process,

a node of rank q is chosen with probability of P (q) ≈ q−τ where τ = 1 + 1
log |Ci|

.

Following the migration of a node u, ∆QD,u is updated as described in section 5.2.2.

The calculation of ∆QD,u is given by equation 5.7. The derivation is provided in

appendix B.1.

∆QD,u
t = ∆Q+,u

t +∆Q−,u
t (5.6)

= 2

[(

wgu − wlu

T

)

+
du
T 2

(al − ag − du))

]

+2

[(

w̄lu − w̄gu

T

)

+
d̄u
T 2

(

āg − āl + d̄u)
)

]

(5.7)

Calculating ∆2QD

After each migration, all ∆QD,u values are subject to change. Rather than recompute

the value for each node, a less computationally expensive approach makes use of

∆2QD,um. Each value can be updated as ∆QD,u
t+1 = ∆QD,u

t +∆2QD,um
t , where ∆2QD,um

t

represents represents the change in ∆QD,u for node u following the migration of node

m at time t.

As noted, computation of ∆2QD,um
t involves two nodes: the node m that was

migrated and the node u for which ∆QD,u must be updated. Both nodes might move

to the same community, or they might move in opposite directions (each community

gains one node and loses the other node). A direction indicator D ∈ {−1, 1} is used

to indicate how the nodes move. If they both move to the same community, D = 1;

otherwise, D = −1.

The calculation of ∆2QD,um
t is given by equation 5.8. The derivation is provided

in appendix B.2.

71

Chapter 5. A dual assortative measure of community structure

∆2QD,um
t = 4D

(d̄ud̄m − dudm)

T 2
+

(wfs + w̄fs)

T
(5.8)

The computational cost of computing ∆2QD,um is less than that for ∆QD,u. The

latter requires computing wgu, wlu, w̄gu, and w̄lu, which is O(|Ci|), where |Ci| rep-

resents the number of nodes in community i. The cost of computing ∆2QD,um is

reduced to O(1).

5.2.3 Measuring communal overlap

In section 5.3, I will optimize the DAMM on a given network, recover the detected

communities, Cd, and assess the similarity of Cd to the known communities Ck.

For this final step, which compares two communities, I introduce a measure that I

call communal overlap. The statistic quantifies the similarity between two sets of

communities and is used to assess the success of each experiment.

The foundation for communal overlap is the Jaccard index, J(A,B) =

|A
⋂

B| / |A
⋃

B|, which measures similarity between sets, say A and B. Each com-

munity, Ci ∈ C, is a set of nodes. Thus, the Jaccard index provides a means for

comparing two different community configurations. Let Ck(n) and Cd(n) represent

the known and detected communities corresponding to node n. Then, if A = Ck(n)

and B = Cd(n) the Jaccard index measures their similarity. In this context, greater

similarity implies better detection. Communal overlap, shown in equation 5.9, com-

putes the weighted average of the Jaccard indices for all nodes in the network. The

higher the value of communal overlap, Ω ∈ (0, 1], the greater the similarity between

the communal configurations Ck and Cd, where Ω = 1 represents a perfect match.

Ω = 0 is unattainable because at the very least, for all n, Ck(n) and Cd(n) share the

node n and thus |Ck(n)
⋂

Cd(n)| > 0.

72

Chapter 5. A dual assortative measure of community structure

Ω =
1

N

∑

n∈N

|Ck(n)
⋂

Cd(n)|

|Ck(n)
⋃

Cd(n)|
(5.9)

5.3 Experimental Results

In this section, I report on three experiments. The first two study stochastically

generated networks with a prescribed community structure. The third experiment

involves a real world network, the 2005 National Football League (NFL) schedule.

In each case, I measure the efficacy of the DAMM-enabled EO algorithm to recover

known community structure.

5.3.1 Experiment I: independent contributions of positive

and negative edges

Generating networks stochastically

In these tests, I generated networks with N = 64 nodes and |C| = 4 communities of

equal size (16). Once the communities are established, both positive and negative

edges are added to the network. By default, positive edges are added between nodes

of the same community and negative edges are added between nodes of different

communities. An exception to this rule involves false positives and false negatives,

discussed in section 5.3.2.

The stochastic generation algorithm uses two parameters: the mean number of

intra-community edges per node zin (both nodes in the same community), and the

mean number of inter-community edges per node zout (nodes in different commu-

73

Chapter 5. A dual assortative measure of community structure

nities). Intra-community edges are assigned an edge weight of eij = 1, and inter-

community edges are negatively weighted (eij = −1).

For any node n ∈ N there are |N | − 1 possible edges, discounting self-loops.

To generate the positively weighted edges, a pseudo-random number rin ∈ [0, 1) is

generated for each potential intra-community edge. If rin < pin the edge is added,

where pin is the probability of an intra-community edge existing: pin = zin/ (|Ci| − 1).

A similar procedure is followed for negative edges. Each potential inter-community

edge is generated with probability pout = zout/ (|N | − |Ci|).

Experimental setup

I refer to the mean cumulative degree of a node, which combines both the intra-

community and inter-community degrees, as zcum = zin + zout. For the first exper-

iment, I generated a series of networks with zcum = 16. While the value of zcum

was held static, zin ∈ [0, 16] and zout ∈ [0, 16] were dynamically adjusted and re-

late inversely such that zout = 16 − zin. For each (zin, zout) parameter setting, 100

independent networks were generated. I refer to these networks as being dual assor-

tative (DA). The goal is to compare the independent contributions of the positive

and negative edges of the DA networks. Towards this end, from each DA network,

I extracted the embedded positive assortative (PA) and negative assortative (NA)

networks. To extract the PA network, all negative edges were removed from the orig-

inal DA network. In contrast, to establish the NA network, all positive edges were

removed from the DA network. For each network – whether it be a DA, PA, or NA

network – the DAMM was optimized using the EO algorithm and the community

overlap Ω was assessed.

Any value of zin ≥ |Ci| yields full intra-component connectivity. Thus, for zin =

15 and zin = 16, the intra-component sub-networks are fully connected. On the

74

Chapter 5. A dual assortative measure of community structure

other hand, the maximum value of zout = 16 covers merely one-third of the potential

inter-component edge space.

Results

Figure 5.2 shows the results of the first experiment. On the lower x-axis, the positive

degree, zin, is displayed. On the top x-axis, the negative degree, zout, is shown. The

y-axis represents the mean communal overlap, 〈Ω〉 = 1/|G|
∑|G|

i=0Ω(Gi), for the set

of generated networks G corresponding to the specified (zin, zout) setting. The solid

curve shows results for the DA networks. For all (zin, zout) settings, 〈ΩDA〉 > 0.95.

Optimization of the DAMM on the DA networks detects the known communities

with high fidelity. The dashed curve shows DAMM-optimized PA networks. For

zin ≥ 4, the PA networks yield a 〈ΩPA〉 > 0.95, which is comparable to the DA net-

works. However, for zin < 4, the community overlap values for the PA networks are

significantly less than those observed for the DA networks. This deficiency highlights

the importance of the negative edges that are removed to create the PA networks.

By removing these edges, information used by the DAMM is lost. As a result, the

detection process suffers. The dotted curve presents the results for the NA networks.

Note that for only zout = 16 does 〈ΩNA〉 > 0.95. For zout ≤ 10, 〈ΩNA〉 < 0.5, which

means that, on average, there exists less than a 50% overlap between the detected

and known communities.

The distance between the NA (dotted) and DA (solid) curves of figure 5.2 high-

lights the importance of the positive edges that were removed from the original DA

networks. The mean distance between the DA (solid) and PA (dashed) curves is

0.084 units of community overlap. By comparison, the mean distance between the

DA and NA curves is 0.50 units of community overlap. Removal of the positive

edges from the DA networks for the investigated parameter range has a significantly

greater deleterious impact on community detection.

75

Chapter 5. A dual assortative measure of community structure

These results provide a proof-of-principle for the DAMM. Regardless of the

(zin, zout) setting, optimization of the DAMM yields a high communal overlap

(〈ΩDA〉 > 0.95) on the DA networks. When either the positive or negative edges

are removed, the detection process suffers. Note that if the original modularity mea-

sure is optimized on the DA networks, the contributions of the negative edges are

ignored. By optimizing the DAMM on the PA networks, I achieve the equivalent –

since the negative edges have been removed, the negative information is unavailable

to the DAMM. Without the negative edges, the communal overlap yield drops. By

incorporating the contributions of both positive and negative edges, the DAMM out-

performs the original modularity measure. Furthermore, I have demonstrated high

fidelity community detection using only the negative edges. At (zin = 0, zout = 16),

optimization of the DAMM yields 〈ΩNA〉 > 0.95.

5.3.2 Experiment II: the impact of false positives and false

negatives

The second experiment introduces “false” edges to the networks: false positives and

false negatives. A false positive is a positively weighted edge that connects nodes

in different communities. In the language of friends and adversaries, a false positive

indicates a friendship between people of different communities. A false negative oc-

curs when two nodes of the same community are connected by a negatively weighted

edge. This occurs when there is an adversarial relationship between two people of the

same community. False positives and false negatives are routinely found in real-world

networks. Their presence contributes to the challenge of detecting communities.

To assess the impact of the false positives and false negatives, we generated

DA networks with a fixed (zin, zout) setting, and then exclusively added either false

positives or false negatives. For this experiment, I did not disassemble the DA

76

Chapter 5. A dual assortative measure of community structure

networks into their PA and NA constituents. The community detection algorithm,

which optimizes the DAMM, was applied to each DA network and the communal

overlap Ω was computed.

Generating false positives and false negatives

To include false positives and false negatives, I introduce two additional parameters:

f+, the mean number of false positives per node, and f−, the mean number of false

negatives per node. To generate false positives, I assess the unused negative edge

space following the initial edge generation phase (section 5.3.1). Assume that E−

represents the entire negative space considered for a given node in the initial phase.

I refer to the unused subset of this space as U− ∈ E− and establish the probability

φ+ = f+/U−. For each potential edge eij ∈ U−, a random number is generated,

r+ ∈ [0, 1). If r+ < φ+, a positive edge between is added such that eij = 1, where i

and j are known to reside in different communities. The generation of false negatives

follows a similar procedure; however, f− dictates the likelihood of adding negatively

weighted edges between nodes residing in the same community.

Experimental setup

I generated base networks with three different settings: (zin = 5, zout = 16), (zin =

7, zout = 16), and (zin = 5, zout = 22). The first parameter pair was chosen because

the degree represents one-third connectivity within both the intra-community and

inter-community subspaces. For a given node, since |Ci| = 16, the maximum number

of intra-component edges is zin = 15 and the maximum number of inter-component

edges is zout = 48. Figure 5.2 shows that zin = 5 represents the relative threshold for

which ΩPA > 0.95 and zout = 16 for ΩNA > 0.95. The other two parameter settings

were chosen to analyze the effect of independently increasing intra-community or

77

Chapter 5. A dual assortative measure of community structure

inter-community connectivity. The second pair of parameters, (zin = 7, zout = 16),

was chosen to highlight the effect of increasing zin when zout is maintained. The

increase from zin = 5 to zin = 7 represents a 13% increment in intra-community

coverage. Analogously, the third parameter pair, (zin = 5, zout = 22), represents a

13% increase in the inter-community coverage and allows us to analyze the effect

of increasing zout while holding zin steady. To these base networks, I independently

added either false positives or false negatives. Accordingly, the edge generation

parameter space is extended to (zin, zout, f
+, f−) with f+ ∈ [0, 8] and f− ∈ [0, 8].

None of the networks contain both false positives and false negatives: the addition of

the false edges is mutually exclusive to a single type. Thus, if f+ > 0, then f− = 0;

conversely, if f− > 0, then f+ = 0. For each parameter setting, forty networks were

created, each with a different random number generator seed.

Results

Figure 5.3 shows the results on networks with false positives and false negatives. In

the top graph, corresponding to (zin = 5, zout = 16, f+, f−), both curves are similar,

although the detrimental effect of the false negatives is slightly greater. As expected,

as the rate of either false positives or false negatives increases, 〈Ω〉 decreases. When

only a couple of false edges are added, the known communities are detected without

a significant drop-off. For f+ < 3 and f− < 3, the mean communal overlap exceeds

〈Ω〉 = 0.95. However, beyond this range, the detection rate suffers. With reference

to table 5.1, the mean communal overlap for both curves, M = 〈(Ω+ + Ω−) /2〉, is

0.67.

In the middle graph, corresponding to (zin = 7, zout = 16, f+, f−), and with

the mean degree of intra-community edges increased from zin = 5 to zin = 7, the

effect of the additional positive edges is observable. Note that for f+ < 6 and

f− < 4, the mean communal overlap 〈Ω〉 > 0.95. Thus, the range of high fidelity

78

Chapter 5. A dual assortative measure of community structure

detection has been extended. Comparison to the top graph highlights another effect

of the additional information: the mean distance between the false positives curve

and the false negatives curve, denoted as 〈δ〉, has increased. With reference to

table 5.1, 〈δzin=5,zout=16〉 = .058 as compared to 〈δzin=7,zout=16〉 = .113. Further, the

increase in zin improves the mean communal overlap for the range of both curves

from Mzin=5,zout=16 = .67 to Mzin=7,zout=16 = .82.

The bottom graph presents results for (zin = 5, zout = 22, f+, f−), for which,

in comparison to the top graph, zout is increased and zin is unchanged. Similar

to the effect observed in the middle graph, M increases in comparison to the ini-

tial parameter setting (Mzin=5,zout=22 = .79 as compared to Mzin=5,zout=16 = .67).

However, unlike the case for increasing zin (top graph), the mean distance between

the curves, 〈δ〉, does not differ significantly (〈δzin=5,zout=22 = .069〉 compared to

〈δzin=5,zout=16 = .058〉).

The second experiment establishes that the independent impact of false positives

and false negatives is influenced by the composition of the network. An increase

in either zin or zout lessens the detrimental effect of either false positives or false

negatives, as demonstrated by the M values of table 5.1. Further, the additional

edges (relating to zin and zout), appear to have an asymmetric effect on the impact

of false positives and false negatives. The increase in zin significantly widens the

gap between the false positives curve and the false negatives curve (〈δzin=7,zout=16〉 =

.113). The increase in zout has a much less pronounced effect on the distance between

the false positives and false negatives curves (〈δzin=7,zout=16〉=.069).

Table 5.1: Results for false positives and negatives.

zin zout 〈Ω+〉 〈Ω−〉 〈δ〉 M = 〈Ω
++Ω−

2
〉

5 16 .70 .64 .058 .67
7 16 .88 .77 .113 .82
5 22 .83 .76 .069 .79

79

Chapter 5. A dual assortative measure of community structure

5.3.3 Experiment III: 2005 National Football League sched-

ule

The third experiment uses a real dataset: the 2005 National Football League (NFL)

schedule. From the dataset, I construct networks representing the correlation of team

schedules. Each team is represented by a node. Edges between nodes are weighted to

indicate the correlation of the two team’s schedules. Teams that play similar oppo-

nents show positive correlations. Teams that play dissimilar schedules are negatively

correlated. The network contains both positively and negatively weighted edges and

is thus dual assortative. Because it is possible to compute the correlation between

any two team schedules, the network is fully connected. However, the objective of

the experiment is to examine the efficacy of optimizing the DAMM on partial repre-

sentations of the dual assortative network. Accordingly, only a subset of the possible

edges are represented in any given generated network.

The NFL consists of thirty-two teams split into two conferences. Within each

conference, teams are grouped into four divisions of four teams apiece. Each team

plays sixteen games. Six of these games are the result of a team playing its three

division rivals twice each. In addition, each division is paired with one division of

the same conference and a second division that resides in the other conference. For

each team, these division-versus-division games account for eight additional games

(bringing the running tally to fourteen games). The final two opponents for each

team result from games against teams from the same conference, but not involved

in the division-versus-division matchup. In total, each team faces thirteen unique

opponents.

Through extensive analysis using the EO algorithm, I identified four optimal

and two near-optimal communal alignments for the fully connected NFL schedule

correlation network. I refer to these communal alignments as the known optimal

80

Chapter 5. A dual assortative measure of community structure

configurations. The four optimal alignments each consist of three communities (one

community consisting of 8 teams and the other two communities containing 12 teams

apiece). In each case, the 8 team community is comprised of two divisions from the

same conference that are pitted in a division-versus-division matchup. Each of the

12 team communities contain three divisions, with one division being involved in

an intra-conference division-versus-division matchup with one of the other divisions

and an inter-conference division-versus-division matchup with the remaining division.

Both of the near-optimal communal alignments consist of four communities. In one

case, each community contains two divisions pitted in an inter-conference division-

versus-division matchup. In the other, each community consists of two divisions

pitted in an intra-conference division-versus-division matchup.

With regards to the four optimal communal alignments, the NFL schedule corre-

lation network contains both false positives and false negatives. In each alignment,

there exist teams sharing positively weighted edges that belong to different commu-

nities. These edges constitute the false positives. Further, in each alignment, there

exist teams within the same community that share negatively weighted edges. These

edges constitute false negatives.

Generation of networks

To study the performance of the DAMM on the NFL network, I first optimized it

on various partial representations of the NFL schedule correlation network. The

detected communal alignment was then compared to the set of known optimal con-

figurations and identified the closest match. The best communal overlap score from

this series of comparisons was recorded as the communal overlap value.

The fully connected NFL schedule correlation network contains 992 edges (dis-

counting self-loops). Of these edges, 352 (35 percent) are positively weighted and 640

81

Chapter 5. A dual assortative measure of community structure

are negatively weighted. We generated the partial representation using a procedure

similar to the edge generation algorithm used to generate the partial representations

described in section 5.3.1. Instead of computing probability thresholds (such as pin

and pout) from a mean degree (such as zin and zout), I simply used the probability

thresholds as parameters. Each possible positively weighted edge of the full repre-

sentation was selected with probability p+ and each negative edge was selected with

probability p− = 1− p+.

The stochasticity of this process guarantees that with high probability individual

nodes of a partial representation will have varying degree. Because of this asymmetry,

certain nodes are more difficult to classify than others. These asymmetries could yield

situations where the optimal experimental DAMM configuration will not concur with

the known optimal configurations. In such a case, a sub-optimal communal overlap

will result.

The objective is to examine whether, on average, the DA information utilized

by the DAMM leads to better community detection relative to either the PA or

NA information in isolation. Recall that I create the PA network by removing all

negative edges from the corresponding DA network; whereas, for the NA network, I

remove all positive edges from the DA network.

Experimental setup

I explored the parameter range p+ ∈ [0, 1] and p− ∈ [0, 1]. All of the studied networks

were partial representations of the fully connected network. For each (p+, p−) setting,

40 networks were generated. Similar to the experiment of section 5.3.1, in each case,

I separately optimized the DAMM on the DA network, the PA network, and the NA

network.

82

Chapter 5. A dual assortative measure of community structure

Results

Figure 5.4 gives the results of the third experiment. The bottom x-axis represents the

p+ values; the top x-axis represents the p− values. The y-axis represents the mean

communal overlap, 〈Ω〉, for the corresponding (p+, p−) thresholds. Each data point

represents the mean communal overlap resulting from optimization of the DAMM

on 40 independent, randomly generated partial networks with the same prescribed

thresholds.

For each (p+, p−) setting, optimization on the DA networks yields an equal or

higher 〈Ω〉 value than for either the PA or NA networks. Only at (p+ = 1, p− = 0)

and (p+ = 0, p− = 1) do 〈ΩPA〉 = 〈ΩDA〉 and 〈ΩNA〉 = 〈ΩDA〉, respectively. At

these settings there are either exclusively positive or exclusively negative edges, and

thus, these DA networks are equivalent to the respective PA or NA cases. For all

parameter settings at which there are both positive and negative edges, the DAMM

uses both types of information and achieves higher mean communal overlap values.

Despite the presence of 1.8 times more negative edges than positive edges, the positive

edges provide more information for community detection. Using only negative edges,

at (p+ = 0, p− = 1), optimization of the DAMM detects a sub-optimal communal

alignment. On the other hand, using only positive edges (at (p+ = 1, p− = 0))

optimization yields an optimal mean communal overlap value. Figure 5.4 highlights

the asymmetry regarding the amount of information provided by the positive edges

as compared to the negative edges. The mean distance between the DA and PA

curves is 0.20 communal overlap units; whereas, the mean distance between the DA

and NA curves is 0.34 communal overlap units. The positive edges contribute more

to the community detection process. As expected, as p+ increases 〈ΩPA〉 increases.

Similarly, as p− increases, 〈ΩNA〉 increases.

83

Chapter 5. A dual assortative measure of community structure

5.4 Summary and conclusions

The DAMM provides a way to assess community structure in networks containing

both positively and negatively weighted edges. This extends the paradigm of the

friendship network to that of a friends and adversaries network. Negative informa-

tion, previously ignored, now provides useful, additional information to community

detection algorithms.

The efficacy of the DAMM was demonstrated, both for stochastically generated

synthetic networks and a real-world example based on the 2005 NFL schedule. Fur-

thermore, the experiments revealed the asymmetry in the information provided by

positive and negative edges. This asymmetry is due to the greater specificity pro-

vided by a positive edge given that more than two communities exist.

The contributions of the DAMM are two-fold. First, it is now possible to ana-

lyze networks containing solely negative information. Second, the DAMM improves

community detection in networks containing both positive and negative information.

An example of such a network is one in which edge weights are based on a similarity

metric, such as correlation, that can assume either positive or negative values. The

NFL schedule correlation network of section 5.3.3 provides a real-world example. The

DAMM expands the domain of problems for which community detection algorithms

can be applied.

84

Chapter 5. A dual assortative measure of community structure

(A) positive assortativity (B) negative assortativity

(C) dual assortativity
(full representation)

(D) dual assortativity
(partial representation)

Figure 5.1: Comparison of networks with different types of assortativity. Solid edges
denote positive edge weights; dashed edges denote negative edge weights. The net-
work in panel A portrays positive assortativity (PA) and provides an example of a
friendship network. In panel B, the network strictly contains negative edges and
depicts negative assortativity (NA). I refer to this type of network as an adversarial
network. The network in panel C exemplifies a fully connected dual assortativity
(DA) network. Here, both positive and negative edges are present. In panel D,
a partially connected dual assortative network is illustrated. The dual assortative
modularity measure (DAMM) can be used to assess community structure in all of
the above cases. The partially connected DA network of the bottom right is the most
general, and it is these types of networks that I study in section 5.3.

85

Chapter 5. A dual assortative measure of community structure

D
D D D D D D D D D D D D D D D

D

P

P

P

P
P P P P P P P P P P

P PN
N

N

N

N

N

N

N

N
N

N
N N N N N

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

positive degree

m
ea

n(
co

m
m

un
al

 o
ve

rla
p)

negative degree

D
P
N

dual
positive
negative

Figure 5.2: Community overlap comparison for dual assortative (solid), positive as-
sortative (dashed), and negative assortative (dotted) networks. Each data point
represents the mean communal overlap for optimization of the DAMM on 100 inde-
pendent, computer generated networks.

86

Chapter 5. A dual assortative measure of community structure

P P P P

P

P

P
P

P

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

false edge degree

m
ea

n
co

m
m

un
al

 o
ve

rla
p

N N N
N

N

N
N

N N

P
N

false positives
false negatives

P P P P P P
P

P

P

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

false edge degree

m
ea

n
co

m
m

un
al

 o
ve

rla
p

N N N N
N

N

N

N
N

P
N

false positives
false negatives

P P P P P
P

P

P

P

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

false edge degree

m
ea

n
co

m
m

un
al

 o
ve

rla
p

N N N N N

N

N

N
N

P
N

false positives
false negatives

Figure 5.3: The effect of false positives (solid) and false negatives (dashed) on com-
munal overlap. The top graph represents base networks with (zin = 5, zout = 16);
the middle graph for networks with (zin = 7, zout = 16); and the bottom graph for
networks with (zin = 5, zout = 22). For each graph, the y-axis represents the mean
communal overlap value for forty networks. The x-axis represents the mean number
of either false positives or false negatives added to the networks.

87

Chapter 5. A dual assortative measure of community structure

D D
D

D
D

D
D D D D D

P

P

P

P

P

P
P P P PN N

N

N

N

N

N

N
N

N

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

ratio of positive edges

co
m

m
un

al
 o

ve
rla

p

ratio of negative edges

D
P
N

dual
positive
negative

Figure 5.4: Community overlap measures for the 2005 NFL schedule network. The
bottom x-axis represents ratio of positive edges present (p+) and the top x-axis
represents the ratio of negative edges present (p−). The networks above indicate the
change in positive/negative edge composition as the graph is traversed left to right
(dashed edges represent negative edges and solid edges represent positive edges).
The y-axis represents the mean communal overlap, 〈Ω〉. The different curves present
information regarding the different types of networks upon which the DAMM is
optimized: DA networks (solid), PA networks (dashed), and NA networks (dotted).
Optimization of the DAMM on the DA networks yields as good or better mean
communal overlap values than for either the PA or NA networks. By utilizing both
the positively and negatively weighted edges, optimization of the DAMM provides
better community detection than the original modularity measure that operates only
on positively weighted edges.

88

Part II

Evolving traders in a simulated

financial market

89

Chapter 6

Evolving traders in an artificial

market ecosystem

6.1 Introduction

The research described in this chapter represents the first step of an ambitious

goal: to evolve a market ecosystem that generates dynamics similar to those seen in

real markets. A simulator of this quality would provide an invaluable tool for the

study of financial markets. Before tackling an entire market ecosystem, one must

first identify a useful evolutionary framework to handle the task. This chapter de-

scribes a stack-based genetic programming approach that evolves a single trader.

Towards this objective, I ask the following question: is it possible to evolve a single

trader capable of achieving consistent profits in a random market inhabited by noise

traders [5] [20] [17]?

This chapter demonstrates how genetic programming can evolve programs that

exhibit complex trading behaviors. It is organized as follows. Section 6.2 introduces

the fundamental components of the simulated market environment. Section 6.3 ex-

90

Chapter 6. Evolving traders in an artificial market ecosystem

plains the genetic programming (GP) framework – including an introduction to both

the software architecture and the stack-based language developed specifically for the

genetic programs. Section 6.4 reports the results of two independent experiments us-

ing the GP framework. For each experiment, I present the mechanics of a successful

trading strategy. Section 6.5 provides conclusions.

6.2 Defining the market ecosystem

In this section, I introduce the components of a simplified market ecosystem, where

a single asset is traded. Section 6.2.1 introduces the market clearing mechanism – a

continuous double auction (CDA). With regards to the market ecosystem, the auction

provides the environmental infrastructure. The description of the CDA focuses on

the data structure used to conduct the auction: the limit order book. Section 6.2.2

introduces the organisms that inhabit this simplified ecosystem.

6.2.1 The environmental infrastructure: a continuous dou-

ble auction

The continuous double auction is the most widely used market clearing mechanism

in modern financial markets. The auction is considered double because traders can

submit both buy and sell orders, and it is considered continuous because traders may

submit orders at any time. Orders supplied to the CDA are cleared using a limit

order book (LOB). Figure 6.1 illustrates a LOB. Price is represented on the x-axis;

number of shares are represented on the y-axis.

I consider two types of orders that can be submitted: a limit order and a market

order. A limit order specifies the following fields: the quantity of shares to be traded,

whether to buy or sell, a limit price, and an expiration time. Limit orders do not

91

Chapter 6. Evolving traders in an artificial market ecosystem

generate immediate transactions. Rather, they are cached on the LOB. For each

unique price, a priority queue exists. Incoming limit orders are placed at the end of

the queue associated with the specified limit price. As such, older limit orders are

given precedence over newer limit orders. If a limit order resides on the LOB at its

expiration time, the order is removed from the associated queue. In addition, limit

orders can be cancelled at any time. The limit price dictates the transaction price

for the order.

Market orders constitute the second type of order. In contrast to limit orders,

market orders trigger immediate transactions. Market orders specify only two fields:

the quantity of shares to be traded and whether to buy or sell. Significantly, market

orders do not designate a transaction price. Rather, the transaction price is dictated

by the best available price on the other side of the LOB. Buy market orders eliminate

sell limit orders. Sell market orders remove buy limit orders. The number of shares

removed is dictated by the size of the order.

The lowest selling price at any time t is referred to as the best ask, a(t). The

highest buy price at any time t is called the best bid, b(t). The midpoint price,

p(t) = a(t)+b(t)
2

, is used as an approximation of the two values. The gap between the

best bid-ask prices, s(t) = a(t) − b(t), is called the bid-ask spread. The best prices

change in three ways: either by the arrival of new market orders, the cancellation

of queued limit orders at the current best prices, or the arrival of limit orders that

fall within the current spread region. From this point forward, it is implied that all

simulated markets employ a continuous double auction.

6.2.2 The organisms

Three broad approaches exist for constructing the agent-based trader population:

agents may be handcrafted, agents may be evolved, or a combination of the two

92

Chapter 6. Evolving traders in an artificial market ecosystem

sh
ar

es

price

buy orders

sell orders

bi
d

pr
ic

e

as
k

pr
ic

e

buy market order

sell market order

Figure 6.1: Illustration of the limit order book. The vertical bars represent limit
orders. Horizontal arrows represent market orders. Blue designates buy orders; red
designates sell orders. The arrival of a sell limit order is depicted as falling on to the
LOB.

approaches can be utilized. I employ the latter option. The first option, that of

exclusively handcrafting agents, resembles a creationist approach and conflicts with

the future goal of coevolving a population of traders. However, as influenced by [17],

I subscribe to the belief that noise traders fulfill a critical role in the supply and

demand of liquidity to the market. Thus, hardwired noise traders are integrated and

maintained in all of the simulated market experiments. Section 6.2.2 introduces the

mechanics of the noise trader. The objective in this chapter is to evolve a single

trader that can produce consistent profits in an environment populated by noise

93

Chapter 6. Evolving traders in an artificial market ecosystem

traders. Accordingly, the other inhabitant of the market environment is a single

genetic programming agent. Looking ahead, section 6.3.1 provides an explanation of

how the GP agent interacts with the market environment.

Noise traders: the base organisms

Noise traders play a critical role in the market ecosystem [17]. They provide a

constant flux of orders, or liquidity, to the market. Ecologically, the role of noise

traders is similar to that of autotrophs in a grassy plains ecosystem, which trap

sunlight and provide a source of energy.

I adopt the noise trader model proposed by [16], which has two types of noise

traders. One type places market orders; the other places limit orders. In both

cases, the decisions about when to place orders is dictated by a Poisson process.

Impatient noise traders place market orders with a Poisson rate of µ shares per unit

time. In contrast, patient noise traders place limit orders randomly in both price

and time. Buy limit orders are distributed uniformly within a semi-infinite interval

−∞ < p < a(t), where p represents price. Similarly, sell limit orders are placed

within the semi-infinite interval b(t) < p <∞. Both buy and sell limit orders arrive

with the same Poisson rate density, denoted as α. The units of this density are

measured as shares per unit price per time, with each price tick represented by a

separate price priority queue. All orders are assumed to be of unit size. As explained

in section 6.2.1 queued limit orders can be cancelled. The rate of cancellation, δ, is

dictated by a Poisson process as well. The rates of buying and selling are maintained

to be equal. Accordingly, the decision of whether to buy or sell is dictated by an

unbiased coin flip.

For simplicity, in the simulations, a single noise trader of each type is maintained.

The α, µ, δ, and λ parameters are calibrated such that they represent the cumulative

94

Chapter 6. Evolving traders in an artificial market ecosystem

order rates observed in a real market (the high liquidity Shell stock of the London

Stock Exchange). The noise traders are provided unlimited credit and thus continue

to trade regardless of profit or loss.

The two types of noise traders guarantee a dynamically changing environment.

Limit order noise traders provide orders to be queued; market order noise traders

remove the queued orders. The interaction of the two, each dictated by a random

process, causes the bid and ask prices to move over time.

6.3 Genetic programming framework

In this section, I introduce the genetic programming (GP) framework. First, a GP

architecture for evolving a single profitable trader is defined. Next, I introduce

a stack-based programming language (called Staq) designed specifically for genetic

programming.

6.3.1 Genetic programming architecture

Before outlining the GP architecture, I reiterate my immediate objective: to evolve

a single profitable trader. Accordingly, I adopt a generational, rather than steady-

state, GP approach. The first step of the generational approach involves creating

an initial population of GP agents with randomly generated programs. Next, the

fitness of each agent is assessed by isolating it in a market inhabited by noise traders

and observing its performance. Based on these fitness values, a new generation of

GP agents is created. The higher the fitness of a given agent, the greater the chance

that it will contribute to the future generation. Genetic operators serve both to

explore combinations of strong genes resident in the current gene pool as well as to

inject new candidate sequences. The new generation replaces the old generation and

95

Chapter 6. Evolving traders in an artificial market ecosystem

the process continues until either a prescribed fitness goal or maximum number of

generations is reached.

Figure 6.2 illustrates the software architecture for the GP framework. I refer to

the software entity that manages the population of GP agents as the GP engine.

The GP engine is responsible for both dispatching GP agents for fitness assessment

and creating subsequent generations.

Fitness assessment of an individual GP agent involves testing its performance in

a market inhabited by noise traders. Each GP agent connects to its own market.

Within a market environment, three traders exist: a proxy trader, a limit order

placing noise trader, and a market order placing noise trader. The proxy trader

provides the GP agent a gateway to the market. It serves two purposes. Firstly, the

proxy trader submits orders to the market on behalf of the GP agent. Secondly, the

proxy trader provides the GP agent with market state information.

To assess the fitness of a GP agent, the market is executed for a prescribed

number of timesteps – the approximate equivalent of 10000 market events, where an

event is defined as either an order submission, a transaction, or a cancellation. The

noise traders of each market are provided identical µ, α, δ, and λ parameters (each

explained in section 6.2.2). However, each market is provided a different random

number generator seed. By providing similar but not identical market environments,

the evolution of robust trading strategies is encouraged.

Before allowing the GP agent to interact with the market, a saturation period is

required. During this period, the noise traders interact until the volume of orders on

the LOB reaches an approximate equilibrium. During the latter stage of the satu-

ration period, the proxy agent collects LOB state information for the GP agent (see

section 6.3.2). This information can be used by the GP agent in its decision pro-

cess. Once activated, the GP agent executes its associated program on each discrete

96

Chapter 6. Evolving traders in an artificial market ecosystem

market timestep. During program execution, the GP agent has the opportunity to

generate orders. If orders are created, the proxy trader submits them to the LOB on

behalf of the GP agent.

6.3.2 Staq: A stack-based GP language

I designed a GP language, called Staq, for these experiments. The GP agents execute

Staq programs. Through the application of genetic operators, the Staq programs are

evolved. As suggested by the name, the language uses global stacks for passing argu-

ments to instructions. Staq is similar to Push [55], which descended from Forth [48].

The Staq language is implemented in Java and is interpreted.

Staq is multi-typed. Primitive types include: integer, float, boolean, name, and

code. Each type is represented by an independent stack, and instructions are as-

sociated with each type. Execution of an instruction involves popping the required

arguments from the appropriate stack(s), executing the instruction, and pushing the

result to the appropriate stack.

Construction of the Staq language began prior to publication of Spector’s seminal

work on Push and for software compatibility reasons is still the GP language for

this project. An effort was made to align the instruction set of Staq to that of

the second version of Push. The stack-based approach lends itself to the task of

representing the multi-typed data of a stock market. Furthermore, the ability to

create extensible types provides a mechanism for bundling different types to represent

objects commonly found in markets. For instance, the order type (as explained

in section 6.3.2) is used extensively. Traditional GP approaches [26] use tree-like

structures to represent programs and employ a single data type. Representation

of the order type with a traditional approach proves challenging. The advantages

provided by extensible typing motivated creation of the Staq language.

97

Chapter 6. Evolving traders in an artificial market ecosystem

Within a Staq program, individual instructions are considered atoms, but they

may be grouped together and represented as a list. The term expression is used to

refer to a single unit that may reside on a stack. An expression may consist of a

value, an atomic instruction, or a list of instructions. The size of a Staq program is

measured in points. Each value, instruction, and list contributes a single point to the

total size. Similar to Push, Staq supports both dynamic execution of code sequences

and variable binding. By associating a variable name with a code expression, dynamic

function creation is possible.

Extensible types: order and market

An additional feature of Staq, similar to Push, is the possibility of extensible types.

Different types may be bundled together to create new object types. Each extensi-

ble type is represented by an independent stack. Upon construction, the required

arguments are popped from their associated stacks, the extensible type is created,

and the object is pushed to its stack. The availability of extensible types allows the

language to provide high level functionality for tailored tasks. This feature was used

for the task of evolving market agents. Two extensible types were created: the order

type and the market type. These types provide Staq agents a portal to the simulated

market environment.

The order type allows for the creation of orders using constructors for either

market or limit orders. During GP execution, Staq agents submit orders to the

simulated LOB by constructing objects of the order type and leaving them on the

associated stack. After a GP agent finishes executing its Staq program, the proxy

agent pops orders residing on the stack and submits them to the LOB. Before a

GP agent executes its program, the proxy agent pushes all outstanding limit orders

associated with this agent to the stack. This allows for the GP agent to cancel

existing limit orders. Order objects on the stack may be inspected. For instance,

98

Chapter 6. Evolving traders in an artificial market ecosystem

it is possible for an agent to ascertain the price, size direction (buy/sell), or type

(bid/ask) of an object on the order stack.

The market type provides methods through which LOB state information can

be obtained from the proxy trader. For example, the market type provides accessor

methods to procure the current ask price, bid price, spread, cumulative ask volume,

cumulative bid volume, and simulator clock time. Furthermore, state information

of the proxy trader is inspectable. The market type provides accessors to inspect

trader wealth, capital, position (inventory), and utility (as described in section 6.4.1).

The actual market stack is never utilized. Instructions of the market type always

push values to stacks of other types. For instance, if the current market price is

requested, the value is pushed to the float stack since it is represented by a floating

point number. Figure 6.3 illustrates the execution of a short program that utilizes

both the order and market types.

Genetic operators on Staq code

Staq provides genetic operators. Crossover is implemented traditionally: two cut

points are chosen and the subtrees are exchanged. Three forms of genetic mutation

are employed: cut mutation, point mutation, and point mutation with type matching.

In each form of mutation, a cut point is randomly selected. In cut mutation, the Staq

expression at the cut point is simply deleted. In point mutation, the expression at

the selected cut point is replaced by a randomly generated expression. For point

mutation with type matching, the expression at the selected cut point is replaced

with an expression of the same type. If the expression at the cut point is a list, a

randomly generated list replaces the original expression. However, if the expression

at the cut point is an atomic instruction, a new instruction of the same type is

randomly selected to replace the original.

99

Chapter 6. Evolving traders in an artificial market ecosystem

6.4 Experimental results

In this section, I report results from two experiments using the GP framework de-

scribed in section 6.3. Both experiments share the goal of evolving a single trader

that achieves consistent profits. The first experiment uses a fitness function based

on a known economic utility function. The fitness function of the second experiment

incorporates a penalty for the purpose of encouraging inventory control. In both

experiments, eight GP runs were conducted. From each set of GP runs, I isolate and

describe an individual genetic program that displays behavior representative of the

class of agents evolved using the designated fitness function.

Table 6.1 summarizes the general parameters used in both experiments. In Staq,

individual stacks and instructions can be disabled. However, for these experiments,

all stacks and instructions were enabled. The instruction set contains 247 instruc-

tions. A maximum program length of 50 points is enforced. Because loops are

possible in Staq, an execution limit is required. The execution limit is set to 100

points. The space of possible source programs is 24750. Because of the enormous

search space, a large population of candidate solutions is required. A global popula-

tion size of 24000 GP agents is employed. The GP agents are distributed across 24

separate islands [62] [63], with each island maintaining a population of 1000 agents.

Each island contains its own GP engine and evolves its local population indepen-

dently. The islands are connected in a ring. At the end of each generation, a group

of top agents from each island are chosen to migrate, in a clockwise direction, to its

nearest neighbor. The migration rate, set to .005, dictates that five agents migrate

after each generation. Immigrant agents are automatically promoted to the next

generation of their new island. Agents are evolved for 50 generations. During con-

struction of subsequent generations, candidates are selected probabilistically using a

round robin tournament of size five.

100

Chapter 6. Evolving traders in an artificial market ecosystem

Table 6.1: General experimental parameters.

parameter value
Activated stacks float (31), int (31),

(number of instructions) boolean (18), code (47),
name (17), order (39),

market (20)
Maximum program length 50 points

Execution limit 100 points
Total population 24000
Number of islands 24
Agents per island 1000
Migration rate .005

Number of generations 50
Round robin size 5
Crossover rate 45%
Mutation rate 45%

Exact reproduction rate 10%
Length of fitness assessment 1000 market timesteps
Noise trader parameters α = .071, µ = .150, δ = .0178

tick size=1.0

6.4.1 Experiment I: Sharpe ratio inspired fitness

The fitness of a trader is related to its ability to accrue profit. However, profit alone

does not necessarily define success. Here, I provide motivation for a fitness function

based on the economic utility function known as Sharpe ratio [50] that integrates the

concept of risk aversion.

Profit is integrally linked to wealth and many definitions of wealth exist. Three

components impact trader wealth: capital, position (inventory), and price. For a

given trader i at time t, I denote its capital as cit and its position as xi
t. Given the

midpoint price at time t, denoted as pt, wealth is defined as wi
t = cit + (ptx

i
t). This

calculation is approximate since it assumes that a trader’s position may be liquidated

at the midpoint price, when in fact, a best case scenario for liquidation would take

101

Chapter 6. Evolving traders in an artificial market ecosystem

place at either the bid or ask depending on the direction of the position. The term

wealth return, rit = wi
t − wi

t−υ, refers to the change in wealth over a time interval

υ. Wealth returns are used to define the fitness functions to follow. In this context,

time refers to simulator time, as opposed to event time.

Fitness function: Sharpe ratio

An economic measure known as the Sharpe ratio integrates the concept of profit

with that of risk. The measure computes the ratio of average reward to risk. In

this context, the average reward is defined as the mean of wealth returns and risk

is defined as the standard deviation of wealth returns. Equation 6.1 defines Sharpe

ratio, where ~r is the vector of wealth returns for the time period examined, 〈〉 denotes

the mean, and σ() represents the standard deviation.

S =
〈~r〉

σ(~r)
(6.1)

Used alone, the Sharpe ratio does not provide an adequate fitness function be-

cause there is little incentive to trade. For a GP agent to profit, it must first learn

to place orders. Not only must it place orders, but it must learn to place orders

that yield transactions. Without transactions, a trader cannot profit. To encour-

age such behavior, GP agents that do not place orders are assigned a minimum

fitness value. Agents that place orders but do not achieve transactions are assigned

a slightly greater fitness value (but significantly less than the range of typical Sharpe

ratio values). By enforcing this multi-plateaued fitness policy, GP agents are first

encouraged to place orders. Once this is achieved, the Sharp ratio rewards strategies

that yield profitable transactions.

102

Chapter 6. Evolving traders in an artificial market ecosystem

Result: clear & hoist trader

In this section, I describe a particular trader strategy referred to as clear & hoist

(CH). Within the insulated environment of the simulated market, the strategy suc-

cessfully optimizes the Sharpe ratio inspired fitness function: within thirty timesteps

it achieves infinite wealth. All of the GP experiments using this fitness function dis-

covered some variant of the strategy as the best solution. The clear & hoist trader

provides a straightforward example of an evolutionary agent that exploits its envi-

ronment. The manner in which it achieves success highlights the limitations of the

simulated market environment.

As suggested by the name, the CH strategy involves two distinct steps: the

clear followed by the hoist. The strategy preys on the naivete of the noise traders.

The detailed mechanics of the strategy are depicted in figure 6.4. The clear order

eliminates all existing ask orders on the LOB. The hoist order redefines the best bid

price by placing a bid limit order at an inflated price. Following the hoist, noise

traders resume trading. As described in section 6.2.2, noise traders place orders

relative to the current best bid and best ask prices. Thus, they naively reinforce the

hoisted price.

Inspection of the definition of wealth, wi
t = cit + (ptx

i
t), reveals that it is not nec-

essary for the trader to sell off its inventory of shares to earn a profit. The inventory

contributes to the wealth of the trader. Figure 6.4 depicts a single instantiation of

the strategy. However, the process can be repeated ad infinitum. With each success-

ful instantiation, the price is ratcheted upwards and the clear & hoist trader secures

a profit with minimal risk.

The following Staq program, containing nine points, implements the clear & hoist

strategy:

(((market agent wealth flt dup) order constr lo bid) (market volume)

103

Chapter 6. Evolving traders in an artificial market ecosystem

order constr mo bid)

The program is a pruned version of that recovered from a GP experiment: auxil-

iary code that does not directly affect the result was removed. The original program

contained forty one points. Figure 6.5 shows the maximum fitness of each generation

for the GP experiment that produced this program. The fitness does not increase

monotonically. The reason is that each fitness assessment is based on a different

random number generator seed. Thus, the fitness results of agents fluctuate. In the

sixteenth generation, the fitness approaches infinity. This jump represents the final

transition to the clear & hoist strategy.

Execution of the program begins with the market agent wealth instruction,

which pushes the current wealth of the agent to the float stack. The next instruction,

flt dup duplicates the value on top of the float stack, thus leaving two copies of the

agent wealth value. The order constr lo bid instruction pops two float values and

constructs a bid limit order. The first popped float value dictates the price and the

second determines the size. Next, the program constructs a buy market order. The

market volume instruction pushes the current cumulative market volume to the float

stack. The following instruction, order constr mo bid, constructs a bid market or-

der. The constructor requires a single float value that is used to determine the order

size. After executing the program, two newly constructed orders reside atop the

order stack. The clear order occupies the top slot; the hoist order rests below. Im-

portantly, the size of the clear order is dictated by the current agent wealth. Agents

are provided a starting capital of $10000. With this amount of capital, an agent can

create an order for a number of shares sufficient to clear the ask side of the LOB.

This program achieves ultimate success. After buying a significant allotment of

shares, the trader inflates the price of the asset. A boost in wealth results. This

increase in wealth contributes to even greater profits in subsequent executions of the

program. Note that the hoist price is dictated by the wealth of the agent. Since,

104

Chapter 6. Evolving traders in an artificial market ecosystem

wealth increases with each instantiation, the magnitude of the hoist increases as well.

The positive feedback yields an exponential growth in wealth.

Figure 6.6 presents results from a fitness assessment of this agent. Only twenty

timesteps are shown to highlight the dynamics of the exponential boom in both

trader wealth and market price. After a saturation period of 200 simulator timesteps,

the trader is activated. The top left graph compares the wealth of the CH trader

(green) to that of both noise traders. The wealth measurements are relative to the

starting wealth of each agent. Note the steep growth at the tail end. Exponential

growth quickly follows. Further inspection reveals that the GP agent profits at the

expense of the limit order noise trader (purple). The top right graph, shows that the

trading volumes of the CH trader and the limit order noise trader are approximately

equivalent. The bottom left graph illustrates that the CH trader buys from the

limit order noise trader. The large jump at x = 201 represents the first clear order

that buys all ask limit orders that accumulated during the saturation period. The

limit order noise trader assumes a negative inventory. The combination of negative

inventory and increased price yields diminished wealth. The middle graph illustrates

the inventory accumulated by the agents. In the bottom right graph, the logarithm

of the bid-ask prices are shown. The prices grow exponentially.

The success of the CH trader is predicated upon two properties of the noise trader

population: an incessant willingness to trade and the lack of a perceived value of the

traded asset. These conditions do not hold in the real world. Real markets contain

traders referred to as fundamentalists. These traders associate a perceived value with

an asset. Fundamentalists invest in an asset when the market price diverges from

their perceived value. As such, their trading causes the market price to revert to

the perceived value and would interfere with the CH trader’s attempt to hijack the

price.

105

Chapter 6. Evolving traders in an artificial market ecosystem

6.4.2 Experiment II: Inventory controlled fitness function

The experiment of section 6.4.1 provides evidence for the efficacy of the GP frame-

work. Next, I conduct a second experiment with the goal of evolving a more realistic

trader strategy. First, I opt to update the GP fitness function. Section 6.4.2 in-

troduces a new fitness function, one that incorporates a penalty for poor inventory

control. The penalty punishes strategies like clear & hoist, which involve building a

large inventory.

Incorporating inventory control

The new fitness function, denoted F ′, incorporates a penalty for lack of inventory

control. The original fitness function, F , provides the foundation for this second

generation function. If sufficient inventory control is achieved, F ′ = F . However, if

the inventory is not properly managed, a penalty is enforced.

The idea is as follows. If a trader maintains an average inventory less than a

given threshold τ , no penalty is incurred. However, if the average position exceeds

the threshold, the original fitness F is rescaled. The size of the rescaling is dictated

by the magnitude of the infraction. Assume xt to be the position of a trader at time

t. I define x̃ = 1
T

∑T

t |xt| to be the mean of the absolute values of the positions held

by a trader during a specified observation period of T timesteps. If x̃ > τ , a penalty

is required.

Equation 6.2 defines the inventory control fitness function, where sign() returns

the sign of the supplied variable, and Θτ is the unit step function applied at the

threshold τ . I refer to the exponential term of equation 6.2, eΘτ (x̃)·(1−
x̃
τ
)·sign(F), as the

scaling term.

106

Chapter 6. Evolving traders in an artificial market ecosystem

F ′ = FeΘτ (x̃)·(1−
x̃
τ
)·sign(F) (6.2)

The scaling term can be best understood by breaking down the individual compo-

nents. The Θτ (x̃) component functions as an activation switch. If x̃ ≤ τ , Θτ (x̃) = 0

and the exponent equals 0. As a result, the scaling term equates to unity and F ′ = F .

However, if x̃ > τ , Θτ (x̃) = 1 and the scaling operation is activated. The second term

of the exponent, 1 − x̃
τ
, dictates the magnitude of scaling. Provided activation, it is

given that x̃ > τ , and thus (1− x̃
τ
) < 0. The greater the discrepancy between x̃ and

τ , the more negative the term and the greater the penalty incurred. The final term

of the exponent, sign(F), dictates the sign of the exponential term and whether the

scaling term is greater or less than one: to either shrink positive F values or magnify

negative F values. In these experiments, I set x̃ = 5 to encourage a small inventory.

Result: market maker

Experiments with F ′ reveal a consistent solution: market making. Traders that

implement the strategy are seen in real markets and are called market makers. The

idea is straightforward: simultaneously buy and sell shares with the qualification

that the buy price is lower than the sell price, thus following the proverb “buy low,

sell high”. Market making takes advantage of impatient traders, such as the noise

traders that place market orders.

Figure 6.7 illustrates one version of the market maker strategy evolved by the

stack-based GP approach. The green bars represent bid and ask limit orders placed

by the market maker. Given that the noise traders place bid and ask market orders

in an unbiased manner, there is a roughly equal probability of the bid and ask limit

orders of the market maker being cleared through trades. The symmetric placement

107

Chapter 6. Evolving traders in an artificial market ecosystem

of limit orders provides the market maker a mechanism for maintaining a balanced

inventory.

All of the GP experiments using the F ′ fitness function discovered strategies

resembling market making. Here, I present one of the many variants. The following

Staq program is a pruned version of a thirty eight point solution discovered by the

GP framework:

(((market agent capital) market price bid

order constr lo bid) (order depth ((bool fromInt)

market price ask) flt dup order constr lo ask if))

The program begins by constructing a bid limit order. The first instruction,

market agent capital, pushes the current capital of the proxy trader to the float

stack. The market price bid instruction pushes the current bid price of the market

to the float stack. The following instruction, order constr lo bid, creates the bid

limit order. Construction requires two float values. The top value on the float

stack, representing the current market bid price, dictates the price of the order. The

remaining part of the program follows a more circuitous route to create an ask limit

order. The order depth instruction evaluates the current depth of the order stack

and pushes the result to the integer stack. Due to the presence of the previously

constructed bid limit order, a value of 1 is pushed. The bool fromInt argument

pops a value from the integer stack, casts it to a boolean value, and pushes the

casted value to the boolean stack. Integer values greater than zero are cast to true.

Thus, following the bool fromInt instruction, the integer stack is empty and a value

of true resides atop the boolean stack. The market price ask instruction pushes

the current market ask price to the float stack. The flt dup instruction duplicates

the market ask price value and pushes it to the float stack. The final instruction,

order constr lo ask if creates an ask limit order if and only if a true value resides

atop the boolean stack. The condition is met and an order is created. Importantly,

108

Chapter 6. Evolving traders in an artificial market ecosystem

the price of the ask limit order is set to the current market ask price. The Staq

program creates two limit orders: one bid limit order and one ask limit order. The

bid limit order is placed at the current bid price. The ask limit order is placed at

the current ask price.

Figure 6.8 compares the performance of the market maker GP agent to the two

noise traders during a fitness assessment. The GP agent is activated after a sat-

uration period of 200 timesteps. The top left graph illustrates the relative wealth

of the traders. The GP trader (green) makes steady profits at the expense of the

market order noise trader (orange). In the top right, the volume of trading is com-

pared. The GP agent trades primarily with the market order noise trader and their

volumes reflect this interaction. In the bottom left, the inventories of the traders

are compared. Note the effect of the inventory control fitness function: the evolved

strategy maintains a balanced inventory over the entire period. In the bottom right,

the bid-ask prices are shown. The GP market maker strategy stabilizes the bid-ask

prices. In contrast to the clear & hoist GP agent, the GP agent maximizes fitness

by securing regular, small profits.

By placing orders at the best bid-ask prices, the trader establishes a high prob-

ability of having its orders filled. If the orders were placed behind the current best

bid-ask prices, the probability of them being filled would be reduced. If the orders

were placed in front of the current bid-ask prices, the orders assume a higher prob-

ability of being filled; however, the reduced price margin between the orders yields

a lower profit for each share to complete a buy-sell cycle. Different market condi-

tions determine the success of the various price placement strategies. An advanced

market maker strategy might detect the market conditions and adjust its strategy

dynamically. Although different price placement strategies were observed in the GP

experiments, none of the evolved strategies dynamically adjusted the price placement

based on market conditions. It is possible that with alterations – either by extending

109

Chapter 6. Evolving traders in an artificial market ecosystem

the search time, increasing the population size, or exploring the GP parameter space

– the evolution of such trading behaviors may be achieved.

In the real world, traders face the additional obstacle of transaction costs. The

imposition of such taxes imposes a zone of unprofitability within the existing spread

region – thus, further reducing the availability of market making opportunities.

6.5 Summary & conclusions

The research presented in this chapter was motivated by the need to validate the

stack-based genetic programming approach for evolving useful trading strategies. Al-

though the clear & hoist (CH) agent of section 6.4.1 does not present a viable strategy

for the real world, it does provide evidence of the evolutionary process learning to

exploit the simulated market environment. The CH trader exposes a limitation of

the simulated market environment: the lack of fundamentalism. Because the trading

actions of the noise traders are not influenced by a perceived value, they are easily

manipulated by the CH trader. In Chapter 7, I address this shortcoming by in-

troducing two value-based strategies for the continuous double auction (CDA). The

second experiment (of section 6.4.2), illustrates how the evolutionary process can

be steered by adjusting the fitness function. Neither of the strategies presented in

the chapter compare in sophistication to those employed by real traders. However,

both outperform the noise traders against which they compete and the solutions

do present significant complexity, well beyond simply identifying decision rules for

when to buy or sell, as [3]. Economically, the most interesting result pertains to the

consistent evolution of market making strategies when using the inventory control

fitness function.

110

Chapter 6. Evolving traders in an artificial market ecosystem

GP ENGINE

P LO MO

P LO MO

P LO MO

P LO MO

P LO MO

MARKETS

AGENT 4CODE

AGENT 3CODE

AGENT 2CODE

AGENT 1CODE

AGENT 0CODE

Figure 6.2: Overview of the GP architecture. On the left, the GP engine contains a
small population of agents. The fitness of each GP agent is assessed in an independent
market (shown to the right). Each market contains three agents: a proxy agent (P),
a limit order noise trader (LO), and market order noise trader (MO). The proxy
agent provides a gateway for the GP agent to the market.

111

Chapter 6. Evolving traders in an artificial market ecosystem

float order

market_agent_wealth

float

1000.0

order

flt_dup

float

1000.0

1000.0

order

order_constr_lo

float order

LO(1000.0,
1000.0)

Figure 6.3: Mechanics of a short Staq program that creates a limit order. Two stacks
are shown: the float stack (left) and the order stack (right). The executed program
consists of three instructions: market agent wealth flt dup order constr lo. In
the figure, program execution proceeds from left to right, top to bottom. Initially
(top left), both stacks are empty. The first instruction, market agent wealth (top
right), pushes a value of 1000.0 to the float stack. The second instruction, flt dup

(bottom left), duplicates the value residing atop the float stack. The final instruction,
order constr lo (bottom right), constructs a limit order. The constructor requires
two arguments, both of which are popped from the float stack. The first value sets
the price of the limit order and the second value dictates the number of shares. After
execution of the program, a single limit order resides on the order stack.

112

Chapter 6. Evolving traders in an artificial market ecosystem

price

CLEAR

sh
ar

es

price

POST−CLEAR

sh
ar

es

price

HOIST

sh
ar

es

price

REINFORCEMENT

sh
ar

es

Figure 6.4: Storyboard for the clear & hoist (CH) agent. The snapshots progress
in chronological order, from right to left, and top to bottom. The red and blue
bars represent limit orders placed by the noise traders. The CH orders are colored
green. The agent enters a market saturated with noise trader limit orders. The
clear involves placing a large buy market order that eliminates all existing ask limit
orders (top snapshots). The hoist follows and entails placing a buy limit order at an
inflated price (bottom left snapshot). The limit order placing noise trader reinforces
the hoisted price (bottom right).

113

Chapter 6. Evolving traders in an artificial market ecosystem

5 10 15

0
1

2
3

4

generation

lo
g(

S
ha

rp
e

F
itn

es
s)

Figure 6.5: GP fitness of the clear & hoist agent. The x-axis represents the GP
generation. The y-axis represents the logarithm of the Sharpe ratio fitness. In
generation 16, the fitness approaches infinity.

114

Chapter 6. Evolving traders in an artificial market ecosystem

200 205 210 215

−
2e

+
30

0e
+

00
1e

+
30

2e
+

30

simulator time

w
ea

lth

o o o o o o o o o o o o o o o o o o o ox x x x x x x x x x x x x x x x x x x

x
LO
MO
GP

200 205 210 215

0
10

20
30

simulator time
vo

lu
m

e

oooo oooooooooooooooooooooooooooooooooooo oooooo ooooooooo oooooooo ooooooo oooooooooooooo oooooooooooooo oooooooooooooo oooo ooooooooooooo ooo ooooooo ooooo ooooooo ooo ooooooooo oooooo oooooooooo oooooo
xxxx xxxxxx

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxxxx xxxxxx xxxxxx

xxx xxxxxxxx xxxxxxx xxxxxxx
xxxxxxx xxxx

xxxxxxxxxx xxxxxx
xxxxxxxx xxxx xxxxxxx

xxxxxx xxx xxxxxxx xxxxx xxxxxxx xxx xxxxxxxxx xxxxxx xxxxx
xxxxx xxxxxx

LO
MO
GP

200 205 210 215

−
20

0
20

40

simulator time

po
si

tio
n

oooo oooooooooooooooooooooooooooooooooooo oooooo ooooooooo oooooooo ooooooo oooooooooooooo oooooooooooooo oooooooooooooo oooo ooooooooooooo ooo ooooooo ooooo ooooooo ooo ooooooooo oooooo oooooooooo ooooooxxxx xxxxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxx xxxxxx xxxxxxxxx xxxxxxxx xxxxxxx xxxxxxxxxx

xxxx xxxxxxx
xxxxxxx xxxxxxxxx

xxxxx xxxx xxxxxxxxxxx
xx xxx xxxxxxx xxxxx xxxxxxx xxx xxxxxxxxx xxxxxx xxxxxxxxxx xxxxxx

LO
MO
GP

x x

x x

x x

x x
x

x
x x

x
x

x x
x

x
x

x

200 205 210 215

10
20

30
40

50
60

simulator time

lo
g(

bi
d−

as
k

pr
ic

es
)

o o

o o

o o

o o
o

o
o o

o
o

o o
o

o
o

o
bid
ask

Figure 6.6: Performance of the clear & hoist agent (green). In each graph, simulator
time is represented on the x-axis. In the top left, the relative wealth of the GP
agent to those of the limit order noise trader (purple) and market order noise trader
(orange). The wealth of the GP agent grows exponentially. Volume of trading is
compared in the top right. The clean & hoist trader and limit order noise trader
trade with one another and share similar rates. In the bottom left, the position of
each agent is compared. The CH trader buys from the limit order noise trader. In
the bottom right, the log bid-ask prices are plotted. The exponential growth in price
inflates the wealth of the GP agent.

115

Chapter 6. Evolving traders in an artificial market ecosystem

price

sh
ar

es

Figure 6.7: Illustration of the market maker strategy. Noise trader limit orders are
represented by blue (for buys) and red (for sells) bars. The market maker orders are
colored green. In the illustration, the market maker has placed its orders at the best
bid-ask prices.

116

Chapter 6. Evolving traders in an artificial market ecosystem

200 400 600 800 1000 1200

−
50

0
50

10
0

simulator time

w
ea

lth

ooo

xxx
xx

xxx
xx

xx
xxx

xxx
xx

xx
xxx

xxx
xxx

xx
xxx

xx
xxx

xxLO
MO
GP

200 400 600 800 1000 1200

0
50

10
0

15
0

simulator time
vo

lu
m

e

oo
oo
oo

ooo
oo

oo
ooo

oo
oo

oo
ooo

ooo
oo

ooo
oo

oo
ooo

ooo
ooo

oo
oo
ooo

ooo
oo

ooo

xxx
xx
xx

xxx
xx

xx
xx

xx
xxx

xxx
xxx

xx
xxx
xxx

xxx
xx

xx
xxx

xx
xxx

xxx
xxx

xx
xx

xxx
xxx
xxx

xx
xx

xxx
xxx

xx
LO
MO
GP

200 400 600 800 1000 1200

−
6

−
4

−
2

0
2

4
6

simulator time

po
si

tio
n

ooo
oooooooooooooooooooooooooo
oo
oo
ooooooooooooo
oo
oooooooooooooooooooo
oooooooooooooooooooooooo
ooooooooo
ooooo
oooooooooooo
oo
oo
oo
oo

oo
ooooooooooo
ooooooooooooooooooooo
ooooooooooooooooooooo
oooooooooooooooooo
ooo
oooooooooooooooooooooooo
oooooooooooooooooooooooooooooo
ooo
oo
oo
oo
oooooooooooooooooooooo
oo
oo
ooo
ooooooooooooooooooooooo
ooo
oo
oo
ooo
oo
oo
ooooooooooooo
oooooooo
ooooooooooooooooooooooooooooooooooooo
ooo
ooooooooooooooooooooooooooooooooooooooo
ooooooooooooooooooooooo
ooooooooooooooooooooooo
ooo
ooo
ooooooooooooooooooooooooooo
ooo

oo
oooooooooooooooooooooooooo
ooo
ooooooooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooooooo
oo
oo
ooo
oooooooooooooooooooooooooooooo
ooo
oo

oo
oooooooooooo
ooo
ooooooooooooooooooooo
oooooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooooooooo
ooo

oooooooooooooo
ooooooooooooooo
oo
oo
ooo
ooo
ooo
oooooooooooooooooooooooooooooooooo
ooo
oooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooo
ooo
ooo
ooo
ooo
ooo
oooooooooooooooooooooo
oo
oo
ooooooooooo
oo
oo
ooo
oo
oo
oooooooooooooooooooooooooooooooooooo
oooooooooooooooooo
ooooooooooooooooooo
ooo
ooo
ooo
ooooooooooooooooooooooooooooooo
ooo
oo
ooo
ooo
ooooooooooo
ooo
ooo

ooooooo
oo
ooo
oo
ooooooooooooooooooooooooooooooooooo
oooooooooooooooooo
oo
ooooooooooooooo
oo
ooo
ooooooooooooo
ooo
ooooooooooooooo
oooooooooooooooooooooooooooooooooooooo
oo
oooooooooooooooooooooooo
oooooooooooooooooooooooooooooooooooooo
ooooooo
ooo
oooooooooooooooooooooooooooo
ooooooooo
oo
oo
ooo
oooooooooooooo
ooooooooooooooooooooooooooooooooooooo
ooo
ooooooooooooooooo
oo
ooo

oo
oo
ooooooooooooo
ooooooooooooooooooooooooooo
oooooooooooo
ooo
oo

ooo
oo
ooo
ooooooooooo
ooooooooooooooooooooooooooooooo
oooooooooooooooooooooooooooooooooooooo

xx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xx
xx
xxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxx
xxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxx
xxxxx
xxxxxxxxxxxx
xx
xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxx
xx
xxxxxxxxxxxxxxxxxxxx
xx
xx
xxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxx
xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xx
xx
xxx
xxxxxxxxxxxxxxxxxxxxxxx
xxx
xxxxxxxxxxx
xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xx
xxxxxxxx
xxx
xx
xx
xxxxxxxxxxxxx
xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xx
xx
xxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxx

xx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xx
xx
xxxx
xxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxx
xx
xx
xxxxxxxxxxxxxxxx
xx
xxxxxxxxxxxx
xxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxx

xxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxx
xxx
xxx
xxx
xxx
xxx
xxxxx
xxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxx
xxx
xxx
xxx
xxx
xxxxxxxxxxxxxxxxxxxxxx
xx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxx
xxx
xxxxxxxxxxx
xxx
xxx
xx
xxx
xxx
xxxxxxxxxxxxxxxxxx
xxx
xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxx
xxx
xxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxx
xx
xxx
xxx
xxxxxxxxxxx
xxx
xx
xxx
xxxxxxx
xx
xx
xxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xx
xxxxxx
xxxxxxxxxxxxxxx
xx
xxx
xxxxxxxxxxxxx
xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xx
xxxxxxx
xxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xx
xx
xxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxx
xxxxxxxxxxxxxxxxx
xx
xx
xx

xxx
xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxx
xxx
xxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxx
xxx
xx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxx
xx
xx
xxx
xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

LO
MO
GP

xxx

200 400 600 800 1000 1200

4.
0

4.
5

5.
0

5.
5

simulator time

lo
g(

bi
d−

as
k

pr
ic

es
)

ooo
bid
ask

Figure 6.8: Performance of the market maker GP agent (green). The x-axis of each
graph represents simulator time. In the top left, relative wealth of the traders is
compared. The GP agent makes regular small profits, primarily at the expense of
the market order noise trader (orange). In the top right, the volume of trading is
compared. The GP agent trades mostly with the market order noise trader. The
bottom left compares the relative positions of the traders. Because all of the traders
place orders bilaterally in an unbiased manner, they all achieve balanced inventories.
The bottom graph shows the bid-ask prices, which are stabilized by the market maker
strategy.

117

Chapter 7

Incorporating fundamentalism

7.1 Motivation

Chapter 6 provided an intermediate step towards coevolving a trader population.

There, a single trader that can regularly profit in a market inhabited by noise traders

was evolved. Although the clear & hoist (CH) trader of section 6.4.1 represents a

dominant strategy in the simulated market environment, it is unrealistic for the real

world. In real markets, there exists a subpopulation of traders known as fundamen-

talists, or value traders, that associate a perceived value with the asset being traded.

When the market price diverges significantly from its perceived value, a value trader

will either buy or sell shares of the asset in anticipation of a price correction. In a

market inhabited by noise traders and fundamentalists, it would be impossible for a

CH trader to inflate the price of an asset without meeting significant resistance.

This chapter discusses two such value-based mechanisms. The first method in-

volves integrating a fundamental value into the original LONT process. The second

method introduces an independent value trader. Section 7.2 presents the mechanics

of the two value-based methods. Section 7.3 presents experimental results for each

118

Chapter 7. Incorporating fundamentalism

of the proposed methods. Section 7.4 compares the merits of each approach and

discusses the impact that inclusion of a value-based process has on the GP process.

7.2 Methods

Both value-based traders are based on a dynamic value process, which is introduced

in section 7.2.1. In section 7.2.2, I introduce a value-based limit order noise trader

process, the VLONT, which resembles the LONT process. In section 7.2.3, an inde-

pendent value trader (VT) for the continuous double auction (CDA) is described.

7.2.1 Dynamic value process

In real markets, the value of an asset changes over time. As a result, effective value

traders continually reassess and update their perceived value of the asset. In a

simulated market, the asset is imaginary, and thus has no actual value. I employ

a random process to model the dynamic asset value. The value, v, is initially set

to the opening price of the market. Thereafter, it is stochastically updated on each

timestep with probability π. A random number, ρ0 ∈ [0, 1), is generated and if

ρ0 < π, the dynamic value is updated. Given that an update is due, the perceived

value is adjusted by flipping an unbiased coin. According to the outcome of the flip,

the price is adjusted either one tick upwards or one tick downwards:

vt+1 =

vt − κ if ρ1 < 0.5

vt + κ if ρ1 ≥ 0.5
(7.1)

where vt represents the value at time t, κ denotes the tick size, and ρ1 ∈ [0, 1) is

119

Chapter 7. Incorporating fundamentalism

randomly generated.

In the real world, there exists a diverse collection of value traders, each holding an

independent perceived value. In the simulated market environment, I approximate

this population with a single value trader that holds a lone perceived value meant

to represent the entire subpopulation. Descriptions of the two value-based strategies

that make use of this dynamic value process follow.

7.2.2 A value-based limit order noise trader (VLONT) pro-

cess

In this section, I introduce a value-based limit order noise trader (VLONT) process.

In the original limit order noise trader (LONT) model, traders place orders at prices

relative to the current bid-ask prices. For bid limit orders, the LONT chooses a limit

price from the semi-infinite interval (−∞, pask], where pask represents the current best

ask price. Conversely, for ask limit orders, the LONT chooses a limit price from the

semi-infinite interval [pbid,∞), where pbid represents the best bid price. It is because

of this choice of boundaries that the CH trader is able to manipulate the LONT.

By inflating pbid and pask, the CH trader is able to increase its own wealth, where

wealth is calculated as wt = xtpt + ct (wt represents wealth at time t, xt represents

position at time t, pt represents price at time t, and ct represents capital at time t).

The LONT trader simply accepts the redefined prices and continues to trade.

The VLONT trader functions just as the LONT does, with the exception of the

price boundaries employed for the stochastic limit price process. As described in

section 7.2.1, the VLONT trader maintains a perceived value. Rather than use the

current bid-ask prices as does the LONT, the VLONT uses the perceived value to

dictate the price boundaries. Specifically, for bid limit orders, the VLONT chooses

a limit price from the semi-infinite interval (−∞, v + ω], where v is the perceived

120

Chapter 7. Incorporating fundamentalism

value and ω is an offset measured in price ticks. Similarly, for ask limit orders, the

VLONT chooses a limit price from the semi-infinite interval [v − ω,∞). Figure 7.1

illustrates the difference between how the LONT and VLONT traders choose limit

prices.

The VLONT resembles the constrained zero intelligence (ZI-C) trader proposed

by Gode and Sunder [20]. Whereas, I approximate the collective behavior of an entire

subpopulation of value traders with a single VLONT, Gode and Sunder employ a

population of ZI-C traders. Each of these traders maintains a privately held perceived

value. The individual ZI-C traders use the perceived value to stochastically generate

bid and ask prices – the value dictates either the upper bound for bid prices or the

lower bound for ask prices. Unlike the VLONT, the ZI-C do not incorporate a price

tick offset ω.

7.2.3 A value trader for the CDA

Here, I describe a value trader (VT) for the CDA. The trader associates a perceived

value with the asset being traded. When the market price diverges from this value,

the value trader takes action. Otherwise, it remains latent. The rest of this section

describes the mechanics of the proposed value trader. Throughout the discussion,

we refer to figure 7.2, which illustrates the mechanics of the strategy. Table 7.1

summarizes the value trader parameters discussed.

Role of the bid-ask prices

Many definitions of price exist. As described, the motivation of the value trader is

to sell when price exceeds value and to buy when value exceeds price. The best price

at which to immediately buy shares is at the ask price, pa. Thus, when (pa < v),

there exist shares that the value trader considers under-priced and it is motivated

121

Chapter 7. Incorporating fundamentalism

Table 7.1: Value trader parameters

variable dictates units effect
T activation threshold price ticks increased T leads to

increased patience
τ range of shares to

buy/sell after activation price ticks increased τ leads to
decreased order sizes

M maximum order size shares decreased M leads to
slower price to value reversion

to buy. Conversely, the best price at which to immediately sell shares is at the bid

price, pb. When (pb > v), there exists a demand for shares at a price that the VT

considers too high and it is motivated to sell. Depending on the situation, I refer to

either the bid price or the ask price.

Table 7.2: Thresholds for value trader strategy activation

market activation orders placed bid-ask
shares trigger MO LO effect

overvalued (pb − v) ≥ T sell buy at $(v + τ) decreases bid
undervalued (v − pa) ≥ T buy sell at $(v − τ) increases ask

Trader patience: an activation threshold

An impatient value trader trades whenever price and value diverge. A patient value

trader waits for price and value to diverge significantly before taking action. The

activation threshold T dictates the patience of the value trader. T is measured in

units of price ticks. First, I consider the case of the bid price exceeding value. While

(pb− v) < T , the value trader remains inactive. If and when (pb− v) ≥ T , the trader

sells. The magnitude of the sale is discussed in section 7.2.3. Conversely, in the case

122

Chapter 7. Incorporating fundamentalism

of value exceeding the ask price, the value trader remains inactive while (v−pa) < T .

However, if the condition (v− pa) ≥ T is met, the trader buys. The larger the value

T , the more patient the trader. Table 7.2 summarizes the conditions for activating

the value trader. Once either of the thresholds is exceeded, the value trader acts

immediately by placing a market order, as opposed to a limit order.

Trader commitment: order size

A second parameter measured in price ticks, τ such that (τ < T), dictates the

quantity of shares to trade after exceeding an activation threshold. The greater the

size of the trade, the greater the commitment to the move. When (pb − v) ≥ T , the

trader places a sell market order equal to the volume of shares residing in the range

Rb = [(v+ τ), pb] (top left of figure 7.2). I refer to this volume as V (Rb). Conversely,

when (v − pa) ≥ T , the trader places a buy market order equal to the volume of

shares, V (Ra) within Ra = [pa, (v − τ)] (bottom left of figure 7.2). Generally, τ is

chosen such that (τ > 0). By doing so, the VT only trades shares that it considers

over or under valued. The greater the value of τ , the smaller the order size.

Securing a profit

After exceeding an activation threshold and placing a market order, the value trader

has established a relative position. To secure a profit, the trader must unwind this

position. By choosing τ > 0, the market order placed by the value trader moves the

appropriate bid-ask price towards the perceived value but not all the way to it. Based

on its perceived value, the VT anticipates that price will continue moving towards

v. Motivated by this belief, the value trader places a second order: a limit order in

the opposite buy-sell direction of the preceding market order. The size of the limit

order matches that of the market order and its price is set to either v + τ (top right

123

Chapter 7. Incorporating fundamentalism

of figure 7.2) or v − τ (bottom right of figure 7.2) depending on the situation. For

each share of the limit order that is traded, a roundtrip profit is secured. The value

trader either enacts the proverb “buy low, sell high”, or the analogous, “sell high,

buy low”.

Execution speed

The previous description assumes that the VT can place orders for an unlimited

number of shares. Based on this assumption, once activated, the VT can complete

its strategy in a single timestep. I introduce a final parameter measured in units of

shares, M , to limit the maximum order size for the VT. Recall that the actions of the

VT cause price to revert towards the perceived value. The size of the orders placed

by the VT effects the speed at which this price reversion occurs. By reducing the

maximum order size, the price reversion occurs at a slower rate: the lower the value

of M , the longer it takes the VT to complete its strategy. If the volume to be cleared

exceeds M , V (Ra) > M or V (Rb) > M , the VT is forced to place multiple orders,

N ≈ V
M
. For each market order placed, a corresponding limit order of the same

size is placed. The VT continues placing orders until all orders within the specified

range, either Rb or Ra, are cleared. All new limit orders placed within the specified

range prior to completion of the strategy must be cleared as well (these shares can

simply be cancelled).

7.3 Results

In this section, I present experimental results of market simulations employing the

two value based methods. For all simulations, the noise trader parameters are set to

α = .071, µ = .1495, δ = .0178, and σ = 30000 (calibrated to trading of Shell stock

124

Chapter 7. Incorporating fundamentalism

on the London Stock Exchange from July 2000 to January 2001). For illustrative

purposes, the CH trader employs a linear hoist of 100 price ticks (as opposed to

basing the hoist on the current wealth of the trader, which leads to an exponential

growth in prices). Section 7.3.1 provides experimental results for the VLONT and

section 7.3.2 presents results for the value trader.

7.3.1 Value LONT results

Value vs. price

Figure 7.3 compares the perceived value of the VLONT trader (with ω = 3) to

the midpoint price for a simulation containing only the VLONT and MONT. As

expected, since the VLONT’s choice of limit prices is dictated by the perceived

value, the midpoint price and value do not diverge significantly at any given time.

The mean distance between midpoint price and perceived value over 50000 simulator

timesteps is 1.91 price ticks.

Clear & Hoist Trader vs. VLONT

Figure 7.4 illustrates the performance of the clear & hoist (CH) trader in a market

inhabited by the VLONT and MONT. In the top left, the relative wealth of the

agents is compared. The wealth of the CH trader (green) oscillates (explained further

below). This contrasts the steady growth observed in figure 6.6, in which the limit

order noise trader process is based on the LONT rather than the VLONT. The

wealth of the VLONT trader also oscillates, but in a negative direction. However,

the performance of the VLONT agent is of secondary importance. My chief interest

is to ascertain how the VLONT will affect the evolution CH agents. The top right

graph compares the volume of trading for the agents. The CH trader trades primarily

125

Chapter 7. Incorporating fundamentalism

with the VLONT (purple). The bottom left graph depicts the relative positions of

the traders. The CH trader consistently buys from the VLONT trader and builds a

positive position. The bid-ask prices are shown in the bottom right graph. The prices

depict the struggle between the CH and VLONT traders. The CH trader pushes the

prices upwards. The VLONT trader forces the prices downwards – reverting them

towards value. The relative wealth of the CH trader (top left), is driven by the price

oscillations (bottom right). Because the position (bottom left) of the CH trader

grows linearly, the amplitude of the wealth oscillations grow linearly as well. The

high variance in the CH trader’s wealth reduces its Sharpe ratio (defined as S = <r̄>
sd(r̄)

,

where r̄ represents an array of wealth returns for the observed period), which is used

as the fitness function for the GP experiments. Because of this decrease in fitness,

the likelihood of the CH trader being selected for by the GP experiments is reduced.

7.3.2 Value trader results

Value trader vs. noise traders

First, I examine the effect of adding the VT to a market environment containing only

the LONT and MONT traders. For the VT, I choose parameters of υ = 0.1, T = 10,

and τ = 2. Unless otherwise stated, M = ∞. Figure 7.5 compares the midpoint

price (orange) to the perceived value (green) for two different values of M . In both

cases, prices track the perceived value; however, for greater M , the mean distance

between price and value is reduced.

Next, I examine the effect of adjusting the τ parameter. Two simulations (of

approximately 200, 000 market events) containing the VT, LONT, and MONT are

conducted with identical parameters except that τ = 2 in one run and τ = 8 in the

other. Recall that the increase in τ reduces the size of the limit and market orders

placed by the value trader. For τ = 8, the actions of the value trader do not move

126

Chapter 7. Incorporating fundamentalism

the price as far away from the activation threshold. As a result, the value trader is

activated more often (84% in this case). Another effect of adjusting τ is the mean

distance between midpoint price and value. The mean distances are 5.27 and 6.66,

respectively, for τ = 2 and τ = 8. In summary, by using a higher τ , the order

sizes of the value trader are reduced, the trader is activated more often, and price

tracks value with less fidelity. The effect of the T parameter is more straightforward.

By reducing the magnitude of T , the activation threshold is lowered and thus price

tracks value more closely.

Figure 7.6 provides diagnostics for a simulation inhabited by the value trader

(green), the LONT (purple), and the MONT (orange). Both the VT and the LONT

profit at the expense of the MONT (top left). Although the value trader does accrue

wealth, it does not do so as consistently as the LONT and thus has a lower Sharpe

ratio for the observed period. The LONT trades the highest volume; the value trader

trades in bursts (top right). These bursts in trading, which synchronize with the

most significant changes in price (bottom right) and mark periods of VT activation,

increase the VT’s wealth return variance and thus decreases its Sharpe ratio. The

relative positions of the traders are depicted in the bottom left. The value trader

both buys and sells depending on the relation of its perceived value to the bid-ask

prices. The bottom right graph illustrates the bid-ask prices: the actions of the VT

cause prices to stay within a dynamic range as dictated by both the perceived value

v and activation threshold T .

Effect of the value trader on the clear & hoist trader

Figure 7.7 provides diagnostics from a simulation in which the clear & hoist trader

(green) is pitted against the value trader (red), LONT (purple), and MONT (orange).

In the top left, relative wealth of the traders is compared. The wealth of the CH

trader oscillates. These oscillations synchronize with the movement of the bid-ask

127

Chapter 7. Incorporating fundamentalism

prices (bottom right). The CH trader steadily builds a positive position (bottom

left). Accordingly, when prices swing up, the wealth of the CH agent moves up as

well. As the magnitude of the CH’s position increases, the magnitude of its wealth

returns increases as well. The price oscillations (bottom right) depict the struggle

between the CH and VT. Unlike the original scenario in which the VT was not

present (see figure 6.6), the CH trader is unable to inflate prices linearly. Rather,

the presence of the VT causes prices to revert to the perceived value (downwards).

7.4 Discussion

Without the presence of a value-based trader, the clear & hoist trader accrues unlim-

ited wealth in the simulated market. As shown in section 7.3, both of the value-based

processes described in this chapter neutralize the CH trader. The actions of the value-

based processes cause prices to revert to value. As a result, the CH trader is unable

to inflate prices. Without being able to inflate prices, the CH fails to build wealth

consistently.

Both value-based strategies, the VLONT and the VT, successfully cause the

midpoint price to track the perceived value. In this paper, the VLONT was used

as a replacement for the LONT trader. However, it is possible for both strategies

(VLONT and LONT) to coexist in the same environment.

To test the effect that a value-based process has on the GP experiments, I inte-

grated the VT into a market environment inhabited by both the LONT and MONT.

To assess the fitness of a candidate GP agent, it is added to the market environment

for a prescribed number of timesteps and the Sharpe ratio of the agent is evaluated.

Results of the GP experiments reveal that market making strategies are selected by

the evolutionary process. Figure 7.8 shows diagnostics from a simulation containing

one such GP market maker. According to Sharpe ratio, the GP agent’s performance

128

Chapter 7. Incorporating fundamentalism

exceeds that of the other traders. The success of the trader is predicated on main-

taining a balanced inventory, which reduces susceptibility to large wealth changes

driven by price fluctuations, and the attainment of regular roundtrip (buy high, sell

low) profits. In turn, the reduced volatility in wealth increases the Sharpe ratio (and,

thus, fitness) of the GP market maker. Inclusion of the VT has a major impact on

the evolutionary process: the CH trader no longer evolves. Presence of a value-based

trader induces large swings in wealth for the CH trader (see figures 7.4 and 7.7). The

volatility in wealth reduces the Sharpe ratio (fitness) of the CH trader and thus it is

not selected for by the GP process.

Is it possible for a value-based process to evolve on its own? Yes, an agent

can simply adhere to a static value that it regards as its perceived value and trade

when the bid-ask prices diverge from it. However, it is unlikely that a dynamic

perceived value based on a stochastic process would evolve: such a process would

add program complexity without lending an apparent fitness advantage given the

current simulated market environment. A dividend1 process is required to increase

the likelihood of evolving value-based strategies. With regards to the two value-based

strategies discussed, the VLONT strategy is much more likely to evolve than is the

VT strategy. First, due to its simplicity, the VLONT strategy can be represented

much more compactly given the employed GP instruction set. The possibility of a

compact representation increases the probability of its evolution. Second, the VT

trader trades in bursts as dictated by the divergence of price and value. The bursty

trading yields volatile wealth returns, which in turn reduces the VT’s Sharpe ratio.

The GP experiments employ a Sharpe ratio fitness function. As a result of its bursty

trading, the fitness of the VT strategy is inherently challenged and selection of the

strategy is thus unlikely.

With regards to coevolving an entire trader population, the role of a value based

1A payment made to shareholders.

129

Chapter 7. Incorporating fundamentalism

process raises interesting questions. By including the VT amongst the base organisms

(MONT and LONT), the evolution of strategies like the CH will be inhibited. How-

ever, one can investigate whether the coevolutionary process uncovers a value-based

process on its own. In the coevolutionary scheme, it is no longer necessary for an

agent to dominate others to survive. Rather, if the agent could maintain small profit

margins, it could endure. Thus, there exists the possibility of coevolving a value

based strategy. This presents an interesting hypothesis regarding the coevolutionary

process: do value-based processes coevolve intrinsically?

130

Chapter 7. Incorporating fundamentalism

sh
ar

es

price

buy limit order range

sell limit order range

sh
ar

es

price

buy limit order range

sell limit order range

Figure 7.1: Comparison of how the LONT and VLONT traders choose limit prices.
Both models draw limit prices from semi-infinite intervals. However, the boundaries
of these intervals differ. The top illustration depicts the LONT model, which uses
the current bid-ask prices as the boundaries. The bottom illustration depicts the
VLONT model. The perceived value of the VLONT trader is marked with a green
dot. The VLONT trader applies an offset to the perceived value to dictate the
boundaries (marked with black triangles) of the semi-infinite interval from which
limit prices are chosen.

131

Chapter 7. Incorporating fundamentalism

step 1 of (bid > value)

(V
+T

)

(V
+t

)
V

ask MO

step 2 of (bid > value)

(V
+T

)

(V
+t

)
V

step 1 of (ask < value)

(V
−T

)

(V
−t

)

V

bid MO

step 2 of (ask < value)

(V
−T

)

(V
−t

)

V

Figure 7.2: Mechanics of the value trader (VT) strategy. The top two illustrations
refer to the situation where price exceeds value, (pb > v). Initially, the VT places
a sell market order equal to V (Rb), the volume of shares within the range Rb =
[(v + τ), pb] (top left). It then places a buy limit order of the same size at a price
of v + τ (top right). The bottom two illustrations depict the actions of the VT for
the situation where value exceeds price, (pa < v). First, the VT places a buy market
order for a volume V (Ra), where Ra = [pa, (v − τ)] (bottom left). Subsequently, the
VT places an ask limit order of the same size at a price of (v − τ) (bottom right).

132

Chapter 7. Incorporating fundamentalism

0 10000 20000 30000 40000 50000

98
0

10
40

simulator time

pr
ic

e

value
price

Figure 7.3: Value vs. price for the VLONT trader (with ω = 3). Midpoint price
(orange) tracks the value (green) of the VLONT trader. The mean distance between
midpoint price and value is 1.91 price ticks.

133

Chapter 7. Incorporating fundamentalism

200 300 400 500 600 700

−
4e

+
09

0e
+

00
4e

+
09

simulator time

w
ea

lth

ooxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
x
xx
xxxxxxxxxxxxxxxx

x
xx
x
xx
xx
x
x

xxxxx
x
xxx
xxxxxx
xxxx
xx
xx

x
x
x
x
xx
x
x
x
xxxxxxx
x

xx
x
x
xx
x

x
x
xxx
xxxxx
x
xxxx
x
xx
x
x
x
x
x
xxx
x
x

xx
x
x

xxx
x
x
x
xx

x
x
x
x
xxx
x

xx
xx
x
x
xxx
x

x
x
xxx
x

x

x
x

x
x
x

x
x
x
x

x

x

x
x
x
x
x
x
x

xx
x

xx
x
xx
x
x

xx
xxxxxx
x

x

xx
x

xx

x

x
x

x

xxxx
x

x

x
x
x

x
xx

x

xx
xxx
x
x
x
xx
x

xxx

x

x

x
x
x
x

x

x

x

xx

x

x

x

x
xx
x

x

x

x

x

xx
x

x

x
x

x

x

x

xx

x
x
x
x
x
x

x
x

x

xx
x
x

x

x
xxx
x

x

x
x
x
x

xx

x

x

x

xx
x

x

x

x

x

x

x

x

x

xx
x

x
x
x
x
x
x

x

xxx
xxx
xxx

x

x
x

x

xxx

x
x
x

x

x

x

x

x

x
x
x

x
x

xxx

x

xx

x

x
x

xx
x

x
x
x

x

xxxx
x

x

x
xx
x

x

x
x
x

x

x

x
x

x

x

xxx

x

x
x
x

x

xxx

x

x

xx
xx

x

xxx

x

x
x

x

x

x

x
x
x

x
x
x

x

x

x

x
x

x

x

x
x

x

x

x
x

x

xxx
x
xx
x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

xxx

x

xx
x
xxx

x

x

x

x
x

x

xx
x

x
xx
x
x
x
x

x

x

x

x

xx
x

x

x

x

x
x

LO
MO
GP

200 300 400 500 600 700

0.
0e

+
00

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

simulator time

vo
lu

m
e

oo
ooo

ooo

xxx
xx

xxx
xx

xx
xxx

xxx
xxx

xxx
xx

xx
xxx

xxx
xxx

xxx
xx

xx
xxx

xxx
xxx

xxx
xx

xx
xx

LO
MO
GP

200 300 400 500 600 700

−
1.

0e
+

07
0.

0e
+

00
1.

0e
+

07

simulator time

po
si

tio
n

ooxxx
xxx

xx
xxx

xx
xxx

xxx
xx

xxx
xx

xxx
xx

xx
xxx

xxx
xxx

LO
MO
GP

xx

x

x

xxx

x

x
x

x
x

x

x

x
xxx

x

x

x

x

x

x

x

x

x

x
x
x

x

x

x

x

x

x

x

xx

x

x
xx

x

x
xx
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx
x

x

x

xx

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xxxxx
x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x
x

x
xx

x

x

x
x
x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x
x
x

x

x

x

x
x

x

x

x

x

xx
x

x

x
x

xx

x

x

xx

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x
x

x

xx

x

x

x
x

x
xxx
x
x

x

x

x

x

x

x
x

x

x

x

x

x
x
xx

x

x

x

x

x

x

x
x

x

x

x

xx
x

x

x

x

x
x

x

xx
x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

xx

x

x

x

x

x

x
x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x
xx
x

x

x

x

x

x

x
x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x
x

x

x
x

x
x

x

x

x

x
x

x

x
xxxx
x

x

x
x

x

xx
x

x

x

x

x

x

x

x

x

x
x

x

x

x

xx
x

x

x
x

x

x

x

xx

x

x

x

x

x

xxxx
x

x

x

x
x

x

x

x
x

x

x

x

x

x

x

x

xxx

x

x

x

x

x

x
xx

x

x

xx
x
x

x

x
x
x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

xxx
x
xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xxx

x

xx
x

xxx

x

x

x

x
x

x

x
x

x

x
xx
x

x

x

x

x

x

x

x

xx
x

x

x

x

x
x

200 300 400 500 600 700

10
00

11
00

12
00

13
00

14
00

15
00

16
00

simulator time

bi
d−

as
k

pr
ic

es

oo

o

o

ooo

o

o
o

oo

o

o

o
ooo

o

o

o

o

o

o

o

o

o

o
o
o
o

o

o

o

o

o

o

oo

o

o

oo

o

ooo
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo
o

o

o

oo

o

o

o

o

o
o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

ooooo
o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o
o

o
oo

o

o

o
o
o

o

o
o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o
o
o

o

o

o

o
o

o

o

o

o

oo
o

o

o
o

oo

o

o

oo
o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

oo

o

o

o
o

o
ooo
o
o

o

o

o

o

o

o
o

o

o

o

o

o
o
oo

o

o

o

o

o

o

o
o

o

o
o

oo
o

o

o

o

oo

o

oo
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

oo

o

o

o

o

o

o
o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o
o
o

o

o

o

o
oo
o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

oo

o

o
o

o

o
o

o

o

o
o
o

o
oooo
o

o

o
o

o

oo
o

o

o

o

o

o

o

o

o

o
o

o

o
o

ooo

o

o
o

o

o
o

oo

o

o

o

o

o

o
ooo
o

o

o

o
o

o

o

o
o

o

o

o

o
o

o

o

ooo

o

o

o

o

o

o
oo

o

o

oo
o
o

o

o
o
o

o

o

o

o

o

o

o

o

o

o
o
o

o

o

o

o
o

o

o

o

o

o

o

o
o

o

ooo

o
oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
oo

o

oo
o

ooo

o

o

o

o
o

o

oo
o

o
oo
o

o

o

o

o

o

o

o

oo
o

o

o

o

o
o

bid
ask

Figure 7.4: Clear & hoist (green) trader in a market inhabited by the VLONT
(purple), and MONT (orange). In each graph, the x-axis represents simulator time.
The graphs compare relative wealth (top left), volume of trading (top right), position
(bottom left), and bid-ask prices.

134

Chapter 7. Incorporating fundamentalism

0 1000 2000 3000 4000 5000

99
0

10
10

10
30

10
50

simulator time

pr
ic

e

value
price

0 1000 2000 3000 4000 5000

10
00

10
40

10
80

simulator time

pr
ic

e

value
price

Figure 7.5: Comparison of midpoint price (orange) to perceived value (green) for the
value trader (VT) with τ = 2 and two different values of M . In the top graph, the
maximum order size is unlimited, M =∞, and the mean distance between price and
value is 5.09 price ticks. In the bottom graph, the maximum order size is limited
to M = 6000, which is equal to 20% of the static order size employed by the noise
traders. The mean distance between price and value grows to 7.76 price ticks. In
both cases, price tracks value. For larger M , the tracking is of greater fidelity.

135

Chapter 7. Incorporating fundamentalism

200 300 400 500 600 700

−
1e

+
07

−
5e

+
06

0e
+

00
5e

+
06

simulator time

w
ea

lth

oooooooooooooooooooo
oooooooooooooooooooooooo

ooo
oo

oooooo
o

o
oo
oo

oooooooooooooo
ooooo

oooooooooooooooooooooooooooooo
ooooo
o
o
oooooooo
oo
ooooo
ooooooooooooooooooooo

oooooooooooooo
ooooooo
ooooooooooooo

o
o

oo

oo

o
o

o

o
oo
ooo

o
oooooooooooooooooooooooooooo

ooooooooooo
ooooo

oooooooooo
ooooooooo
oo

o

o
oo

o
ooooo
ooo
ooo
oooooooo
ooooooooooooo

oo

oo
ooo
oo
oo
oooooooo
oooooooo
oooooooo
ooo
oooooooooooooooooooo

ooooooo
oooooooooo

oooooooooo
o

oooooo

ooo

xxx
x
x
xxxx
xxxxxxxxxxxxxxxxxxx

xxx
xxx

xxx

xx

x
x

x

x
xxxxx

x
xxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x
xxxxxxxxxx

xxxxxxxxx
xx

x

x
xx
x
xxxxxxxxxxxxxxxx

xxx
xxxxxxxxxxxxxxx

xx
xxxxx
xxxxxxxxxxxxxxxxxxxxxxxx

xx
xxx
xxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

LO
MO
VT

200 300 400 500 600 700

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06

simulator time

vo
lu

m
e

oooooooooooooooooooooooooooooooooo
ooo

oo
ooo

oo
ooo

oo
oo

oo
ooo

oo
ooo

oo

xxx
xxxxx
xxx

xxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
x
xxxxxxxxxxxxxx
x
xx

xxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxx

LO
MO
VT

200 300 400 500 600 700

−
4e

+
05

0e
+

00
4e

+
05

simulator time

po
si

tio
n

ooo
oo

ooo
oooooooooooooooooooooooooo
ooo

ooo
ooo

ooo
oo
ooo

oo
oo

xxx
xxxx
xxxxxxxxxxxxxxxxxxxx
xxxx

x

xxx
xxxx
xxxxxxxxxx
xx

x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

xxxxxxxxxxxxxx

x

xxx

LO
MO
VT

xxx

x

x

x
x

x

x

x

xxxxxxxxxxxxxxx
xxxxxxx
xxxxxx

xxx
x
xxxxxxxxxxxxx

x
xxxxxxxxxxxxxxxxxxxx

x
xxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxx

xxxxxx
xx

x
x

x
x

xxxxxxxxxxxxxx
xxxxx

xxxxxxxxx
xxx
xxxxxxxxxxxxxxxxxxxxxxxx

x

xxxxxxxx
xx

xxxxxxxxxxxxxxxxxx

xxxxx
xxxxxxxxxxxxxx

xxxxxxxxx
xxxxxxxxx
xxxxx

xxx
x

xx

x
xxx

x

xxxx
x

xxxxxxxxxxxxxxxxxx
xxxxxxxx
xxxxxxxxxxxxxxxxxx

xxxxxxxxxxx
xxxxx
xxxxx

x

xxx
x
x
x
xxxxxxxxx

xxxxxx
x
x

xxxxxxx
xx
xxxx

xx

x

x

x
xxx
x

x
x

xxxxxx
x
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxx

x

xxxxxxx

xxxxxxxxxxxx
xxx
xxxxx

x

xx
xxx
xxxx

200 300 400 500 600 700

97
5

98
0

98
5

99
0

99
5

10
05

simulator time

bi
d−

as
k

pr
ic

es

ooooooo

oooo
o

ooooooooooooooooooooooo
oooooooo

o

o

o

ooooooo
oo
ooo

o

o

o

o

ooooooooooooooooooo
oooo
o

oooooooooooooooooooooooo
oooooo
o
oooo
oooooooo
oo
ooo
oo

oo
o

oooo

o
ooooooooooooooo

ooooooo

ooooooo

ooooooooooooooooo
o
oo

o

o

o
ooo

o

o

o

oo
o

ooo

oooooooooo
ooooooooooooooooooo

ooooooooooo

oooo

oooooooooo
o

oooooooo
o

oo
o

o

oo

o

ooo

oo

ooo

o
oo
oooo
oooooooooooooooooo

o
ooooo

o
o
oooooooo
o
o

ooo

ooooo

o

oooo
ooo

ooo

ooooooooooooooooooooooooooooooo

o

oo
o
oo

oo
ooooooo
o

ooooooo

ooo

bid
ask

Figure 7.6: Performance of the value trader (green), with τ = 2, in a market inhabited
by the LONT (purple) and MONT (orange). In all graphs, the x-axis represents
simulator time. Relative wealth is compared in the top left; volume in the top right;
position in the bottom left; and, the bid-ask prices in the bottom right. Based on
Sharpe ratio, the LONT (S = 0.0317) outperforms the VT (S = 0.0213).

136

Chapter 7. Incorporating fundamentalism

200 220 240 260 280 300

−
5e

+
08

0e
+

00
5e

+
08

1e
+

09

simulator time

w
ea

lth

oo
oooooooxxxxxxxxxxxxxxxxxxxxxxxxxx

xxx
xxx

xx
x
xxxx

xxx
x
xxxxx

xx
x

x
x
x
x
xxxxx

x

xxxxxx
xx
xxxx

x

xxx

x
x

xx
x
x
x

x
x

x
x

xxx

x

x

x

x
x
x
xxxx

*

*

*

**

*
*
*
**
*
**

*

**
**
*

*

*

*

*

**

*

*

*
**

*
*

*
*

*

*
*

**

*

*
*

*

*

*

*

*
*
*

*

*

*

*

*
*

LO
MO
VT
CH

200 220 240 260 280 300

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06

simulator time

vo
lu

m
e

oo
oo

xxx
xxx

xx
xx

xx
xxx

xx
xx

xxx
xx

**

**
**

**

**

**

**
**

**
**

**

LO
MO
VT
CH

200 220 240 260 280 300

−
1e

+
06

0e
+

00
1e

+
06

2e
+

06
3e

+
06

simulator time

po
si

tio
n

oo
xx

**

**

**

**

**

**

**
**LO

MO
VT
CH

x
x
x

x

x

x
x

x

x
xx

x

xx

x

x

xx

x

xx

x

xxx

x

xx
x

xx
x

x
x

x

x

x

xx

x

x
x

x

x
xx
x
x

x

x

x

x

x

x

x

xx
x
xx

x

x

xxxxx

xx

x

x

xx

x

xxx

x

x

xx

x

x

x

x

x

x

x

x
xx

x

x

x

x

x
x

x
x
xx

200 220 240 260 280 300

10
00

11
00

12
00

13
00

14
00

15
00

simulator time

bi
d−

as
k

pr
ic

es

oo
o

o

o

o

o
o

oo

oo

o
o
o

o
o
o

o

o
oo
o
oo

o

o

o
o

o
o
o

o
o

o

o

o

oo

o

o
o

o

o
oo
o
o

o
o

o

o
o
o

o

o
o
o
o
o

o

o
oooo

o
oo

o

o

o

o

o

oo
o

o

o

oo

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

oooo

bid
ask

Figure 7.7: Clear & hoist (green) performance in a market environment inhabited
by the VT (red), LONT (purple), and MONT (orange). In all graphs, the x-axis
represents simulator time. Relative wealth is compared in the top left; volume in the
top right; position in the bottom left; and, the bid-ask prices in the bottom right.

137

Chapter 7. Incorporating fundamentalism

200 400 600 800 1000 1200

−
1e

+
07

0e
+

00
5e

+
06

1e
+

07

simulator time

w
ea

lth ooo
oo
oooo
ooo

ooooooooooooooooo
ooo

ooooooo
oooooooo

o
o
ooo

oooo

o
oooooooooooooooo
oo
oooooooooo
oo
ooooooo
ooooo
oooooooooooooooooooooooooooooo

oooo
o
oooo
o
oooooooooooooooooooooooooooooooooooo

oooooooooo
oo
oooooooooo
oooooooooo
ooo
oooo
ooo
oo
o
oooo
oooooooooooooooo

ooooooooooooooooooooo
oo

oo
oo

xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxx

x

x
x

xx

x
xxxxxxxxxxxxxxxxxxxxxx

xxx

xx

x
x

xx

x

x

x
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxx

xxx
xxxxx
xxxxx
xxxxxxxxxx
xxxxxx
xxx
xx

xxxxxx

x

x

xxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx

xxxxxx
xxxxx
xx

xxxx
xxxxxxxxxxxxx
xx
xx
xxxx
xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
x
xx
xxxxx

x
x

xxx

xx
x
x

x

xxxx
xxxxxxxxxxx
x

xx
xxxxxxxxxx

xx

xxxxxxx
xxxxx

xxx
xx
xxx
xxxxxxxxxxxxxxx
xxxxxxx
xxxx
x

xxxx

x

xxxxxxxxxxxxxxxxxxxxxxxxx
x
xxxxxxxxxx

xxxxxx
xxxx

xx

xxxxxxxxxx
xxxxxxxxxxxxx
xxxx

x
xxx
xx

xxxx
x
xx
xxxxxxxxxxxx
x

xxxxxxxxxxxxx
xxxxxxxx
xx
xxxx
xx

xx

xxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx

**

LO
MO
VT
GP

200 400 600 800 1000 1200

0e
+

00
2e

+
06

4e
+

06
6e

+
06

simulator time

vo
lu

m
e

oo
oo

oo
ooo

oo
oo

ooo
oo

oo
oo

oo
oo

ooo
ooo

ooo
oo

oo
ooo

ooo

xxx
xx
xxx
xxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
x
xxxxxxxxxxxxxxxxxx
x
xx

xxxxx
xx

xxx
xx

xx

LO
MO
VT
GP

200 400 600 800 1000 1200

−
5e

+
05

0e
+

00
5e

+
05

simulator time

po
si

tio
n

oo
ooo

oo
ooo
ooo
ooo

oo
oo

oo
ooo
oo
ooo

ooo
oo

ooo
oo

oo
ooo

oo
oo

xx
xxx

xxxx
xx
xxxxxxxxxxxxxx
xx
x
xxxxxxx

x

xxxxxxxxxxx

x

xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxx
xxxx
xx

x

xxxxxxxxxxxxxx

x

xxxxxxxxxxxxxxxxxx

x

xxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxx
x
xxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xx

xx
xxxxxx
xx

LO
MO
VT
GP

xxxx
xxxxxxxxxxxxxxxxxxxxxxxx

xxx
xxxxxxx
xx
xxxxxxxxxx
xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xx
xxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxx

x
xxxxxxxxxxxxxxx

x

xxxxxxxxxxx
x

x

xxxxxxxxxxxx

xxxxxxxxxxxxxxxx

xxxxx

xxxxxxxxxx

xxxx

x

x

x
x
x

x

xxxxxxxxxxxxxxxxxxxxx
x
xxx

xxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx

xxxx
xx
xx

x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx
x
xxxx
x
xxxxx
xxxxxxxxxxxxxxxx
xx
x
xx

x

xxxxx
x
xxxxxxx
xxx
x
xxxxx
xxxxxxxxxxxxxxxxxx
x
xxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxx
xxxx
x

xxxxxx
xxx
xxxxxxxxx
x

xx

x
x

xxxxxxxxxxx
x
xxxxxxxxxxxxxxxxxxxxxxx

xxxx
xxxxxxxx
xxxxxxxxxxxxx
xxxxxxx
x

x
x
x
xxxx
x

xxxxxxxxx

x

xxxx
xxxxxxxxxxx
x

xxxxxxxxxxxx
xx

xxxxxxxxxxxxxx
x
xxx
xxx
xxxxxxx
xxxxxxx
xxxxxxxxxxx
x

xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxx

xxxxxx
x
xx
x

xx

xxxxx
xxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxx
xxx
xxxxxxxxxx
xxxxxxxxxx
xxxx
xx

xx

xxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx

200 400 600 800 1000 1200

97
0

98
0

99
0

10
00

10
10

simulator time

bi
d−

as
k

pr
ic

es ooooooooooooooooooooooooooo
o

oooooooooo
oo
ooooooooooooo
oo
oo

oo
oooooooooo
ooooo
o

ooooooooooo

ooooo
o
oo

o
o

ooooooooooo
oooooooooooo
oooo
ooooooooooooooo

o

o

oooooooooo

ooo

o

o

oo

o

ooooo
ooooooooooooooooooo
ooooooooo
oooooooooooooo
oooooo
oo

oo

o

o

oo

o

ooooooooooooooooooooooooooooooooooooooo
o
ooo
oo

oooooo
ooooooooo
oo

o

o

oooooooooo
ooooooooooooooooooooo

oooooooooooo
ooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooo
oo

o

o

ooo

o
o
o
o

ooooooooooooooooo

oo

ooooooooo
o

oooooooo
o
ooooo

ooooo
ooooooooooooooooooooooooo

oooo
ooooo

o

ooooooooooooooooooooooooo
o
oooooo
ooooooooooooooooooooooooo

o
ooooo
o
ooooooooooo

o
ooo
oo

oooo

o
ooooooooooooooo

ooooooooooooooooooooo

oo
oo

bid
ask

Figure 7.8: Performance of a GP evolved market maker (green) in an environment
inhabited by the LONT (purple), MONT (orange), and VT (red). In each graph, the
x-axis denotes simulator time. In the top left, the wealth of the agents is compared.
The GP agent makes small, regular profits. In the top right, trading volumes are
compared. The GP agent trades a small volume in comparison to the other traders.
The VT trades in bursts. In the bottom left, the positions of the agents are compared.
The GPmarket maker maintains a relatively balanced inventory and thus is not prone
to large changes in wealth driven by price fluctuations. By attaining regular, small
roundtrip profits and balancing its inventory, the GP market maker achieves the
highest Sharpe ratio.

138

Part III

Recovery of trophic species in

financial market data using

community detection

139

%

140

Chapter 8

Recovery of trophic species from

financial market data

In this chapter, I use the tools developed in part I with the objective of detect-

ing trophic species in financial market data. Ecologically, trophic species are func-

tional groups containing organisms that both consume and are consumed by identical

species within a food web. Trophic species differ from taxonomic species, which are

grouped according to morphology. For the purpose of this work, I consider a trophic

species within a financial market to be a group of traders that exhibit temporally

correlated functional behavior. For instance, traders that tend to buy and/or sell at

similar times meet this criterion. This definition differs slightly from the ecological

definition, which ignores temporal associations and focuses on the flow of energy

between species.

This chapter progresses as follows. In section 8.1, the methods used for detect-

ing trophic species in financial market data are introduced. In addition, I discuss

a methodology for assessing the significance of the detected structure. In section

8.2, I examine the efficacy of the detection methods on two types of data. First,

141

Chapter 8. Recovery of trophic species from financial market data

I demonstrate that the methods successfully detect different trader types in data

generated by the simulator of Chapter 6. Here, no GP traders are used – all of the

trader types are hard-coded. Second, I examine a high liquidity stock (Shell) of the

London Stock Exchange (LSE), detecting significant structure in several month-long

segments of the real-world data. However, significant structure is not detected in all

of the months. Section 8.3 provides a discussion.

8.1 Methods

8.1.1 Temporal detection of trophic species

My method for the detection of temporal-based trophic species involves the following

steps:

1. Splice market data into time intervals.

2. Define indicators to be examined.

3. Calculate trader similarity between each pair of traders.

4. Create a complex network based on the trader similarities.

5. Apply the deterministic division (DD) community detection algorithm (of sec-

tion 3.2.1) to the complex network.

6. Test the significance of the detected communities.

Below, I describe each step of the process in greater detail. I address step 6 in

section 8.1.2.

142

Chapter 8. Recovery of trophic species from financial market data

Splice market data into time intervals

I splice the provided financial market data into time intervals. Each interval contains

a specified number of market events, consisting of one of the following: order place-

ment (market or limit), the deletion or expiration of a limit order, or a transaction

(trade) between two parties. Two parameters exist for time intervals: First, the total

number of events, denoted E, and the length of each interval window, denoted W .

Holding E steady, a decrease in W yields a greater quantity of intervals. Holding W

steady, an increase in E yields a greater number of intervals. In section 8.2, I vary

these parameter settings and analyze the resulting effect.

Defining indicators

To assess the functional similarity of traders, we must identify behaviors to examine.

I concentrate solely on two trader actions: buying and selling. I refer to each of these

behavioral descriptors as indicators. Mathematically, an individual indicator n for

trader i is written as In,ti ∈ {0, 1}, where t indicates the time interval observed. If

a given trader i exhibits the specified behavior n during a particular time interval

t, In,ti = 1. Otherwise, In,ti = 0. This is implemented by creating a matrix for each

indicator. Each column of the matrix represents an independent time interval. Each

row represents an independent trader. Thus, given m traders and n time intervals,

the matrix will have the dimensions m by n.

Although I focus here solely on buy/sell actions, a multitude of indicators are

possible. For example, we could increase the specificity of the buy/sell indicators

and examine separately the placement of market orders and limit orders – thus,

creating four independent buy/sell indicators. Or, we could examine the temporal

patterns of order deletions. Note that the use of independent buy and sell indicators

differs from [31] [65], where a single indicator is employed to indicate the change

143

Chapter 8. Recovery of trophic species from financial market data

in inventory (Zovko uses the sign of the inventory change rather than the actual

difference).

Trader similarity

Having defined the indicators, we next consider how to measure the functional simi-

larity between traders, defining trader similarity, denoted Sij for traders i and j. The

measure is built upon a normalized variant of mutual information, which measures

the mutual dependence of two random variables. Mutual information is defined as:

M(X, Y) =
∑

x∈X

∑

y∈Y

p(x, y) log

(

p(x, y)

p(x)p(y)

)

(8.1)

.

Here, assuming boolean indicators, p(x) = p(Ini) = 1
T

∑

t I
n,t
i , where T rep-

resents the number of time intervals. Likewise, p(y) = p(Inj) = 1
T

∑

t I
n,t
j and

p(x, y) = p(Ini , I
n
j) = 1

T

∑

t

[

(In,ti == 1)&(In,tj == 1)
]

. If the variables X and X

are independent, the mutual information is zero. Unlike the Pearson correlation co-

efficient, which measures only linear correlation, mutual information captures both

linear and nonlinear dependencies between variables.

Symmetric uncertainty [64] provides a normalized measure of mutual information

and is defined as:

U(X, Y) =
2 ·M(X, Y)

H(X) +H(Y)
(8.2)

144

Chapter 8. Recovery of trophic species from financial market data

where H(X) represents the marginal entropy of the random variable X . I define

trader similarity between traders i and j as the mean symmetric uncertainty over

the set of indicators:

Sij =
1

|{I}|

∑

In∈{I}

U(Ini , I
n
j) (8.3)

.

Trader similarity provides a generalized measure of functional likeness. Addi-

tional indicators could easily be incorporated by appending to the set {I}. Again,

the inclusion of multiple indicators differentiates my approach from both [31] [65].

The higher the value of Sij, the greater the functional similarity between traders i and

j. Trader pairs exhibiting independent indicator patterns yield a trader similarity of

Sij = 0. Because mutual information measures the dependence of two variables, and

not their correlation, it is possible that trader strategies whose indicators are polar

opposites will be grouped together. However, identifying such differences is trivial.

A new trophic species should be created to represent each independent strategy type.

Creation of complex network from trader similarities

From the trader similarity matrix, I create a complex network. Each trader is rep-

resented by a node, and the weights of edges between nodes indicate the trader

similarity between the nodes. The trader similarity network is fully connected since

it is possible to compute similarity between any two traders.

145

Chapter 8. Recovery of trophic species from financial market data

Detection of trophic species

To detect temporal-based trophic species, the DD community detection algorithm

(presented in section 3.2.1), using the original modularity measure, is applied to the

complex network. Because of the resolution limit explained in Chapter 4, it is nec-

essary to apply the DD algorithm recursively to each detected community until the

sub-communities are deemed indivisible. Before doing so, the sub-network associ-

ated with the community is extracted from the original network. As an alternative,

to overcome the resolution limit inherent to modularity, it is possible to optimize

divisionality using the same algorithm.

8.1.2 Testing the significance of the detected trophic struc-

ture

The algorithmic process of 8.1.1 proposes a set of trophic species. In this section, I

propose methods for both validating the detection process and testing the statistical

significance of the detected trophic species.

Communal overlap in the presence of known structure

Using simulated data, we may possess knowledge of the trophic species a priori. In

this case, we can validate the trophic detection algorithm by comparing the known

trophic species to the detected species using the measure of communal overlap pre-

sented in section 5.2.3. The higher the communal overlap value, the higher the de-

tection fidelity. Of course, without knowledge of the true underlying trophic species,

it is not possible to measure communal overlap and validation is impossible. Thus,

we require a different method to test the significance of the detected trophic species

when using real-world financial market data.

146

Chapter 8. Recovery of trophic species from financial market data

Test of statistical significance using surrogate data

I propose the following method, using surrogate data and a rank-based test [57], for

evaluating the significance of the detected trophic species when the true communities

are not known.

1. Create original complex network (denoted No), apply the community detection

algorithm, and measure the divisionality of the detected communities (denoted

Do).

2. Establish an α significance level such that R = 1
α
− 1 surrogate networks are

required.

3. Create surrogate network Nr by stochastically switching edge weights of the

original network No. Γe switches are performed, where Γ = 100 and e =

m(m− 1)/2 represents the number of edges in the network.

4. Apply the community detection algorithm to the surrogate network Nr.

5. Measure the divisionality, denoted Dr, of the detected communities.

6. Increment r.

7. If r < R, go to step 3. Otherwise, continue.

8. Rank the set of divisionality values consisting of Do and Dr for all r ∈ R.

9. Test hypothesis: is the divisionality value associated with the original network,

Do, the largest?

The objective is to determine whether the community structure represented by

No is significantly different than that observed in networks with randomly switched

trader similarities. If so, I assert that the temporal trophic structure observed in

147

Chapter 8. Recovery of trophic species from financial market data

the original data is significant. I adopt divisionality, demonstrated in Chapter 4 to

provide a fine-granularity measure of community structure, as an observable measure.

By randomly switching the edge weights of No to create surrogate networks, the

edge weights are redistributed, yet their actual quantities are maintained and the

cumulative edge weight of the network is preserved. As a result of this preservation,

I consider the relative comparison of divisionality values from the different networks

to be permissible1. By ranking the set of divisionality values and asking whether

Do is the largest, the objective is achieved. I assess the null hypothesis stating:

the community structure in No is not significantly different than that observed in

networks with randomly switched edge weights. If Do > Dr for all r ∈ R, the null

hypothesis is rejected.

The α value determines the level of significance for our test. Note that if α = .05,

as is the case in the experiments of section 8.2.2, the required number of surrogate

data sets is R = 19. If the original data set is not significantly different than

the surrogates, there is an α probability that it will randomly have the highest

divisionality value. In this case, the null hypothesis will incorrectly be rejected.

8.2 Results

In this section, I present the results of applying the trophic detection algorithm to

both simulated and real-world financial market data.

1In general, comparing divisionality values computed on networks with different edge
weights is not advised. The same holds for modularity. However, a meaningful observable is
required for the rank-based test. Comparing a divisionality value against those of networks
with switched edge weights, though liberal, provides a gross means of comparison, at the
very least. Recall from section 4.2.1, that the local Di measures compute the ratio of
observed edge weight encapsulated by a community to the expectation of this value. In a
network with randomized edges, it is expected that Di ≈ 1. Thus, if the global divisionality
value of the original network does not significantly differ from those of the surrogates, I
deem the community structure in the original network insignificant.

148

Chapter 8. Recovery of trophic species from financial market data

8.2.1 Trophic detection on simulated data

Description of data

Using the simulator introduced in Chapter 6, I generate artificial financial market

data. The goal of this experiment is to generate data with known trophic species,

run the trophic detection algorithm on the generated data, and compare the de-

tected trophic species to the known structure. Towards this goal, I introduce several

different hard-coded trader strategies to the simulator. Each trader added to the

simulation is given a unique integer identifier (ID). The identifiers are sequentially

assigned to traders sharing the same strategy. This ID scheme is helpful for visual-

ization purposes in section 8.2.1.

Three types of noise traders are included: the MONT (IDs 3 − 5), the LONT

(IDs 6− 8), and a combination noise trader (IDs 0− 2) that places both market and

limit orders. Three independent traders of each type are included. Their cumulative

order flows are calibrated to approximate those observed for the Shell market of the

LSE during the month of July 2000 (α = .071, µ = .1282, δ = .00838, σ = 33279,

and a price horizon of 28.9).

In addition, I add a trend trader type that bases its actions on the

last χ price movements. Price movements are represented by the set P =

{DOWN,SAME,UP}. Traders actions are represented by the set A =

{BUY,HOLD, SELL}. The trend trader exclusively places market orders with a

size of one share. The size of the strategy space for a trend trader is |A|(|P |χ) = 3(3
χ).

Table 8.1 provides an example strategy matrix for a trend trader with χ = 2. For

the simulated run, I set χ = 2, which yields a strategy space of 3(3
2) = 19683 possi-

bilities. I incorporate 27 randomly created trend trader strategies into the simulated

market. For each of these selected strategies, three independent trend traders are

added – yielding a total of 81 trend traders. The trend traders comprise IDs 9− 89.

149

Chapter 8. Recovery of trophic species from financial market data

Each sequential set of three IDs represents a different trend trader strategy.

In Chapter 6, we saw that the GP agents commonly evolved market maker strate-

gies. To reiterate, a market maker is a trader that simultaneously places buy and

sell limit orders with the intent of making a roundtrip profit. I include hard-coded

market makers in this simulation. The only parameter for these traders is the size of

the spread required to activate the strategy. Three different spread activator thresh-

olds are used (2, 10, and 20 price ticks). When the given threshold is reached, the

trader begins to play both sides of the market. It continues to do so until the spread

is reduced below the given threshold. While activated, if either of its orders (buy

or sell) is transacted upon, the trader immediately replaces it with a limit order at

the current bid or ask. For each selected threshold value, four independent market

makers are added to the simulation (IDs 90− 101).

The final trader type is the value trader presented in section 7.2.3. Three value

traders are added, each with parameter settings of T = 10 and τ = 2 (IDs 102−104).

In total, as indicated by the ID numbers, 105 traders are added to the simulation.

Table 8.1: An example strategy matrix for a trend trader based on the last two price
movements.

Price movement at time
t-1 t-2 Action

DOWN DOWN BUY
DOWN SAME BUY
DOWN UP HOLD
SAME DOWN SELL
SAME SAME HOLD
SAME UP HOLD
UP DOWN SELL
UP SAME HOLD
UP UP BUY

150

Chapter 8. Recovery of trophic species from financial market data

Results for simulated data

Figure 8.1 provides two-dimensional community plots comparing the detected trophic

species to the known trophic species, as determined by underlying trader types. For

this analysis, E = 20000 and W = 100. The top plot relates to the original data

set; the bottom plot represents a surrogate data set. Points on the x-axis of each

plot represent the known trophic neighbors (by ID) for each trader (including itself).

Points on the y-axis represent the IDs of the detected trophic neighbors for each

trader. Recall that traders with the same strategy are given sequential ID numbers.

Each trader strategy type is colored differently. However, traders of the same type

but different parameter settings (or strategy matrices in the case of trend traders)

are represented with the identical color. Because of the sequential ordering of IDs,

if trophic species are detected with high fidelity, the majority of points should be

located on the diagonal.

The top plot exhibits this diagonal pattern. The only exception occurs in the ID

range of 0 − 8. The noise traders have been split into three communities; however,

these partitions do not match the known noise trader types. This result is not

entirely surprising since limit orders and market orders are not differentiated, and

these traders place orders according to a stochastic process. Despite these factors, all

noise traders have been grouped with other noise traders. The cyan points represent

the trend traders. Notice that for each possible trend trader strategy, the traders have

been properly grouped into a trio. Furthermore, the differently parameterized market

makers (royal blue) are correctly grouped into separate groups. The fundamentalists

(green) are properly detected as well. The communal overlap value for the original

data is Ωo = 0.943.

The bottom plot, that relating to a surrogate data set, differs greatly. The thin

line of points on the diagonal exists because each trader is included in both its

151

Chapter 8. Recovery of trophic species from financial market data

known and detected trophic communities. However, notice the scattering of points

away from the diagonal. In the surrogate case, traders are not grouped with like

strategies. The communal overlap value for the surrogate data is Ωs = 0.20. Figure

8.1 provides visual evidence that the trophic detection process provides high fidelity

recovery on the original simulated data. Further, the community structure present

in the original data is clearly disrupted by the switching process used to create the

surrogate data sets.

For the sake of comparison, I examine the same data set with the same E and

W parameter settings, but with a new set of indicators. For this study, I employ a

single indicator representing the net trading of a given trader (as done by Zovko and

Farmer [65]). This indicator can assume one of three values, Ineti ∈ {−1, 0, 1}. The

Ineti = 0 value indicates that the given trader either bought as much as it sold or it

was inactive during the period. Otherwise, the sign of the indicator reflects either net

buying or net selling. The communal overlap value drops to Ωo = 0.849 using the net

trading indicator (compared to Ωo = 0.943 for the buy/sell indicators). Comparison

of the top plot in figure 8.2 to that of 8.1 illustrates the reason for the decrease.

Classification of the market maker strategies (the blue points in the ID range of 90-

101) has deteriorated. Recall that three different groups of market makers exist, each

with a different spread activator threshold. For each threshold, four independent

market makers are added to the simulation. When using the buy/sell indicators,

all three groups of market makers are correctly identified as separate, independent

entities. Using the net trading indicator, the picture is more muddled. Here, market

makers with different activation thresholds are grouped together (demonstrated by

the broad band of blue points). Further, two market makers are separately combined

with different groups of trend traders (cyan points). More innocuously, a MONT (red

points) is grouped with a set of market makers sharing different spread activator

thresholds.

152

Chapter 8. Recovery of trophic species from financial market data

By independently assessing buying and selling, the detection of market making

strategies is improved. Simply tracking the change in inventory does not relay as

much information. If there is an imbalance in trading during an interval, the sign

will indicate either buying or selling. Further, if a trader buys and sells an equivalent

amount during a given interval, there is no change in inventory. This situation is

impossible to differentiate from one in which the trader was inactive.

Next, I examine the effect of varying both E, the number of events analyzed, and

W , the length of the time interval window, on the trophic detection process. Figure

8.3 provides three plots with different E values. The top plots relates to E = 10000,

the middle plot to E = 20000, and the bottom plot to E = 40000. For each plot,

the x-axis represents W ranging from W = 25 to W = 500 with increments of 25

events. The left y-axis, associated with the triangular points, represents communal

overlap. The right y-axis, associated with the circular points, represents the Z-score

of Do (computed over the set of values including Do and Dr for all r). Each point

represents the mean value for 10 separate analyses. For each of analysis, the time

intervals are shifted by a random offset with a maximum offset of 10000 events. The

offset changes the boundaries for all time intervals in given data set. By conducting

multiple analyses, results are generalized and not dominated by the peculiarities of

any particular data sequence.

Examination of the top plot in figure 8.3, associated with E = 10000, demon-

strates that high fidelity detection is possible with a wide range of W values. For

W ∈ [25, 375], communal overlap meets or exceeds Ω = 0.8 and the mean Z-score

of Do meets or exceeds 4.0. Beyond this point, the values tail off, yet Z(Do) > 1.0.

Comparison of the top plot to the middle and bottom plots reveals that an increase

in E yields more consistent values. This result is not surprising. The functional

behavior of traders do not change over time in the simulated environment. Thus, by

increasing the length of the data set and thus increasing the number of intervals to

153

Chapter 8. Recovery of trophic species from financial market data

analyze, higher fidelity detection is possible. In a real-world market, this relation-

ship may not hold because the functional behavior of traders is expected to be less

consistent. As a result, an increase in E may not lead to an increase in detection

fidelity. The middle and bottom plots support the claim that high fidelity detection

can be achieved over a wide range of W lengths and demonstrate the robustness of

the temporal trophic detection algorithm when the functional behavior of traders is

consistent.

8.2.2 Trophic detection on LSE Shell data

Description of data

The real-world data that I analyze is extracted from the high-liquidity Shell market

of the London Stock Exchange (LSE)2. In general, each trader (firm) represented

in this data acts on the behalf of many individuals and institutions having different

strategies. As such, the definition of “trader” in this data is rather crude. Each trader

is associated with a unique identifier (ID). However, to obfuscate trading patterns,

the LSE assigns new identifiers to traders at the beginning of every month. The

top plot of figure 8.4 illustrates this periodicity. The lifespan of individual traders

is tracked from May 15, 2000 to November 30, 2000. The x-axis represents the

first trading day that a trader is active. The y-axis indicates the final trading day

that a trader is active. Note that a subset of traders are observed to “survive” for

more than one period. It was possible to resolve the reassignment of identifiers for

certain traders by tracking limit orders placed before and transacted upon following

the ID reassignment process. In the bottom plot of figure 8.4, the number of events

occurring in each month is plotted. For May, data is available for only the latter half

2Information regarding the LSE data can be found at
http://www.londonstockexchange.com/en-gb/products/marketdata/.

154

Chapter 8. Recovery of trophic species from financial market data

of the month and thus it has fewer events (approximately 18000). For most months,

an average of 35000 events are seen. November is an anomaly with approximately

120000 events. For each month, from May to November of 2000, approximately 95

traders are observed. This value applies to the half of month of May as well as the

event laden month of November.

Because of the periodicity caused by the trader ID reassignment process, it is not

possible to examine periods of the Shell data exceeding one month using the trophic

detection algorithm. Traders from different months3 cannot possibly correlate with

those of other months. Accordingly, traders can exhibit similarity only to those

active in the same month. The trophic detection algorithm identifies these temporal

delineations, and forms high-level communities accordingly. During the surrogate

edge switching process, edges are rearranged such that traders of different months

can share significant Sij values. This redistribution destroys the community structure

in the original network and thus the null test is easily rejected.

Results for LSE Shell data

Here, I examine the seven month-long data sets for Shell from May to November

of 2000. Again, I test a range of E and W parameter settings. For each setting

a battery of 10 analyses is conducted. The data for each analysis differs due to a

random offset that determines the starting event. Because the month-long data sets

provide a limited amount of data, I reduce the maximum random offset to 300 events.

Figure 8.5 presents results for the LSE Shell data sets with different W settings.

For each parameter setting, two values are provided. Similar to the simulated data

case, I provide the mean Z-scores4 of Do. However, unlike that case, it is not possible

3In this explanation, I exclude the traders for which the IDs have been resolved across
multiple months.

4A Z-score reflects the distance from the mean (measured in units of standard deviation)

155

Chapter 8. Recovery of trophic species from financial market data

to provide the communal overlap values because there are no “known” communities.

Instead, I provide the mean rank of theDo value. Recall, to reject the null hypothesis,

it is necessary for the original data to rank first in divisionality. The x-axis of each

plot represents W ∈ [25, 500]. The left y-axis, associated with the blue triangular

points, represents the mean Z-score of Do. The right y-axis, associated with the red

circular points, represents the mean rank of the Do value.

The results presented in figure 8.5 are inconclusive. For the half month of May

(top left), the null test is rejected for W ≥ 150 and thus suggests the presence

of significant community structure. The months of October (third row, right-side)

and November (bottom left) suggest that community structure exists for particular

ranges of W values. For October, the null test is consistently rejected for 325 ≤

W ≤ 475 (and is rejected in the majority of analyses at W = 500). For November,

the null hypothesis is consistently rejected within two ranges, 125 ≤ W ≤ 200 and

400 ≤ W ≤ 500. This discontinuity is surprising. For the months of June (top

right) and September (third row, left-side), the values appear to fluctuate without

strong patterns – thus, suggesting that significant community structure does not

exist. The months of July (second row, left-side) and August (second row, right-

side) are confounding. Here, the values are consistently low. Accordingly, the null

test is never rejected. However, the consistency of these low values (especially for

the month of August) is alarming. It suggests that the original network contains

less community structure than expected in a randomly rewired version of itself. For

each month, the number of low-level communities detected in the original networks

falls within an approximate range of 31 to 34 with low variance. Accordingly, the

fine-resolution communities have an approximate size of three traders.

that a particular value resides.

156

Chapter 8. Recovery of trophic species from financial market data

8.3 Discussion

The results of section 8.2 show that it is possible to detect trophic structure in sim-

ulated data, where the behavior of traders is consistent. Results from the LSE data

are less conclusive. For three of the seven months (May, October, and November),

the null hypothesis is consistently rejected for significant ranges of W values. Two

of these months include those with an anomalous number of events (May contains

only 18000 events and November has 116155 events). The structure detected in the

half-month of May suggests that perhaps shorter periods of data (measured in cal-

endar time) should be examined. A possible explanation is that trader behaviors in

the Shell data are not consistent for long periods of time. If so, to identify stable

functional behavior would require that shorter periods (two weeks, possibly) be ex-

amined. Additionally, when significant structure is detected, the W values tend to

be large. The use of even larger W values should also be investigated.

In this chapter, I attempted to detect trophic structure within disjointed, real-

world data sets. However, assume that we have a continuous data set (one that does

not suffer from the ID reassignment process of the LSE). Further, assume that we

can successfully detect trophic structure in independent subsets of this data. Then,

by comparing the trophic networks of overlapping subsets of data, we could study

its evolution. Further, comparison of the changes in the trophic network to those

of traditional market observables could improve our understanding of the dynamics

responsible for stylized facts [22] commonly ascribed to financial markets.

I have focused on detecting the trophic species that comprise a trophic network.

However, once detected, studying the interactions of these entities is a simple exten-

sion. For instance, by tracking the trades between trophic species, the flow of capital

in a trophic network could be illustrated. Such a depiction is analogous to the food

web of a biological system, where the transfer of energy is traced.

157

Chapter 8. Recovery of trophic species from financial market data

This chapter makes several contributions. First, the trader similarity measure of

section 8.1.1 provides an extensible framework for the inclusion of multiple indicators.

Further, in section 8.2.1, I demonstrated that use of the buy/sell indicators provides

better detection of particular strategies (notably, market making) than does the net

trading indicator employed by Zovko et al [65]5. Further, in section 8.1.2, I propose

a methodology for examining the significance of detected community structure. This

approach differs from that of both Zovko et al [65] and Lillo et al [31]. In both of those

studies, the significance of detected correlations (akin to my Sij values) are examined

using a null test based on random matrix theory [29]. However, demonstrating that

these correlations are significant is different from showing that subsequent community

structure based on these correlations is significant. In conclusion, although the LSE

results are inconclusive, I believe that further examination of real-world financial

market data is warranted.

5Lillo et al [31] employ a similar scheme. They investigate the inventory variance of
traders. However, rather than representing the value with an enumerated indicator, they
use the actual change in inventory measured in shares.

158

Chapter 8. Recovery of trophic species from financial market data

0 20 40 60 80 100

0
20

40
60

80
10

0

known neighbors (trader ID)

de
te

ct
ed

 n
ei

gh
bo

rs
 (

tr
ad

er
 ID

)

0 20 40 60 80 100

0
20

40
60

80
10

0

known neighbors (trader ID)

de
te

ct
ed

 n
ei

gh
bo

rs
 (

tr
ad

er
 ID

)

Figure 8.1: Two-dimensional trophic community plots for an analysis with E = 20000
andW = 100. Points on the x-axis of each plot represent the known trophic neighbors
(by ID) for each trader (including itself). Points on the y-axis represent the IDs of the
detected trophic neighbors for each trader. The top plot represents the original data
and has an associated communal overlap value of 0.943. The bottom plot represents
a surrogate data set that has an associated communal overlap value of 0.2.

159

Chapter 8. Recovery of trophic species from financial market data

0 20 40 60 80 100

0
20

40
60

80
10

0

known neighbors (trader ID)

de
te

ct
ed

 n
ei

gh
bo

rs
 (

tr
ad

er
 ID

)

0 20 40 60 80 100

0
20

40
60

80
10

0

known neighbors (trader ID)

de
te

ct
ed

 n
ei

gh
bo

rs
 (

tr
ad

er
 ID

)

Figure 8.2: Two-dimensional trophic community plots for an analysis using a single
indicator based on net trading. The data set employed is the same as that used to
produce figure 8.1. Additionally, the same E and W settings are used. Points on
the x-axis of each plot represent the known trophic neighbors (by ID) for each trader
(including itself). Points on the y-axis represent the IDs of the detected trophic
neighbors for each trader. The top plot represents the original data and has an
associated communal overlap value of 0.849. The bottom plot represents a surrogate
data set that has an associated communal overlap value of 0.241. Comparison of the
top plot to the top plot of figure 8.1 shows that classification of the market makers
(ranging from IDs 90-101) is less accurate using the net trading indicator instead of
the buy/sell indicators.

160

Chapter 8. Recovery of trophic species from financial market data

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

window length (W)

co
m

m
un

al
 o

ve
rla

p

0.
0

1.
0

2.
0

3.
0

4.
0

5.
0

di
vi

si
on

al
ity

 Z
−

sc
or

es

communal overlap
divisionality Z−score

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

window length (W)

co
m

m
un

al
 o

ve
rla

p

0.
0

1.
0

2.
0

3.
0

4.
0

5.
0

di
vi

si
on

al
ity

 Z
−

sc
or

es

communal overlap
divisionality Z−score

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

window length (W)

co
m

m
un

al
 o

ve
rla

p

0.
0

1.
0

2.
0

3.
0

4.
0

5.
0

di
vi

si
on

al
ity

 Z
−

sc
or

es

communal overlap
divisionality Z−score

Figure 8.3: Results for the simulated data. The x-axis of each plot represents the
time interval window length W . The top plot represents E = 10000, the middle
plot represents E = 20000, and the bottom plot represents E = 40000. The left
y-axis, associated with the triangular points, represents the mean communal overlap
for 10 independent analyses with the specified parameter setting. The right y-axis,
associated with the circular points, represents the mean Z-score of divisionality for
the original data set.

161

Chapter 8. Recovery of trophic species from financial market data

0 20 40 60 80 100 120 140

0
20

60
10

0
14

0

Shell (20000515 − 20001130)

initial activity (day)

fin
al

 a
ct

iv
ity

 (
da

y)

Shell (May − Nov 2000)

month

of

 e
ve

nt
s

MAY JUN JUL AUG SEP OCT NOV

18
00

0
67

07
8

11
61

55

Figure 8.4: Lifespan of traders. In top plot, the lifespan of individual traders is
tracked (from May 15, 2000 to November 30, 2000). The x-axis represents the first
trading day that a trader is active. The y-axis indicates the final trading day that a
trader is active. The periodicity is due to the trader ID reassignment process enforced
by the LSE. Every month, traders are assigned new IDs. The points away from
the diagonal represent traders for whom IDs were resolved despite the reassignment
process. In the bottom plot, the number of events occurring in each month is plotted.
For May, data is available for only the latter half of the month and thus it has fewer
events (approximately 18000). For most months, an average of 35000 events are seen.
November is an anomaly with approximately 120000 events.

162

Chapter 8. Recovery of trophic species from financial market data

100 200 300 400 500

−
4

0
4

Shell (May 2000)

window length (W)

di
vi

si
on

al
ity

 Z
−

S
co

re
s

20
1

di
vi

si
on

al
ity

 r
an

k

100 200 300 400 500

−
4

0
4

Shell (June 2000)

window length (W)

di
vi

si
on

al
ity

 Z
−

S
co

re
s

20
1

di
vi

si
on

al
ity

 r
an

k

100 200 300 400 500

−
4

0
4

Shell (July 2000)

window length (W)

di
vi

si
on

al
ity

 Z
−

S
co

re
s

20
1

di
vi

si
on

al
ity

 r
an

k
100 200 300 400 500

−
4

0
4

Shell (Aug 2000)

window length (W)
di

vi
si

on
al

ity
 Z

−
S

co
re

s

20
1

di
vi

si
on

al
ity

 r
an

k

100 200 300 400 500

−
4

0
4

Shell (Sep 2000)

window length (W)

di
vi

si
on

al
ity

 Z
−

S
co

re
s

20
1

di
vi

si
on

al
ity

 r
an

k

100 200 300 400 500

−
4

0
4

Shell (Oct 2000)

window length (W)

di
vi

si
on

al
ity

 Z
−

S
co

re
s

20
1

di
vi

si
on

al
ity

 r
an

k

100 200 300 400 500

−
4

0
4

Shell (Nov 2000)

window length (W)

di
vi

si
on

al
ity

 Z
−

S
co

re
s

20
1

di
vi

si
on

al
ity

 r
an

k

Figure 8.5: Results for the LSE Shell data. The months of May to October 2000 are
independently examined. The x-axis of each plot represents W ∈ [25, 500]. The left
y-axis, associated with the triangular points (blue), represents the mean Z-score of
divisionality for the original data set. The right y-axis, associated with the circular
points (red), represents the mean rank of the divisionality value for the original data
set.

163

Chapter 9

Discussion & conclusions

Part I of this dissertation makes several contributions to the area of community

detection in complex networks. In Chapter 3, I introduced a unique two-phase macro-

strategy that uses induced fractures/merges of communities to improve detection.

Used in conjunction with either existing community detection algorithms (micro-

strategies) or my “quick and dirty” deterministic division (DD) algorithm, the macro-

strategy provides high yield, robust results. As a consequence, practitioners no longer

need to apply a given algorithm with multiple random number generator seeds to

achieve confidence in a result. When the macro-strategy is run with DD, it achieves

results that compete with the best from existing literature with reduced running

times. A final advantage of the macro-strategy is that of incremental improvement,

whereby progress of the algorithm can be tracked and terminated once an adequate

result is achieved. In addition, it is possible to take an existing community detection

result and improve upon it.

In Chapter 4, I demonstrated experimentally a resolution limit that is inherent

to modularity, and I introduced a fine-granularity measure of community structure

called divisionality. The December 2006 PNAS paper by Fortunato [18] illustrates

164

Chapter 9. Discussion & conclusions

the resolution limit through analysis. My research, conducted independently, was

presented in a University of New Mexico Computer Science Department colloquium

on September 15, 2006. In Chapter 8, the practical benefit of divisionality was

demonstrated, allowing me to quantify the community structure in trader networks at

a fine resolution. It is possible to isolate low-level community structure by recursively

optimizing modularity on sub-networks of a trader network. However, as a statistical

measure, modularity does not quantify the fine-granularity structure of the global

network. Divisionality provides a solution.

The dual-assortative measure (DAMM) of community structure presented in

Chapter 5 extends the domain of problems for which community detection algorithms

can be applied. With DAMM, it is possible to analyze either networks containing

solely negative edges or networks containing both positive and negative edges. Pre-

viously, only networks with positive edges could be analyzed. As an example of

its practical efficacy, consider the work of Zovko and Farmer [65], where correlation

matrices based on the similarity of trading behaviors are analyzed using a clustering

algorithm. The DAMM allows for an analogous study based on community struc-

ture1, rather than clustering. Previous to DAMM, valuable information conveyed

by negative correlations was ignored. Using DAMM, both positive and negative

correlations contribute to the detection of structure.

The research in Part II is rooted to the beginning stages of my doctorate. As

a member of the Adaptive Computation Laboratory at the University of New Mex-

ico, my initial interest was to extend the paradigm of genetic programming (GP).

Construction of the Staq language preceded my interest in financial markets. When

I began working with Doyne Farmer at the Santa Fe Institute, I viewed financial

markets as an arena in which to test GP. My initial objective was to coevolve a

1First, a network must be constructed. Nodes would represent independent traders.
Weighted edges would represent the correlations. Then, a community detection algorithm
would be applied to the network.

165

Chapter 9. Discussion & conclusions

population of traders that generated dynamics approximating those observed in real

financial markets. To confirm these characteristics, I planned to construct a market

Turing test2. A market simulator that could pass such a test would allow the modern

economist to conduct controlled experiments, and thus, provide an invaluable tool

for the study of macro dynamics in financial markets.

In hindsight, I believe that the work presented in part II suffers from an identity

crisis. I was torn between my desire to extend GP and simultaneously wanting to

contribute to the study of financial markets3. If I were to start the endeavor over,

I would focus solely on one of the objectives rather than both. With regards to

studying financial markets, I would adopt a more constrained agent-based approach

than that of evolving traders with genetic programming. The software development

of Staq, the market simulator, and the subsequent parallelization of each code-base

posed an enormous engineering undertaking4. Another prominent challenge intro-

duced by my GP approach was interpreting the Staq code of an evolved trader.

Visual inspection of an evolved Staq program exceeding twenty tokens can prove

vexing due to the preponderance of junk DNA5. To ascertain the functionality of a

Staq trader, it was necessary to build additional software visualization tools.

2The idea of the test is inspired by the famous Turing test [58], which was proposed
to determine whether a machine could perform a human-like conversation. In the market
version, two data streams are presented. One stream originates from a real world market;
the other is generated by a market simulator. If a judge cannot distinguish which data
stream represents the real market, the market simulator is declared to have passed the test.

3I was forewarned by my advisors Stephanie Forrest and Doyne Farmer, but was seduced
by the sirens of evolution.

4The code-base exceeds 60000 lines of code. The software was parallelized to run on a
compute farm at the University of New Mexico Center for High Performance Computing.

5Here, I refer to code fragments that provide useful functionality on their own, but
cannot be reached during execution, as junk DNA. One of the most interesting things that
I learned with Staq was that the evolutionary agents seemed to develop a library of code.
Any given agent would utilize a fraction of this library code. However, by carrying junk,
the unused code remained in the gene pool and could be utilized by later generations. Each
junk code fragment was likely incorporated into the gene pool by an ancestor for which it
performed a useful task. In a sense, the junk code provides an evolutionary history.

166

Chapter 9. Discussion & conclusions

Having stated these limitations, the evolved traders of Chapter 6 demonstrated

the efficacy of Staq. The clear & hoist (CH) strategy, though not useful in a real-

world setting, clearly suggests that the evolutionary process identifies limitations in

the simulated market environment. Further, after adjusting the fitness function to

account for inventory control, the real-world strategy of market making consistently

evolves. To evolve more interesting evolutionary solutions, it is necessary to either

alter the simulated market environment or transition to a coevolutionary scheme.

Sophisticated strategies are not required to profit from the zero-intelligence noise

traders. Thus, selective pressure does not exist for them to develop. Further, given

the employed terminal set, market making strategies can be represented compactly.

As such, they present a strong attractor for the evolutionary process.

In Chapter 7, I addressed a limitation revealed by the CH trader: a lack of fun-

damentalism in the simulated market environment. To remedy the shortcoming,

I introduced two value-based trading strategies for the continuous double auction

(CDA) and demonstrated that both successfully encourage price to track value. Fur-

ther, both strategies neutralize the CH trader by interfering with its ability to inflate

prices. Accordingly, in a coevolutionary scheme, the presence of a value-based trader

would serve a valuable role. Further, it raises an interesting question: would value-

based processes evolve intrinsically with a coevolutionary process?

Although Part II concentrates on the behavior of individual agents, I reiterate the

initial, and ultimate, goal: to coevolve a population of traders. By allowing multiple

GP agents to compete against one another, evolutionary selective pressure will be

more realistic. As a result, the evolution of more sophisticated trader strategies –

and more meaningful economic conclusions – may follow. Due to a combination of

factors – chiefly, the enormous search space resulting from the employed GP terminal

set and computational bottlenecks – progress on the coevolutionary front was slower

than anticipated.

167

Chapter 9. Discussion & conclusions

In Part III, I demonstrated that the tools developed in Part I can be used to

detect trophic species in simulated financial market data. This chapter provides

several useful contributions. First, in section 8.2.1, I show that use of independent

buy/sell indicators, as opposed to the net trading indicator [31] [65], improves de-

tection of market making strategies. Further, the trader similarity measure provides

an extensible framework for assessing multiple indicators. It is built upon the infor-

mation theoretic measure of symmetric uncertainty. However, by utilizing DAMM,

Spearman rank correlation could be used to measure the similarity of indicator sets,

instead. Finally, the use of a rank-based test and surrogate data provides a methodol-

ogy for testing the significance of detected structure. Examining real-world data from

the London Stock Exchange (LSE) provided inconclusive results. However, more ex-

tensive investigation of real-world data – preferably, data that does not suffer from

the trader identifier reassignment limitation present in the LSE data – is needed

to better determine the efficacy of the approach. I believe that further research is

warranted.

168

Appendix A

Appendix for Community

detection optimization with

induced fractures and merges

A.1 Calculating ∆Qu and ∆
2Qum

In a divisive scheme, ∆Qu measures the change in modularity that would result

by migrating node u from one community to the other. Equation A.1 presents the

calculation:

∆Qu = 2

[(

wgu − wlu

T

)

+
du
T 2

(al − ag − du))

]

(A.1)

.

Here, the community losing the node u is denoted with an l and the community

gaining the node is denoted with a g. Accordingly, wgu represents the cumulative

169

Appendix A. Appendix for Community detection optimization with induced fractures and merges

edge weight between node u and the gain community, wlu represents the cumulative

edge weight between node u and the loss community, du represents the degree of node

u, al represents the cumulative edge weight of the loss community, and ag represents

the cumulative edge weight of the gain community. T represents twice the total edge

weight of the network such that T =
∑

i

∑

j wij, where wij represents the cumulative

edge weight between community i and community j.

Following the migration of a node, each of the ∆Qu values is subject to change.

Rather than recalculating each value using equation A.1, it is more computationally

efficient to adjust each value by adding ∆2Qum, which represents the change in ∆Qu

that results from migrating a node m. We calculate ∆2Qum as:

∆2Qum = 4D
−dudm
T 2

+
wmu

T
(A.2)

where D ∈ {−1, 1} represents a direction indicator. If the nodes m and u migrate

in the same direction, D = 1. Otherwise, D = −1. The wmu term represents the

edge weight between the nodes m and u.

A.2 Divisive results

Table A.1 presents the raw modularity statistics for the macro-strategy using EO.

Table A.2 presents the same for the macro-strategy using the DD algorithm.

170

Appendix A. Appendix for Community detection optimization with induced fractures and merges

Table A.1: Results for extremal optimization.

phase 1 phase 1 phase 2 phase 2 phase 2
network mean(Q) sd(Q) mean(Q) sd(Q) max(Q)
karate 0.4125 0.00999 0.4198 0.00000 0.4198
jazz 0.4394 0.00505 0.4450 0.00020 0.4451

celegans 0.4227 0.00752 0.4533 0.00192 0.4561
email 0.5521 0.01075 0.5806 0.00163 0.5827
pgp 0.8359 0.00521 0.8745 0.00103 0.8769

Table A.2: Results for deterministic division.

phase 1 phase 2 phase 2 phase 2
network mean(Q) mean(Q) sd(Q) max(Q)
karate 0.3965 0.4198 0.0000 0.4198
jazz 0.4344 0.4450 0.0003 0.4451

celegans 0.3874 0.4472 0.0030 0.4519
email 0.5151 0.5775 0.0017 0.5807
pgp 0.7591 0.8441 0.0033 0.8512

A.3 Agglomerative results

Table A.3 presents the raw modularity statistics for the macro-strategy using the

CNM agglomeration algorithm.

Table A.3: Results for the CNM agglomerative algorithm.

phase 1 phase 2 phase 2 phase 2
network mean(Q) mean(Q) sd(Q) max(Q)
karate 0.3807 0.4195 0.0009 0.4198
jazz 0.4389 0.4445 0.0006 0.4449

celegans 0.4069 0.4484 0.0041 0.4533
email 0.5044 0.5738 0.0028 0.5777
pgp 0.8496 0.8624 0.0038 0.8699

171

Appendix A. Appendix for Community detection optimization with induced fractures and merges

A.4 Evolution of community detection algorithms

Results printed in table A.4 compare the best results of several micro-strategies from

existing literature.

Table A.4: Best modularity results from existing literature.

modularity
network size n GN CNM DA spectral
karate 34 0.401 0.381 0.4188 0.419
jazz 198 0.405 0.439 0.4452 0.442

metabolic 453 0.403 0.402 0.4342 0.435
email 1133 0.532 0.494 0.5738 0.572
pgp 10680 0.816 0.733 0.8459 0.855

condmat 27519 - 0.668 0.6790 0.723

172

Appendix B

Appendix for A dual assortative

measure of community structure

B.1 Derivation of ∆QD,u

As expressed in equation 5.5, the DAMM, QD, involves summing the independent

contributions of all communities i. We can represent the contribution a given com-

munity i with a local DAMM value, denoted as qi, such that QD =
∑

i qi. Further, if

we wish to independently assess the positive and negative edge weight contributions

of each given community, we can write QD =
∑

i q
+
i + q−i .

Computing ∆QD,u entails comparing the DAMM value from timestep t to the

DAMM value at time t + 1 that results from migrating node u. We denote the

DAMM value at time t as QD
t and the DAMM value following the migration of node

u as QD
t+1(u) Accordingly, ∆QD,u

t can be expressed as:

∆QD,u
t = QD

t+1(u) −QD
t (B.1)

173

Appendix B. Appendix for A dual assortative measure of community structure

.

Utilizing the local DAMM notation, we can rewrite equation B.1 as:

∆QD,u
t = (

∑

i

q+
i,t+1(u) + q−

i,t+1(u))− (
∑

i

q+i,t + q−i,t) (B.2)

where q+i,t represents the positive edge contribution of the local DAMM value for

community i at time t (before migrating the node u) and q+
i,t+1(u) represents the

positive edge contribution of the same community following the migration of node

u. The subscript t+ 1(u) is used to indicate that a node u has been migrated.

By grouping the positive local DAMM values and the negative local DAMM

values separately, we can write:

∆QD,u
t =

∑

i

(q+
i,t+1(u) − q+i,t) +

∑

i

(q−
i,t+1(u) − q−i,t) (B.3)

= ∆Q+,u
t +∆Q−,u

t (B.4)

.

By moving a single vertex from one community to another, as is done during the

division process, only two communities are affected. All other communities remain

unchanged. One community gains a new node. We refer to this community as the

gain community, and denote it as Cg. Conversely, the other affected community loses

a node. We denote this loss community as Cl. Since only the Cg and Cl communities

are affected by a vertex move, the only local DAMM values that change are those

relating to these communities – qg and ql. The local DAMM contributions of all other

174

Appendix B. Appendix for A dual assortative measure of community structure

communities, {qi|i 6= g, i 6= l}, remain unchanged. Thus, we need only to assess the

change in DAMM for the gain and loss communities. Using this information, we

rewrite ∆Q+,u
t as:

∆Q+,u
t =

∑

i

q+
i,t+1(u) − q+i,t (B.5)

= (q+
g,t+1(u) − q+g,t) + (q+

l,t+1(u) − q+l,t) (B.6)

= ∆q+,u
g,t +∆q+,u

l,t (B.7)

where q+g,t denotes the local DAMM value for the positive edges associated with

the gain community at time t, q+l,t denotes the local DAMM value for the positive

edges of the loss community at time t, and q+
g,t+1(u) represents the local DAMM value

for the positive edge contributions of the gain community following the migration of

node u.

We can now separately analyze the contributions of ∆q+,u
g,t and ∆q+,u

l,t and re-

assemble the terms to establish ∆Q+,u
t . We denote the node to be moved as u

and introduce the following notation: {wgg =
∑

rs ers|r ∈ Cg, s ∈ Cg} to repre-

sent the cumulative intra-community positive edge weight for the gain community,

{wgu =
∑

rs ers|r ∈ Cg, s = u} to represent the cumulative edge weight of the gain

community connected to node u, and du to represent the positive degree of node u.

Note that q+g,t, which represents the contribution of the positive edges in the gain

community prior to moving the node, is defined as:

q+g,t =
2wgg

T
−
(ag
T

)2

(B.8)

.

175

Appendix B. Appendix for A dual assortative measure of community structure

We use the notation q+
g,t+1(u) to denote the contribution of the gain community

positive edges after migrating node u. Following the migration, the gain community

contains an additional node. Accordingly, both the cumulative intra-community

positive edge weight, wgg, and the total cumulative positive edge weight of the gain

community, ag, are subject to change. More specifically, the intra-community posi-

tive edge weight is updated as wgg,t+1(u) = wgg,t + wgu,t, where wgu,t represents the

cumulative positive edge weight connecting the node u to the gain community prior

to the migration. Furthermore, the cumulative positive edge weight of the gain com-

munity is updated as ag,t+1(u) = ag,t + du. Using these updates, we define q+
g,t+1(u)

as:

q+
g,t+1(u) =

2(wgg + wgu)

T
−

(

ag + du
T

)2

(B.9)

.

By subtracting equation B.8 from equation B.9, we establish ∆q+,u
g,t as provided

in equation B.11:

∆q+,u
g,t = q+

g,t+1(u) − q+g,t (B.10)

=
2wgu

T
−

2du
T 2

(

ag +
du
2

)

(B.11)

Similarly, the positive edge contribution of the loss group, denoted as ∆q+,u
l,t , is

defined by equation B.14.

176

Appendix B. Appendix for A dual assortative measure of community structure

∆q+,u
l,t = q+

l,t+1(u) − q+l,t (B.12)

=

[

2(wll − wlu)

T
−

(

al − du
T

)2
]

−

[

2wll

T
−

(al
T

)2
]

(B.13)

=
−2wlu

T
+

2du
T 2

(

al −
du
2

)

(B.14)

By assembling equations B.11 and B.14, we establish ∆Q+,u
t as provided by equa-

tion B.16.

∆Q+,u
t = ∆q+,u

g,t +∆q+,u
l,t (B.15)

= 2

[(

wgu − wlu

T

)

+
du
T 2

(al − ag − du))

]

(B.16)

Following a similar logic, we establish ∆Q−,u
t . For brevity, we provide the result

in equation B.18, where w̄gu represents the cumulative negative edge weight of the

gain community connected to node u and d̄u represents the negative degree of the

node u.

∆Q−,u
t = ∆q−,u

g,t +∆q−,u
l,t (B.17)

= 2

[(

w̄lu − w̄gu

T

)

+
d̄u
T 2

(

āl − āg − d̄u)
)

]

(B.18)

Finally, we establish ∆QD,u
t by assembling equations B.16 and B.18:

177

Appendix B. Appendix for A dual assortative measure of community structure

∆QD,u
t = ∆Q+,u

t +∆Q−,u
t (B.19)

= 2

[(

wgu − wlu

T

)

+
du
T 2

(al − ag − du))

]

+2

[(

w̄lu − w̄gu

T

)

+
d̄u
T 2

(

āg − āl + d̄u)
)

]

(B.20)

B.2 Derivation of ∆2QD,um

As a first step of our derivation, we concentrate solely on the contributions of the

positive edges. First, we analyze the difference ∆2Q+,um
t = ∆Q+,u

t+1(m)−∆Q+,u
t , where

∆Q+,u

t+1(m) represents the change in DAMM that would result from the migration of

node u if nodem were already to have been migrated given the current configuration.

∆Q+,u
t , which pertains exclusively to positive edges, was provided in equation B.16.

To simplify the derivation, we independently assess the first and second terms of

equation B.16, such that Au
t = wgu−wlu

T
and Bu

t = (al − ag − du).

After migrating node m, the value of A may be altered – and, this change should

be reflected in Au
t+1(m). Note the two terms involved in Au

t : wgu and wlu. Each term

measures the cumulative positive edge weight connecting a community – either the

gain or loss community – to the node u prior to the migration of node m. The mi-

gration of node m may or may not alter the cumulative positive edge weight between

each community and node u. If nodem was migrated to the community currently not

occupied by u, the gain community, wgu will increase such that wgu,t+1 = wgu,t+emu,

where emu represents the positive edge weight between the m and u nodes. Other-

wise, if the m node moved in the opposite direction, wgu,t+1(m) = wgu,t − emu. Using

the direction indicator D, we can write wgu,t+1(m) = wgu,t +Demu. Similarly, we can

write wlu,t+1(m) = wlu,t−Demu. By assembling the two terms, we express Au
t+1(m) as:

178

Appendix B. Appendix for A dual assortative measure of community structure

Au
t+1(m) =

(wgu +Demu)− (wlu −Demu)

T
(B.21)

.

By subtracting Au
t from Au

t+1(m), we establish ∆Au
t as shown in equation B.24.

∆Au
t = Au

t+1(m) − Au
t (B.22)

=
(wgu +Demu)− (wlu −Demu)

T

−
(wgu − wlu)

T
(B.23)

=
2Demu

T
(B.24)

.

The first two terms of B, al and ag, are similarly affected by the migration of

node m. These terms represent the cumulative positive edge weight of the loss and

gain communities, respectively. The updated terms can be expressed as al,t+1(m) =

al,t−Ddm and ag,t+1(m) = ag,t+Ddm, where dm represents the positive degree of the

m node. Accordingly, we can write Bu
t+1(m) as:

Bu
t+1(m) = (al −Ddm)− (ag +Ddm)− du (B.25)

.

By subtracting Bu
t from Bu

t+1(m), we establish ∆Bu
t as seen in equation B.28.

179

Appendix B. Appendix for A dual assortative measure of community structure

∆Bu
t = Bu

t+1(m) − Bu
t (B.26)

= [(al −Ddm)− (ag +Ddm)− du]

−(al − ag − du) (B.27)

= −2Ddm (B.28)

We now utilize ∆Au
t and ∆Bu

t to establish the positive edge contribution to

∆2QD,um:

∆2Q+,um
t = 2

[

∆Au
t +

du
T 2

∆Bu
t

]

(B.29)

= 2

[

2Demu

T
+

du
T 2

(−2Ddm)

]

(B.30)

= 4D

[

emu

T
−

dudm
T 2

]

(B.31)

.

Following a similar approach, it is possible to establish the negative edge contri-

bution to ∆2QD,um:

∆2Q−,um
t = 4D

[

d̄ud̄m
T 2

+
ēmu

T

]

(B.32)

.

By assembling ∆2Q+,um
t of equation B.31 and ∆2Q−,um

t of equation B.32, we

establish the generalized equation:

180

Appendix B. Appendix for A dual assortative measure of community structure

∆2QD,um
t = ∆2Q+,um

t +∆2Q−,um
t (B.33)

= 4D

[

(d̄ud̄m − dudm)

T 2
+

(emu + ēmu)

T

]

(B.34)

.

181

References

[1] Martin Andrews and Richard Prager. Advances in genetic programming, chapter
Genetic programming for the acquisition of double auction markets strategies,
pages 355 – 368. MIT Press, 1994.

[2] Alex Arenas, Alberto Fernandez, and Sergio Gomez. Analysis of the structure of
complex networks at different resolution levels. arXiv:physics/0703218v2, 2007.

[3] W. Brian Arthur, John H. Holland, Blake LeBaron, R.G. Palmer, and P. Tayler.
Asset pricing under endogenous expectations in an artificial stock market. In
The Economy as an Evolving Complex System II, pages 15–44. Addison-Wesley,
1997.

[4] N. Bansal, A. Blum, and S. Chawla. Correlation clustering, 2002.

[5] Fischer Black. Noise. Journal of Finance, 41, 1986.

[6] S. Boettcher and A. G. Percus. Extremal optimization for graph partitioning.
Physical Review E, 64, 2001.

[7] S. Boettcher and A. G. Percus. Optimization with extremal dynamics. Physical
Review Letters, 86:5211–5214, 2001.

[8] U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer, Z. Nikoloski,
and D. Wagner. Maximizing modularity is hard. Technical report,
arXiv:physics/0608255, 2006.

[9] Carl Chiarella and Giulia Iori. A simulation analysis of the microstructure of
double auction markets. Quantitative Finance, 2:346–353, 2002.

[10] Carl Chiarella and Giulia Iori. The impact of heterogeneous trading rules on
the limit order book and order flows. Research Paper Series 152, Quantitative
Finance Research Centre, University of Technology, Sydney, February 2005.
available at http://ideas.repec.org/p/uts/rpaper/152.html.

182

References

[11] A. Clauset, M.E.J. Newman, and C. Moore. Finding community structure in
very large networks. Physical Review E, 70, 2004.

[12] D. Cliff. Minimal-intelligence agents for bargaining behaviors in market-based
environments, 1997.

[13] Marcus G. Daniels, J. Doyne Farmer, Giulia Iori, and Eric Smith. How storing
supply and demand affects price diffusion. arXiv:cond-mat/0112422v5, January
2002.

[14] Jordi Duch and Alex Arenas. Community detection in complex networks using
extremal optimization. Phys. Rev. E, 2005.

[15] J.D. Farmer. Market force, ecology and evolution. Ind. & Corp. Change, 11:895–
953, 2002.

[16] J.D. Farmer, L. Gillemot, G. Iori, S. Krishnamurthy, D. E. Smith, and M. G.
Daniels. The Economy as an Evolving Complex System, III, chapter A Random
Order Placement Model of Price Formation in the Continuous Double Auction,
pages 133–173. Oxford University Press, 2005.

[17] J.D. Farmer, P. Patelli, and I. Zovko. The predicitive power of zero intelligence
in financial markets. PNAS, 102:2254–2259, 2005.

[18] Santo Fortunato and Marc Barthelemy. Resolution limit in community detec-
tion. arXiv. http://arxiv.org/abs/physics/0607100.

[19] M. Girvan and M.E. J. Newman. Community structure in social and biological
networks. Proc. Natl. Acad. Sci. USA, 99:7821–7826, 2002.

[20] D.K. Gode and S. Sunder. Allocative efficiency of markets with zero-intelligence
traders: market as a partial substitute for individual rationality. The Journal
of Political Economy, 101(1):119–137, 1993.

[21] R. Guimera and L.A.N. Amaral. J Stat Mech, 2005.

[22] N.F. Johnson, P. Jefferies, and P.M. Hui. Physics and finance: Coursebook.
Used for Oxford University course entitled Econophsics, 2002.

[23] Michael Kearns and Luis Ortiz. The penn-lehman automated trading project.
IEEE Intelligent Systems, Nov/Dec, 2003.

[24] B.W. Kernighan and S. Lin. A efficient heuristic procedure for partitioning
graphs. Bell System Technical Journal, 49:291–307, 1970.

183

References

[25] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. MIT Press, 1994.

[26] John R. Koza. Genetic programming. In James G. Williams and Allen Kent,
editors, Encyclopedia of Computer Science and Technology, volume 39, pages
29–43. Marcel-Dekker, 1998.

[27] John R. Koza, Forrest H. Bennett III, David Andre, and Martin A. Keane.
Genetic Programming III: Darwinian Invention and Problem Solving. Morgan
Kaufmann, 1999.

[28] J.M. Kumpula, J. Saramaki, K. Kaski, and J. Kertesz. Resolution limit in
complex network community detection with potts model approach. Eur. Phys.
J., 56, 2007.

[29] L. Laloux, P. Cizeau, J.P. Bouchard, and M. Potters. Noise dressing of financial
correlation matrices. Physical Review Letters, 88:1467–1470, 1999.

[30] E.A. Leicht and M.E.J. Newman. Community structure in directed networks.
Physical Review Letters, in press.

[31] Fabrizio Lillo, Esteban Moro, and Rosario Mantegna. Ecology of trading firms
in a financial market. Complexity 2006.

[32] Michael J. Mauboussin. The stock market as a complex adaptive system. Journal
Of Applied Corporate Finance, 14, No 4, 2002.

[33] M. E. J. Newman. Fast algorithm for detecting community structure in net-
works. Phys. Rev. E, 69, 2004.

[34] M. E. J. Newman and M. Girvan. Finding and evaluating community structure
in networks. Phys. Rev. E, 69, 2004.

[35] M.E.J. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89, 2002.

[36] M.E.J. Newman. Mixing patterns in networks. Phys. Rev. E, 67, 2003.

[37] M.E.J. Newman. The structure and function of complex networks. SIAM Re-
view, 45:167–256, 2003.

[38] M.E.J. Newman. Finding community structure in networks using the eigenvec-
tors of matrices. Phys. Rev. E, 74, 2006.

[39] M.E.J. Newman. Modularity and community structure in networks. Proc. Natl.
Acad. Sci., 103:8577–8582, 2006.

184

References

[40] M.E.J. Newman and M. Girvan. Mixing patterns and community structure in
networks. Statistical Mechanics of Complex Networks, pages 66–87, 2003.

[41] R.G. Palmer, W. Brian Arthur, John H. Holland, and Blake LeBaron. An
artificial stock market. In Artificial Life and Robotics, 1998.

[42] R.G. Palmer, W. Brian Arthur, John H. Holland, Blake LeBaron, and P. Taylor.
Artificial economic life: a simple model of a stock market. Physica D, 75:264–
274, 1994.

[43] S. Phelps, S. Parsons, P. McBurney, and E. Sklar. Coevolution of auction
mechanisms and trading strategies: Towards a novel approach to microeconomic
design, 2002.

[44] Josep Pujol, Javier Bejar, and Jordi Delgado. Clustering algorithm for deter-
mining community structure in large networks. Phys Rev E, 74, 2007.

[45] J. Reichardt and S. Bornholdt. Detecting fuzzy community structures in com-
plex networks with a potts model. Physical Review Letters, 93, 2004.

[46] J. Rust, J. Miller, and R. Palmer. The Double Auction Market: Institutions,
Theories, and Evidence, chapter Behavior of trading automata in a computerized
double auction market, pages 155–198. Addison-Wesley, 1992.

[47] J. Rust, J. Miller, and R. Palmer. Characterizing effective trading strategies.
Journal of Economic Dynamics and Control, 18:61–96, 1994.

[48] W.P. Salman, O. Tisserand, and B. Toulot. Forth. Springer-Verlag:Berlin, 1984.

[49] J. Scott. Social Network Analysis: A Handbook. Sage Publications, 2000.

[50] William F. Sharpe. The sharpe ratio. The Journal of Portfolio Management,
Fall, 1994.

[51] Andrei Shleifer and Lawrence Summers. The noise trader approach to finance.
The Journal of Economic Perspective, 4:19–33, 1990.

[52] Eric Smith, J. Doyne Farmer, Laszlo Gillemot, and Supriya Krishnamurthy. Sta-
tistical theory of the continuous double auction. Quantitative Finance, 3(6):481–
514, 2003.

[53] V.L. Smith. An experimental study of competitve market behavior. Journal of
Political Economy, 70:111–137, 1962.

[54] V.L. Smith and A. Williams. Experimental market economics. Scientific Amer-
ican, 267(6):72–77, 1992.

185

References

[55] L. Spector and A. Robinson. Genetic programming and autoconstructive evolu-
tion with the push programming language. Genetic Programming and Evolvable
Machines, 3:7–40, 2002.

[56] Peter Stone, Michael L. Littman, Satinder Singh, and Michael Kearns. ATTac-
2000: an adaptive autonomous bidding agent. In Jörg P. Müller, Elisabeth
Andre, Sandip Sen, and Claude Frasson, editors, Proceedings of the Fifth Inter-
national Conference on Autonomous Agents, pages 238–245, Montreal, Canada,
2001. ACM Press.

[57] J. Thelier, B. Galdrikian, A. Longtin, S. Eubank, and J.D. Farmer. Using sur-
rogate data to detect nonlinearity in time series. In M. Casdagli and S. Eubank,
editors, Nonlinear Modelling and Forecasting, pages 163–188. Addison Wesley,
1992.

[58] Alan Turing. Computing machinery and intelligence. Mind, LIX, no. 236:433–
460, 1950.

[59] S. Wasserman and K. Faust. Social Network Analysis. Cambridge University
Press, 1994.

[60] M. Wellman, P. Wurman, K. O’Malley, R. Bangera, S. Lin, D. Reeves, and
W. Walsh. Designing the market game for a trading agent competition. IEEE
Internet Computing, 5:43–51, 2001.

[61] M. Wellman, P. Wurman, K. O’Malley, R. Bangera, S. Lin, D. Reeves, and
W. Walsh. The 2001 trading agent competition. Electronic Markets, 13:4–12,
2003.

[62] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4:65–85,
1994.

[63] Darrell Whitley, Soraya Rana, and Robert B. Heckendorn. The island model
genetic algorithm: On separability, population size and convergence. cite-
seer.ist.psu.edu/whitley98island.html.

[64] Ian H. Witten and Eibe Frank. Data Mining. Academic Press, 2005.

[65] Ilija Zovko and J.D. Farmer. Correlations and clustering in the trading of mem-
bers of the london stock exchange. Santa Fe Institute Working Paper, 2007.

186

