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Abstract—Software bugs remain a compelling problem. Auto-
mated program repair is a promising approach for reducing cost,
and many methods have recently demonstrated positive results.
However, success on any particular bug is variable, as is the
cost to find a repair. This paper focuses on generate-and-validate
repair methods that enumerate candidate repairs and use test
cases to define correct behavior. We formalize repair cost in
terms of test executions, which dominate most test-based repair
algorithms. Insights from this model lead to a novel deterministic
repair algorithm that computes a patch quotient space with
respect to an approximate semantic equivalence relation. This
allows syntactic and dataflow analysis techniques to dramatically
reduce the repair search space. Generate-and-validate program
repair is shown to be a dual of mutation testing, suggesting
several possible cross-fertilizations. Evaluating on 105 real-world
bugs in programs totaling 5MLOC and involving 10,000 tests,
our new algorithm requires an order-of-magnitude fewer test
evaluations than the previous state-of-the-art and is over three
times more efficient monetarily.

Index Terms—Automated program repair; mutation testing;
program equivalence; search-based software engineering

I. INTRODUCTION

Both the cost of program defects and the cost of repairing
and maintaining programs remain high. For example, a 2013
Cambridge University study places the global cost of general
debugging at US$312 billion annually and finds that software
developers spend 50% of their programming time “fixing bugs”
or “making code work” [6]. In the security domain, a 2011
Symantec study estimates the global cost of cybercrime as
US$114 billion annually, with a further US$274 billion in lost
time [49], and a 2011 Consumer Reports study found that
one-third of households had experienced a malicious software
infection within the last year [11]. Human developers take 28
days, on average, to address security-critical defects [48], and
new general defects are reported faster than developers can
handle them [3]. This has driven bug finding and repair tools
to take advantage of cheap, on-demand cloud computing [32],
[27] to reduce costs and the burden on developers.

Since 2009, when automated program repair was demon-
strated on real-world problems (ClearView [40], GenProg [54]),
interest in the field has grown steadily, with multiple novel
techniques proposed (AutoFix-E [52], AFix [24], Debroy and
Wong [12], etc.) and an entire session at the 2013 Interna-
tional Conference on Software Engineering (SemFix [34],

ARMOR [9], PAR [26], Coker and Hafiz [10]). We categorize
program repair methods into two broad groups. Some methods
use stochastic search or otherwise produce multiple candidate
repairs and then validate them using test cases (e.g., Gen-
Prog, PAR, AutoFix-E, ClearView, Debroy and Wong, etc.).
Others use techniques such as synthesis (e.g., SemFix) or
constraint solving to produce a single patch that is correct
by construction (e.g., AFix, etc.). We use the term generate-
and-validate program repair to refer to any technique (often
based on search-based software engineering) that generates
multiple candidate patches and validates them through testing.
Although generate-and-validate repair techniques have scaled
to significant problems (e.g., millions of lines of code [27]
or Mozilla Firefox [40]), many have only been examined
experimentally, with few or no explanations about how difficult
a defect or program will be to repair.

A recent example is GenProg, which takes as input a program,
a test suite that encodes required behavior, and evidence of
a bug (e.g., an additional test case that is currently failing).
GenProg uses genetic programming (GP) heuristics to search
for repairs, evaluating them using test suites. A repair is a patch,
edit or mutation that, when applied to the original program,
allows it to pass all test cases; a candidate repair is under
consideration but not yet fully tested. The dominant cost of
such generate-and-validate algorithms is validating candidate
patches by running test cases [16].

In this paper, we provide a grounding of generate-and-
validate automated repair, and use its insights to improve
performance and consistency of the repair process. We first
present a formal cost model, motivated in part by our
categorization: broadly, the key costs relate to how many
candidates are generated, and how expensive each one is
to validate. This model suggests an improved algorithm for
defining and searching the space of patches and the order
in which tests are considered. Intuitively, our new algorithm
avoids testing program variants that differ syntactically but are
semantically equivalent. We define the set of candidate repairs
as a quotient space (i.e., as equivalence classes) with respect
to an approximate program equivalence relation, such as one
based on syntactic or dataflow notions. Further optimizations
are achieved by eliminating redundant or unnecessary testing.
By recognizing that a single failed test rules out a candidate
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repair, our algorithm prioritizes the test most likely to fail
(and the patch most likely to succeed) based on previous
observations. The result is a deterministic, adaptive algorithm
for automated program repair backed by a concrete cost model.

We also highlight a duality between generate-and-validate
program repair and mutation testing [23], explicitly phrasing
program repair as a search for a mutant that passes all tests.
Examining the hypotheses associated with mutation testing
sheds light on current issues and challenges in program repair,
and it suggests which advances from the established field of
mutation testing might be profitably applied to program repair.

Based on these insights, we describe a new algorithm and
evaluate it empirically using a large dataset of real-world
programs and bugs. We compare to GenProg as a baseline for
program repair, finding that our approach reduces testing costs
by an order of magnitude.

The main contributions of this paper are as follows:

• A detailed cost model for generate-and-validate program
repair. The model accounts for the size of the fault space,
size of the fix space (Section III), the order in which edits
are considered (repair strategy), and the testing strategy.

• A technique for reducing the size of the fix space
by computing the quotient space with respect to an
approximate program equivalence relation. This approach
uses syntactic and dataflow analysis approaches to reduce
the search space and has not previously been applied to
program repair.

• A novel, adaptive, and parallelizable algorithm for auto-
mated program repair. Unlike earlier stochastic repair
methods, our algorithm is deterministic, updates its
decision algorithm dynamically, and is easier to reason
about.

• An empirical evaluation of the repair algorithm on 105
defects in programs totaling over five million lines of
code and guarded by over ten-thousand test cases. We
compare directly to GenProg, finding order-of-magnitude
improvements in terms of test suite evaluations and over
three times better dollar cost.

• A discussion of the duality between generate-and-validate
program repair and mutation testing, formalizing the
similarities and differences between these two problems.
This provides a lens through which mutation testing
advances can be viewed for use in program repair.

II. MOTIVATION

Generate-and-validate repair algorithms have been dominated
historically by the time spent executing test cases. Consider
GenProg, which uses genetic programming (GP) to maintain
a population of candidate repairs, iteratively mutating and
recombining them in a manner focused by fault localization
information, until one was found that passed all tests [27].
The iterative, population-based GP search heuristic makes it
difficult to predict the cost (number of test cases evaluated) in
advance, but early empirical estimates placed the percentage of
effort devoted to running tests at roughly 60% [16], and later

experiments with test-suite sampling to reduce the number of
test-case evaluations improved performance by 80% [15].

An early and simplistic cost model for GenProg related
the number of complete test suite evaluations to the size of
the parts of the program implicated by fault localization [29,
Fig. 9]. This is intuitive, but incomplete because it ignores the
test-suite sampling discussed earlier, and it ignores the order in
which candidate repairs are evaluated (e.g., if a high-probability
candidate were validated early, the search could terminate
immediately, reducing the incurred cost) and the number
of possible repair operations (edits) that can be considered.
However, GenProg demonstrates high variability, both across
individual trials and among programs and defects. For example,
in one large study, GenProg’s measured ability to repair a defect
varied from 0–100% with no clear explanation [28, Fig. 4]. In
light of such results, a more powerful explanatory framework
is desired.

A second cost arises from syntactically distinct but seman-
tically equivalent program variants. This overhead is real [5],
[35] but completely ignored by cost models that consider
only test case evaluations. In a generate-and-validate repair
framework, equivalent programs necessarily have equivalent
behavior on test cases, so the size of this effect can be estimated
by considering the number of candidate repairs that have exactly
the same test case behavior. To this end, we examined the
test output of over 500,000 program variants produced by
GenProg in a bug repair experiment [27]. For a given bug, if
we group variants based on their test output, 99% of them are
redundant with respect to tested program behavior, on average.
Although not all programs that test equally are semantically
equivalent [44], this suggests the possibility of optimizing the
search by recognizing and avoiding redundant evaluations.

We thus desire a more descriptive cost model as well as a
search-based repair algorithm that explicitly considers program
equivalence and the order in which tests and edits are explored.

III. COST MODEL

This section outlines a cost model for generate-and-validate
repair to guide the algorithmic improvements outlined in
Section IV. We assume a repair algorithm that generates and
validates candidate repairs using test cases, and tests are the
dominant cost. We acknowledge many differences between
approaches but believe the description in this section is suffi-
ciently general to encompass techniques such as GenProg [27],
ClearView [40], Debroy and Wong [12], and PAR [26].

Broadly, the costs in a generate-and-validate algorithm
depend on generation (how many candidates are created) and
validation (how each one is tested). Without optimization, the
number of tests executed equals the number of candidate repairs
considered by the algorithm times the size of the test suite.
Fault localization identifies a region of code that is likely
associated with the bug. Fault localization size refers to the
number of statements, lines of code, or other representational
unit manipulated by the repair algorithm. A candidate repair
(i.e., a patch) typically modifies only the code identified by fault
localization, but it can also include code imported from another
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part of the program [27], synthesized [34] or instantiated from a
template [26], [40]. The number of first-order candidate repairs
is the product of the fault localization size and the size of
the fix space [27, Sec. V.B.3], where fix space refers to the
atomic modifications that the algorithm can choose from. In
addition, the repair algorithm could terminate when it finds and
validates a repair, so the enumeration strategy—the order in
which candidate repairs are considered—can have significant
impact. Similarly, a non-repair may be ruled out the first time
it fails a test case, and thus the testing strategy also has a
significant impact.

Equation 1 shows our cost model. Fault localization size is
denoted by Fault. The number of possible edits (mutations) is
denoted by Fix. Note that the model structure has each com-
ponent depending on the previous components. For example,
Fix depends on Fault (e.g., some templates or edit actions
might not apply depending on the variables in scope, control
flow, etc.). The size of the test suite is denoted by Suite. The
order in which the algorithm considers candidate repairs is
RepairStrat, and RepairStratCost denotes the number of tests
evaluated by RepairStrat, which ranges from 1/(Fault× Fix)
(an optimal strategy that selects the correct repair on the first
try) to 1 (a pessimal strategy that considers every candidate).
Finally, given a candidate repair, the order in which test cases
are presented is given by TestStrat, and the number of tests
evaluated by TestStrat is given by TestStratCost, which ranges
from 1/Suite (optimal) to 1 (worst case).

Cost = Fault× Fix(Fault)× Suite(Fault,Fix)
× RepairStratCost(Fault,Fix,Suite)
× TestStratCost(Fault,Fix,Suite,RepairStratCost)

(1)
By contrast, earlier algorithms defined the search space as
the product of Fault and Fix for a given mutation type [28,
Sec. 3.4]. GenProg’s policy of copying existing program code
instead of inventing new text corresponds to setting Fix equal
to Fault (leveraging existing developer expertise and assuming
that the program contains the seeds of its own repair) for
O(N2) edits, while other techniques craft repairs from lists of
templates [40], [52], [26]. Although fault localization is well-
established, fix localization, identifying code or templates to
be used in a repair, is just beginning to receive attention [26].

In our model, Fix depends on Fault, capturing the possi-
bility that operations can be avoided that produce ill-typed
programs [39] or the insertion of dead code [5], [35]. Suite
depends on Suite so the model can account for techniques
such as impact analysis [42]. The RepairStrat term expresses
the fact that the search heuristic ultimately considers candidate
repairs in a particular order, and it suggests one way to measure
optimality. It also exposes the inefficiencies of algorithms that
re-evaluate semantically equivalent candidates. The TestStrat
term depends on the repair strategy, allowing us to account
for savings achieved by explicit reasoning about test suite
sampling [16], [29]. Note that Suite optimizations remove a
test from consideration entirely while TestStrat optimizations
choose remaining tests in an advantageous order.

In the next section, we use the structure of the cost model,
with a particular emphasis on the repair and test strategy terms,
to outline a new search-based repair algorithm.

IV. REPAIR ALGORITHM

We introduce a novel automated program repair algorithm
motivated by the cost model described in Section III. Based on
the observation that running test cases on candidate repairs is
time-consuming, the algorithm reduces this cost using several
approaches. First, it uses an approximate program equivalence
relation to identify candidate repairs that are semantically
equivalent but syntactically distinct. Next, it controls the order
in which candidate repairs are considered through an adaptive
search strategy. A second adaptive search strategy presents
test cases to candidate repairs intelligently, e.g., presenting test
cases early that are most likely to fail. Although each of these
components adds an upfront cost, our experimental results
show that we achieve net gains in overall time performance
through these optimizations. To highlight its use of Adaptive
search strategies and program Equivalence, we refer to this
algorithm as “AE” in this paper.

We first describe the algorithm and then provide details on its
most important features: the approximate program equivalence
relation and two adaptive search strategies.

A. High-level Description

The high-level pseudocode for AE is given in Figure 1. It
takes as input a program P , a test suite Suite that encodes
all program requirements and impact analyses, a conservative
approximate program equivalence relation ∼, an edit degree
parameter k, an edit operator Edits that returns all programs
resulting from the application of kth order edits, and the
two adaptive search strategies RepairStrat and TestStrat. The
algorithm is shown enumerating all kth-order edits of P on
line 3. In practice, this is infeasible for k > 1, and operations
involving CandidateRepairs should be performed using lazy
evaluation and calculated on-demand. On line 5 the RepairStrat
picks the candidate repair deemed most likely to pass all tests
based on Model , the observations thus far. On line 8 and 9 the
quotient space is computed lazily: A set of equivalence classes
encountered thus far is maintained, and each new candidate
repair is checked for equivalence against a representative of
each class. If the new candidate is equivalent to a previous one,
it is skipped. Otherwise, it is added to the set of equivalence
classes (line 9). Candidates are evaluated on the relevant test
cases (line 10) in an order determined by TestStrat (line 13),
which uses information observed thus far to select the test
deemed most likely to fail. Since successful repairs are run
on all relevant tests regardless, TestStrat affects performance
(opting out after the first failure) rather than functionality, and
is thus chosen to short-circuit the loop (lines 12–17) as quickly
as possibly for non-repairs. If all tests pass, that candidate is
returned as the repair. If all semantically distinct candidates
have been tested unsuccessfully, there is no k-degree repair
given that program, approximate equivalence relation, test suite
and set of mutation operators.

358



Input: Program P : Prog
Input: Test suite Suite : Prog→ P(Test)
Input: Equivalence relation ∼ : Prog × Prog→ B
Input: Edit degree parameter k : N
Input: Edit operator Edits : Prog ×N → P(Prog)
Input: Repair strategy RepairStrat : P(Prog)×Model→ Prog
Input: Test strategy TestStrat : P(Test)×Model→ Test
Output: Program P ′. ∀t ∈ Suite(P ′). P ′(t) = true

1: let Model ← ∅
2: let EquivClasses ← ∅
3: let CandidateRepairs ← Edits(P, k)
4: repeat
5: let P ′ ← RepairStrat(CandidateRepairs,Model)
6: CandidateRepairs ← CandidateRepairs \ {P ′}
7: // “Is any previously-tried repair equivalent to P ′?”
8: if ¬∃ Previous ∈ EquivClasses. P ′ ∼ Previous then
9: EquivClasses ← EquivClasses ∪ {P ′}

10: let TestsRemaining ← Suite(P ′)
11: let TestResult ← true
12: repeat
13: let t← TestStrat(TestsRemaining ,Model)
14: TestsRemaining ← TestsRemaining \ {t}
15: TestResult ← P ′(t)
16: Model ← Model ∪ {〈P ′, t,TestResult〉}
17: until TestsRemaining = ∅ ∨ ¬TestResult
18: if TestResult then
19: return P ′

20: end if
21: end if
22: until CandidateRepairs = ∅
23: return “no k-degree repair”

Fig. 1. Pseudocode for adaptive equivalence (“AE”) generate-and-validate
program repair algorithm. Candidate repairs P ′ are considered in an order
determined by RepairStrat, which depend on a Model of observations (Model
may be updated while the algorithm is running) and returns the edit (mutation)
deemed most likely to pass all tests. Candidate repairs are compared to previous
candidates and evaluated only if they differ with respect to an approximate
program equivalence relation (∼). TestStrat determines the order in which
tests are presented to P ′, returning the test on which P ′ is deemed most likely
to fail. The first P ′ to pass all tests is returned.

The cost model identifies five important components: Fault,
Fix, Suite, RepairStrat, and TestStrat. We leave fault localiza-
tion (Fault) as an orthogonal concern [25], although there is
some recent interest in fault localization targeting automated
program repair rather than human developers [41]. In this paper,
we use the same fault localization scheme as GenProg [54] to
control for that factor in our experiments. Similarly, while we
consider impact analysis [42] to be the primary Suite reduction,
we do not perform any such analysis in this paper to admit a
controlled comparison to GenProg, which also does not use
any. Finally, one cost associated with testing is compiling
candidate repairs; compilation costs are amortized by bundling
multiple candidates into one executable, each selected by an
environment variable [50]. In the rest of this section we discuss
the other three components.

B. Determining Semantic Equivalence

To admit a direct, controlled comparison we form Edits as
a quotient space of edits produced by the GenProg mutation
operators “delete a potentially faulty statement” and “insert
after a potentially faulty statement a statement from elsewhere

in the program.” This means that any changes to the search
space of edits are attributable to our equivalence strategies, not
to different atomic edits or templates. GenProg also includes a
“replace” operator that we view as a second-degree edit (delete
followed by insert); in this paper we use edit degree k = 1
unless otherwise noted (see Section V for a further examination
of degree).

If two deterministic programs are semantically equivalent
they will necessarily have the same test case behavior.1 Thus,
when we can determine that two different edits applied at
the same fault location would yield equivalent programs,
the algorithm considers only one. Since general program
equivalence is undecideable, we use a sound approximation ∼:
A ∼ B implies that A and B are semantically equivalent, but
our algorithm is not guaranteed to find all such equivalences.
We can hope to approximate this difficult problem because we
are not dealing with arbitrary programs A and B, but instead A
and A′, where we constructed A′ from A via a finite sequence
of edits applied to certain locations. Although our algorithm is
written so that the quotient space is computed lazily, for small
values of k it can be more efficient to compute the quotient
space eagerly (i.e., on line 3 of Figure 1).

In this domain, the cost of an imprecise approximation is
simply the additional cost of considering redundant candidate
repairs. This is in contrast with mutation testing, where the
equivalent mutant problem can influence the quality of the
result (via its influence on the mutation score, see Section VI).
Drawing inspiration from such work, we determine semantic
equivalence in three ways: syntactic equality, dead code
elimination, and instruction scheduling.

a) Syntactic Equality: Programs often contain duplicated
variable names or statements. In techniques like GenProg
that use the existing program as the source of insertions,
duplicate statements in the existing program yield duplicate
insertions. For example, if the statement x=0 appears k times
in the program, GenProg might consider k separate edits,
inserting each instance of x=0 after every implicated fault
location. Template-based approaches are similarly influenced:
if ptr is both a local and a global variable and a null-check
template is available, the template can be instantiated with
either variable, leading to syntactically identical programs.
Programs that are syntactically equal are also semantically
equal, so A =text B =⇒ A ∼ B.

b) Dead Code Elimination: If lval is not live at a
proposed point of insertion, then a write to it will have no
effect on program execution (assuming rval has no side-
effects [33]). If k edits e1 . . . ek applied to the program A yield
a candidate repair A[e1 . . . ek] and ei inserts dead code, then
A[e1 . . . ek] ∼ A[e1 . . . ei−1ei+1 . . . ek]. As a special common
case, if e1 inserts dead code then A[e1] ∼ A. Dataflow analysis
allows us to determine liveness in polynomial time, thus ruling
out insertions that will have no semantic effect.

1Excluding non-functional requirements, such as execution time or memory
use. We view such non-functional program properties as a separate issue (i.e.,
compiler optimization).

359



c) Instruction Scheduling: Consider the program fragment
L1: x=1; L2: y=2; L3: z=3; and the Fix mutation “insert
a=0;”. GenProg might consider three possible insertions:
one at L1, one at L2 and one at L3. In practice, all three
insertions are equivalent: a=0 does not share any read-write or
write-write dependencies with any of those three statements.
More generally, if S1; S2; and S2; S1; are semantically
equivalent, only one of them need be validated. One type
of instruction scheduling compiler optimization moves (or
“bubbles”) independent instructions past each other to mask
latencies or otherwise improve performance. We use a similar
approach to identify this class of equivalences quickly.

First, we calculate effect sets for the inserted code and the
target code statements (e.g., reads and writes to variables,
memory, system calls, etc.). If two adjacent instructions
reference no common resources (or if both references are
reads), reordering them produces a semantically equivalent
program. If two collocated edits e and e′ can be instruction
scheduled past each other, then A[. . . ee′ . . . ] ∼ A[. . . e′e . . . ]
for all candidate repairs A. This analysis runs in polynomial
time.

Precision in real applications typically requires a pointer
alias analysis (e.g., must *ptr=0 write to lval and/or may
*ptr read from lval). For the experiments in this paper, we
implement our flow-sensitive, intraprocedural analyses atop the
alias and dataflow analysis framework in CIL [33].

C. Adaptive Search Strategies

The repair enumeration loop iterates until it has considered
all atomic edits, stopping only when (and if) it finds one that
passes all tests. Similarly, the test enumeration loop iterates
through all the tests, terminating only when it finds a failing
test or has successfully tested the entire set. In this subsection
we discuss our algorithmic enhancements to short-circuit these
loops, improving performance without changing semantics.

There are many possible strategies for minimizing the
number of interactions in both loops. For the experiments
in this paper we use a simple, non-adaptive RepairStrat as a
control: as in GenProg, edits are preferred based on their fault
localization suspiciousness value. By contrast, for TestStrat
we favor the test that has the highest historical chance of failure
(in the Model ), breaking ties in favor of the number of times
the test has failed and then in favor of minimizing the number
of times it has passed. Although clearly a simplification, these
selection strategies use information that is easy to measure
empirically and are deterministic, eliminating algorithm-level
variance.

Although these strategies are quite simple, they are surpris-
ingly effective (Section V). However, we expect that future
work will consider additional factors, e.g., the running time
of different test cases, and could employ machine learning or
evolutionary algorithms to tune the exact function.

V. EXPERIMENTS

We present experimental results evaluating the algorithm
(referred to as AE to highlight its use of adaptive search and

program equivalence) described in Section IV, using the ICSE
2012 dataset [27] as our basis of comparison. We focus on the
following issues in our experiments:

1) Effectiveness at finding repairs: How many repairs from
[27] are also found by AE?

2) Search-space efficiency: How many fewer edits are
considered by AE than GenProg?

3) Cost comparison: What is the overall cost reduction (test
case evaluations, monetary) of AE?

4) Optimality: How close is AE to an optimal search
algorithm? (Section IV-C)?

A. Experimental Design

Our experiments are designed for direct comparison to
previous GenProg results [27], and we use the publicly available
benchmark programs from this earlier work. This data set
contains 105 high-priority defects in eight programs totaling
over 5MLOC and guarded by over 10,000 tests.

We provide grounded, reproducible measurements of time
and monetary costs via Amazon’s public cloud computing
service. To control for changing prices, we report values using
Aug-Sep 2011 prices [27, Sec. IV.C] unless otherwise noted.
These GenProg results involved ten random trials run in parallel
for at most 12 hours each (120 hours per bug). Since AE is
deterministic, we evaluate it with a single run for each bug,
allowing for up to 60 hours per bug.

B. Success Rates, Edit Order, Search-Space Size

Table I shows the results. k indicates the maximum possible
number of allowed mutations (edits). Ignoring the crossover
operator, a 10-generation run of GenProg could in principle
produce an individual with up to 10 accumulated mutations.
However, this is an extremely rare event, because of the small
population sizes used in these results (40) and the effects of
finite sampling combined with selection.

The “Defects Repaired” column shows that AE, with k = 1
and restricted to 60 CPU-hours, finds repairs for 53 of the
105 original defects. GenProg, with k ≤ 10 and 120 CPU-
hours, repairs 55. This confirms earlier GenProg results using
minimization that show a high percentage (but not all) of the
bugs that GenProg has repaired can also be repaired with one or
two edits. As a baseline to show that this result is not specific
to AE, we also consider a version of GenProg restricted to one
generation (k = 1): it finds 37 repairs.

The remaining experiments include just the 45 defects that
both algorithms repair, allowing direct comparison. The “Search
Space” column measures the number of possible first-order
edits. Higher-order edits are too numerous to count in practice
in this domain: first-order insert operations alone are O(n2) in
the size of the program, and 10 inserts yields O(n20) options.
The results show that using program equivalence (Section IV)
dramatically reduces the search space by 88%, when compared
with GenProg.
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TABLE I
COMPARISON OF AE AND GENPROG ON SUCCESSFUL REPAIRS. AE denotes the “adaptive search, program equivalence” algorithm described
in Figure 1 and columns labeled GP reproduce previously published GenProg results [27]. k denotes the maximum number of edits allowed

in a repair. The first three columns characterize the benchmark set. The “Search Space” columns measure number of first-order edits
considered by each method in the worst case. The “Defects Repaired” columns list the number of valid patches found: only 45 repairs are
found in common by both algorithms (e.g., there are no shared repairs for python). The “Test Suite Evals.” column measures the average
number of test suite evaluations on those 45 repairs. The monetary cost column measures the average public cost of using Amazon’s cloud

computing infrastructure to to find those 45 repairs.

Order 1 Search Space Defects Repaired Test Suite Evals. US$ (2011)
AE GP AE GP GP AE GP AE GP

Program LOC Tests k = 1 k = 1 k = 1 k = 1 k ≤ 10 k = 1 k ≤ 10 k = 1 k ≤ 10

fbc 97,000 773 507 1568 1 0 1 1.7 1952.7 0.01 5.40
gmp 145,000 146 9090 40060 1 0 1 63.3 119.3 0.91 0.44
gzip 491,000 12 11741 98139 2 1 1 1.7 180.0 0.01 0.30
libtiff 77,000 78 18094 125328 17 13 17 3.0 28.5 0.03 0.03
lighttpd 62,000 295 15618 68856 4 3 5 11.1 60.9 0.03 0.04
php 1,046,000 8,471 26221 264999 22 18 28 1.1 12.5 0.14 0.39
python 407,000 355 — — 2 1 1 — — – —
wireshark 2,814,000 63 6663 53321 4 1 1 1.9 22.6 0.04 0.17

weighted sum — — 922,492 7,899,073 53 37 55 186.0 3252.7 4.40 14.78

C. Cost

Since neither algorithm is based on purely random selection,
reducing the search space by x does not directly reduce the
expected repair cost by x. We thus turn to two externally visible
cost metrics: test suite evaluations and monetary cost.

Test suite evaluations measure algorithmic efficiency inde-
pendent of systems programming or implementation details.
The “Test Suite Evals.” column shows that AE requires an
order of magnitude fewer test suite evaluations than GenProg:
186 vs. 3252. Two factors contribute to this twenty-fold
decrease: search-space reduction and test selection strategy
(see Section V-D).

Finally, we ground our results in US dollars using public
cloud computing. To avoid the effect of Amazon price re-
ductions, we use the applicable rate from the earlier GenProg
evaluation ($0.074 dollars per CPU-hour, including data and I/O
costs). For example, on the fbc bug, serial AE algorithm runs
for 0.14 hours and thus costs 0.14× 0.074 = 0.01. GenProg
runs ten machines in parallel, stopping when the first finds a
repair after 7.29 hours, and thus costs 7.29.52× 10× 0.074 =
$5.40. Overall, AE is cheaper than GenProg by a factor of three
($4.40 vs. $14.78 for the 45 repairs found by both algorithms).

D. Optimality

The dramatic decrease in the number of test suite eval-
uations performed by AE, and the associated performance
improvements, can be investigated using our cost model. Our
experiments used a simple repair strategy (fault localization)
and a dynamically adjusted (adaptive) test strategy. In the cost
model, TestStrat depends on RepairStrat: Given a candidate
repair, the test strategy determines the next test to apply. For a
successful repair, in which n candidate repairs are considered,
an optimal test strategy would evaluate (n− 1) + |Suite| test
cases. In the ideal case, the first n− 1 candidate repairs would
each be ruled out be a single test and the ultimate repair would
be validated on the entire suite.

We now measure how close the technique described in
Section IV approaches this optimal solution in practice. For
example, for the 20 php shared repairs, GenProg runs 1,918,170
test cases to validate 700 candidate repairs. If the average test
suite size is 7,671, an optimal test selection algorithm would
run 680 + 20 × 7, 671 = 154, 100 test cases. GenProg’s test
selection strategy (random sampling for internal calculations
followed by full evaluations for promising candidates [16]) is
thus 12× worse than optimal on those bugs. On those same
bugs, AE runs 163,274 test cases to validate 3, 099 mutants. Its
adaptive test selection strategy is thus very near optimal, with a
0.06× increase in testing overhead on those bugs. By contrast,
the naive repair selection strategy evaluated is worse than
GenProg’s tiered use of fault localization, mutation preference,
fix localization, and past fitness values. Despite evaluating 4×
times as many candidates, however, we evaluate 12× fewer
tests. The results on other programs are similar.

This analysis suggests that integrating AE’s test selection
strategy with GenProg’s repair selection strategy, or enhancing
AE’s adaptive repair strategy, could lead to even further
improvements. We leave the exploration of these questions
for future work.

The difference between our test count reduction and our
monetary reduction stems from unequal test running times
(e.g., AE selects tests with high explanatory power but also
above-average running times).

E. Qualitative Evaluation

Since GenProg has a strict superset of AE’s mutation opera-
tors, any repair AE finds that GenProg does not is attributable
to Fault, Fix, RepairStrat or TestStrat. We examine one such
case in detail, related to command-line argument orderings and
standard input in gzip.2

An exhaustive evaluation of all first-order mutations finds
that only 46 out of GenProg’s 75905 candidates are valid

2http://lists.gnu.org/archive/html/bug-gzip/2008-10/msg00000.html
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repairs (0.06%). Worse, the weightings from GenProg’s repair
strategy heuristics (which tier edit types after fault localization)
are ineffective in this case, resulting in a 0.03% chance of
selecting such an edit. GenProg considered over 650 mutants
per hour, but failed to find a repair in time. By contrast, AE
reduced the search space to 17655 via program equivalence
and was able to evaluate over 5500 mutants per hour by careful
test selection. However, AE’s repair strategy was also relatively
poor, considering 85% of possible candidates before finding a
valid one. These results support our claims that while program
repair could benefit from substantial improvements in fault
localization and repair enumeration, our program equivalence
and test strategies are effective in this domain.

VI. DUALITY WITH MUTATION TESTING

At a high level, mutation testing creates a number of mutants
of the input program and measures the fraction that fail
(are killed by) at least one test case (the mutation adequacy
score). Ideally, a high score indicates a high-quality test suite,
and a high-quality test suite gives confidence about program
correctness. By contrast, low scores can provide guidance to
iteratively improve programs and test suites. Mutation testing
is a large field, and characterizing all of the variations and
possible uses of mutation testing is beyond the scope of this
work; we necessarily adopt a broad view of the field and do
not claim that our generalization applies in all cases. The
interested reader is referred to Jia and Harman [23], to whom
our presentation here is indebted, for a thorough treatment.

Broadly, we identify the mutants in mutation testing with
the candidates in program repair. This leads to duality between
the mutant-testing relationship (ideally all mutants fail at least
one test) and the repair-testing relationship (ideally at least one
candidate passes all tests).

A. Hypotheses

The competent programmer hypothesis (CPH) [13] and the
coupling effect hypothesis [38] from mutation testing are both
relevant to program repair. The CPH states that programmers
are competent, and although they may have delivered a program
with known or unknown faults, all faults can be corrected by
syntactic changes, and thus mutation testing need only consider
mutants made from such changes [23, p. 3]. The program is
assumed to have no known faults with respect to the tests
under consideration (“before starting the mutation analysis, this
test set needs to be successfully executed against the original
program . . . if p is incorrect, it has to be fixed before running
other mutants” [23, p.5]). In contrast, program repair methods
such as GenProg and AE assume that the program is buggy and
fails at least one test on entry. GenProg and AE also assume
the CPH. However, they often use operators that make tree-
structured changes [54] (e.g., moving, deleting or rearranging
large segments of code) or otherwise simulate how humans
repair mistakes [26] (e.g., adding bounds checks) without
introducing new ones. Search-based program repair further
limits the set of mutants (candidate repairs) considered by using
fault localization, program analysis that uses information from

successful and failing tests to pinpoint likely defect locations,
e.g., [25]), while mutation testing can consider all visited and
reachable parts of the program (although profitable areas are
certainly prioritized).

The coupling effect hypothesis (CEH) states that “complex
faults are coupled to simple faults in such a way that a test
data set that detects all simple faults in a program will detect
a high percentage of the complex faults” [38]. Thus, even if
mutation testing assesses a test suite to be of high quality
using only simple mutants, one can have confidence that the
test suite will also be of high quality with respect to complex
(higher-order) mutants. For example, tests developed to kill
simple mutants were also able to kill over 99% of second-
and third-order mutants historically [38]. Following Offutt,
we propose the following dual formulation, the search-based
program repair coupling effect hypothesis: “complex faults are
coupled to simple faults in such a way that a set of mutation
operators that can repair all simple faults in a program will be
able to repair a high percentage of the complex faults.” This
formulation addresses some observations about earlier repair
results (e.g., “why is GenProg typically able to produce simple
patches for bugs when humans used complex patches?” [27]).

Whether or not this program repair CEH is a true claim
about real-world software system is unknown. While some
evidence provides minor support (e.g., in Section V, many
faults repaired with higher-order edits can also be repaired
with first-order edits), there is a troubling absence of evidence
regarding repairs to complex faults. Broadly, current generate-
and-validate program repair techniques can address about one-
sixth to one-half of general defects [12], [26], [27]. It is
unknown whether the rest require more time (cf. [28]) or better
mutation operators (cf. [26]) or something else entirely. Since
fixing (or understanding why one cannot fix) these remaining
bugs is a critical challenge for program repair, we hope that
this explicit formulation will inspire repair research to consider
this question with the same rigor that the mutation testing
community has applied to probing the CEH [37], [38].

B. Formulation

We highlight the duality of generate-and-validate repair and
mutation testing in Figure 2, which formalizes ideal forms of
mutation testing and program repair. Both mutation testing
and program repair are concerned with functional quality and
generality (e.g., a test suite mistakenly deemed adequate may
not detect future faults; a repair mistakenly deemed adequate
may not generalize or may not safeguard required behavior)
which we encode explicitly by including terms denoting future
(held-out) tests or scenarios.

Given a program P , a current test suite Test, a set of
non-equivalent mutants produced by mutation testing oper-
ators MTMut, and a held-out future workload or test suite
FutureTest, we formulate mutation testing as follows: Under
idealized mutation testing, a test suite is of high quality if
MT (P,Test) = true holds. That is, if P passes all tests in
Test and every mutant fails at least one test. In practice, the
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MT (P,Test) = true iff(
(∀t ∈ Test. t(P )) ∧
(∀m ∈ MTMut(P ). ∃t ∈ Test. ¬t(m))

)
=⇒ ∀t ∈ FutureTest. t(P )

PR(P,Test,NTest) = m iff(
(∀t ∈ Test. t(P )) ∧ (∀t ∈ NTest. ¬t(P ))
∧ m ∈ PRMut(P ) ∧ (∀t ∈ Test ∪ NTest. t(m))

)
=⇒

(
(∀t ∈ FutureTest. t(P ) =⇒ t(m))
∧ (∀t ∈ FutureNTest. t(m))

)
Fig. 2. Dual formulation of idealized mutation testing and idealized search-based program repair. Ideally, if mutation testing indicates that a test suite is of
high quality (MT (P,Test) = true) then that suite should confer high confidence of the program’s correctness: passing that suite should imply passing all
future scenarios. Dually (and ideally), if program repair succeeds at finding a repair (PR(P,Test) = m) then that repair should address all present and future
instances of that bug (pass all negative tests) while safeguarding all other behavior: if the original program would succeed at a test, so should the repair. The
right-hand-side consequent clauses encode quality: a low-quality repair (perhaps resulting from inadequate Test) will appear to succeed but may degrade
functionality or fail to repair the bug on unseen future scenarios, while low-quality mutation testing (perhaps resulting from inadequate MTMut) will appear to
suggest that the test suite is of high quality when it fact it does not predict future success.

equivalent mutant problem implies that MTMut will contain
equivalent mutants preventing a perfect score.

Similarly, given a program P , a current positive test suite
encoding required behavior Test, a current negative test
suite encoding the bug NTest, a held-out future workload
or test suite FutureTest, and held-out future instances of the
same bug FutureNTest, we formulate search-based program
repair. Idealized program repair succeeds on mutation m
(PR(P,Test,NTest) = m) if all 4 hypotheses (every positive
test initially passes, every negative test initially fails, the repair
can be found in the set of possible constructive mutations
(edits), and the repair passes all tests) imply that the repair is
of high quality. A high quality repair retains functionality by
passing the same future tests that the original would, and it
defeats future instances of the same bug.

A key observation is that our confidence in mutant testing
increases with the set non-redundant mutants considered
(MTMut), but our confidence in the quality of a program
repair gains increases with the set of non-redundant tests
(Test).3 We find that |MTMut| is much greater than |Test|
in practice. For example, the number of first-order mutants in
our experiments typically exceeds the number of tests by an
order of magnitude, as shown in Table I. Thus, program repair
has a relative advantage in terms of search: not all of PRMut
need be considered as long as a repair is found that passes
the test suite. Similarly, the dual of the basic mutation testing
optimization that “a mutant need not be further tested after it
has been killed by one test” is that “a candidate repair need
not be further tested after it has been killed by one test”. These
asymmetrical search conditions (the enumeration of tests can
stop as soon as one fails, and the enumeration of candidate
repairs can stop as soon as one succeeds) form the heart of
our adaptive search algorithm (see Section IV-A).

3Our presentation follows the common practice of treating the test suite as
an input but treating the mutation operators as part of the algorithm; this need
not be the case, and mutation testing is often parametric with respect to the
mutation operators used [22].

C. Implications

The formalism points to an asymmetry between the two
paradigms, which we exploit in AE, namely, that the enumera-
tion of tests can stop as soon as one fails (the mutation testing
insight), and the enumeration of candidate repairs can stop
as soon as one succeeds (the program repair insight). From
this perspective, several optimizations in generate-and-validate
repair can be seen as duals of existing optimizations in mutation
testing, and additional techniques from mutation testing may
suggest new avenues for continued improvements to program
repair. We list five examples of the former and discuss the
latter in Section VIII:

1) GenProg’s use of three statement-level tree operators
(mutations) to form PRMut is a dual of “selective
mutation”, in which a small set of operators is shown to
generate MTMut without losing test effectiveness [30].

2) GenProg experiments that evaluate only a subset of
PRMut with crossover disabled [28] are a dual of
“mutant sampling”, in which only a subset of MTMut is
evaluated [31].

3) GenProg’s use of multiple operations per mutant, gath-
ered up over multiple generations, is essentially “higher-
order mutation” [21]. Just as a subsuming higher-order
mutation may be harder to kill than its component first-
order mutations, so too may a higher-order repair be of
higher quality than the individual first-order mutations
from which it was constructed [23, p. 7].

4) Attempts to improve the objective (fitness) functions for
program repair by considering sets of predicates over
program variables instead of using all raw test cases [15]
are a dual of “weak mutation” [20], in which a program
is broken down into components, and mutants are only
checked immediately after the execution point of the
mutated component [23, p. 8].

5) AE’s compilation of multiple candidate patches into a
single program with run-time guards (see Section IV-A)
is a direct adaptation of “super-mutant” or “schemata”
techniques, by researchers such as Untch or Mathur, for
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compiling all possible mutants into a single program
(e.g., [50]).

Finally, our use of approximate program equivalence is
directly related to the “equivalent mutant problem” [23, p. 9],
where mutation-testing regimes determine if a mutant is
semantically equivalent to the original. AE’s use of dataflow
analysis techniques to approximate program equivalence for
detecting equivalent repairs is thus exactly the dual of Baldwin
and Sayward’s use of such heuristics for detecting equivalent
mutants [5]. Offutt and Craft evaluated six compiler optimiza-
tions that can be used to detect equivalent mutants (dead
code, constant propagation, invariant propagation, common
subexpression, loop invariant, hosting and sinking) and found
that such compiler techniques could detect about half [35]. The
domains are sufficiently different that their results do not apply
directly: For example, Offutt and Craft find that only about
6% of mutants can be found equivalent via dead code analysis,
whereas we find that significantly more candidate repairs can
be found equivalent via dead code analysis. Similarly, our
primary analysis (instruction scheduling), which works very
well for program repair, is not among those considered by early
work in mutation testing. In mutation testing, the equivalent
mutant problem can be thought of as related to result quality,
while in program repair, the dual issue is one of performance
optimization by search space reduction.

VII. RELATED WORK

Related work from the subfields of program repair and
mutation testing is most relevant to this paper. We characterize
related repair work along a number of dimensions, summarize
our differences, and then discuss mutation testing.

Domain-specific repair. Several repair methods target par-
ticular classes of bugs. AFix generates correct fixes for single-
variable atomicity violations [24]. Jolt detects and recovers
from infinite loops at runtime [8]. Smirnov et al. insert memory
overflow detection into programs, exposing faulty traces
from which they generate proposed patches [47]. Sidiroglou
and Keromytis use intrusion detection to build patches for
vulnerable memory allocations [46]. Demsky et al. repair
inconsistent data structures at runtime via constraint solving
and formal specifications [14]. Coker and Hafiz address unsafe
integer use in C by identifying faulty patterns and applying
template-style code transformations with respect to type and
operator safety to correct erroneous runtime behavior [10].

General repair. Other approaches target software defects
more generally. Arcuri proposed using GP to repair pro-
grams [4]; and several authors explore evolutionary improve-
ments [55] and bytecode evolution [39]. ClearView notes errors
at runtime and creates binary repairs that rectify erroneous
runtime conditions [40]. The ARMOR tool replaces library
calls with functionally equivalent statements: These differing
implementations support recovery from erroneous runtime
behavior [9]. AutoFix-E builds semantically sound patches
using testing and Eiffel contracts [52]. SemFix uses symbolic
execution to identify faulty program constraints from tests and
builds repairs from relevant variables and constructive operators

to alter the state of the program at the fault location [34].
Kim et al. introduced PAR, which systematically applies mined
bug repair patterns from human-created patches to known
faults, leveraging semantic similarities between bugs and human
expertise [26]. Debroy and Wong [12] use fault localization
and mutation to find repairs.

The work in this paper is related to generate-and-validate
program repair techniques such as GenProg [27], [54], PAR,
ClearView, and Debroy and Wong. However, it differs in several
ways: We compute a quotient space of possible repairs using an
approximation to program equivalence; we propose an adaptive
test selection strategy, and we make explicit a duality with
mutation testing. Unlike the work that targets a particular defect
class, our approach is general and handles multiple types of
defects without a priori knowledge. Unlike techniques that use
synthesis (e.g., SemFix) or specifications (e.g., AutoFix-E), our
approach has been demonstrated on orders-of-magnitude larger
programs. As our cost model reveals, however, many aspects
of of program repair are orthogonal. Our approach could easily
“slot in” a better fault localization technique (as in SemFix or
Debroy and Wong) or a mutation space that includes templates
adapted from human repairs (as in PAR).

GenProg’s RepairStrat uses the GP search heuristic which
assumes implicitly that mutations of candidates that have
previously passed the most test cases (i.e., have high fitness) are
the most likely to be valid repairs. This approach has succeeded
on problems, but no explanation has been offered for why it
might hold, and other approaches are possible (e.g., perhaps
mutations to previously unexplored parts of the program should
be favored). Similarly, recent GenProg studies have used a
TestStrat that “runs the candidate on a random 10% of the test
cases; if it passes all of those, run it on the rest.” Our explicit
formulation in terms of an arbitrary RepairStrat and TestStrat
generalizes GenProg’s random strategy. Our use of a sound
approximation to program equivalence could also be applied
to other generate-and-validate program repair techniques (e.g.,
Debroy and Wong [12]).

Mutation testing. Mutation testing measures the adequacy
of test suites, often highlighting hidden faults by revealing
untested parts of a program [18], [23]. Mutation operators
commonly mimic the types of errors a developer might
make [13]. Untested parts of a system are exposed if the
mutations change the program behavior in a meaningful
way and the test suite fails to detect those changes. Critical
challenges for mutation testing include the prohibitively large
search space of possible mutants, the high cost of testing,
and the difficulty in determining if a mutant actually changes
program behavior (and thus should be caught by tests) or is
equivalent to the original (and thus should not be) (cf. [44]).

Early work in mutation testing attempted to solve this
problem by sampling mutants (e.g., [1], [7]) or systematically
selecting which mutations to make (e.g., [30]). Previous work
in detecting equivalent mutants considered many possible
approaches: using compiler optimizations [5], [35], constraint
solving [36], program slicing [19], [51], attempting to diversify
mutants via program evolution [2], and code coverage [43].
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In this paper we propose that an important subset of generate-
and-validate program repair can formalized as a dual of
mutation testing. In this ideal view, mutation testing takes a
program that passes its test suite and requires that all mutants
based on human mistakes from the entire program that are
not equivalent fail at least one test. By contrast, repair takes a
program that fails its test suite and requires that one mutant
based on human repairs from the fault localization be found
that passes all tests. The equivalent mutant problem relates to
outcome quality for mutation testing (is the adequacy score
meaningful); it relates only to performance for program repair
(are redundant repairs considered). While both techniques are
based on a competent programmer hypothesis, the coupling
effect hypothesis for mutation testing relates to tests (“tests
that detect simple faults will also detect many complex faults”)
while for program repair it relates to operators (“mutation
operators that repair simple faults can also repair many complex
faults”). The structure of this duality (e.g., program repair can
short-circuit its search with one failing test or one passing
repair) informs our proposed algorithm. It also explains AE’s
scalability: most mutation testing work presents evaluations
using programs with less than 1,000 lines [23, Tab. IX],
and the largest involves around 176,500 lines of code [43].
Comparatively, we evaluated on nearly 30 times the largest
previously investigated amount of code, including one system
that encompasses over 2.8 million lines of code itself: Program
repair requires exhaustive testing to validate the impact of a
repair while mutation testing desires exhaustive whole-program
mutation to validate adequacy of a test suite. In addition, this
duality highlights areas that may benefit from existing mutation
testing techniques.

VIII. FUTURE WORK

The crucial issue of repair quality is not adressed here,
but note that program repairs similar to those of AE have
been successfully evaluated by Red Teams [40], held out
test cases and fuzz testing [29], and human judgments of
maintainability [17] and acceptability [26]. Even incorrect
candidate patches cause bugs to be addressed more rapidly [53],
so reducing the cost of repairs while maintaining quality is
worthwhile.

There are several promising directions for future improve-
ments to AE. “Mutant clustering” selects subsets of mutants
using clustering algorithms [22] (such that mutants in the same
cluster are killed by similar sets of tests): such a technique
could be adopted for our repair strategy (cluster candidate
repairs by testing behavior and prioritize repairs that differ
from previously investigated clusters). “Selective mutation”
finds a small set of mutation operators that generate all
possible mutants, often by mathematical models and statistical
formulations [45]. Such techniques are appealing compared
to post hoc measurements of operator effectiveness [28] and
suggest a path to principled, weighted combinations of simple
mutations [54] and complex templates [26], both of which are
effective independently. Finally, “higher-order mutation” finds
rarer higher order mutants corresponding to subtle faults and

finds that higher-order mutants may be harder to kill than their
first-order component [21]. This is similar to the issue in repair
where two edits may be required to fix a bug, but each reduces
quality individually (e.g., consider adding a lock and unlock

to a critical section, where adding either one without the other
deadlocks the program. Insights such as these may lead to
significant improvements for current program repair methods
which succeed on about 50% of attempted repairs [34], [27].

Better equivalence approximations from mutation testing [2],
[36], [43], [51] could augment our instruction scheduling
heuristic. Just as the CPH encourages mutation testing to favor
local operations corresponding to simple bugs [13], program
repair may benefit from higher-level structural mutations (e.g.,
introducing new types, changing function signatures, etc.),
which are integral to many human repairs.

IX. CONCLUSION

This paper formalizes the important costs of generate-and-
validate program repair, highlighting the dependencies among
five elements: fault localization, possible repairs, the test suite,
the repair selection strategy, and the test selection strategy.
We introduced a deterministic repair algorithm based on those
insights that can dynamically select tests and candidates based
on the current history of the run. The algorithm computes
the quotient space of candidate repairs with respect to an
approximate program equivalence relation, using syntactic and
dataflow analyses to avoid superfluous test when the outcomes
are provably already known. We evaluated the algorithm on
105 bugs in 5 million lines of code, comparing to GenProg.
We find that our algorithm reduces the search space by an
order of magnitude. Using only first-order edits, our algorithm
finds most of the repairs found by GenProg, and it finds
more repairs when GenProg is limited to first-order edits. The
algorithm achieves these results by reducing the number of
test suite evaluations required to find a repair by an order
of magnitude and the monetary cost by a factor of three.
Finally, we characterize generate-and-validate program repair
as a dual of mutation testing, helping to explain current and
past successes as well as opening the door to future advances.
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