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Abstract

We have constructed a computer model of the cytotoxic T
lymphocyte (CTL) response to antigen and the maintenance
of immunological memory. Because immune responses of-
ten begin with small numbers of cells and there is great
variation among individual immune systems, we have cho-
sen to implement a stochastic model that captures the life
cycle of T cells more faithfully than deterministic models.
Past models of the immune response have been differential
equation based, which do not capture stochastic effects, or
agent-based, which are computationally expensive. We use
a stochastic stage-structured approach that has many of the
advantages of agent-based modeling but is much more effi-
cient. Our model can provide insights into the effect infec-
tions have on the CTL repertoire and the response to subse-
quent infections.

1 Introduction

Collaborations between biologists and computer scien-
tists have produced spectacular results, most notably the
sequencing of the human genome. Despite the successes
of this collaboration, most current approaches are a long
way from allowing us to model complex biological sys-
tems, much less entire organisms. We believe that com-
puter scientists can play a more integrated role in their col-
laboration with biologists than simply applying existing al-
gorithms from computer science, or inventing new ones, to
data from molecular biology. Computer modeling provides

an alternative to the animal models traditionally used by bi-
ologists, and it complements the capabilities of determinis-
tic mathematical models. Computer modeling allows one to
integrate a wealth of experimental findings into a coherent
system that can provide great insight into biological sys-
tems.

Based on a variety of experimental results from the liter-
ature, we have constructed a computer model of a major
component of the mammalian immune system, the cyto-
toxic T lymphocyte (CTL) response. Our ultimate goal is
to use the model to provide insight into the pathology and
possible treatments of diseases such as AIDS, flu, cancer,
and autoimmune disorders. In the process of building the
model we were able to situate experimental data from mul-
tiple experiments in a coherent framework that forms a rel-
atively complete and consistent interpretation of T cell be-
havior. We take a computationally efficient stage-structured
modeling approach which allows us to incorporate available
biological data relatively easily, resulting in a model that
makes quantitative predictions. In the sections that follow,
we briefly review the CTL response to infections, discuss
other approaches to modeling the immune system, describe
our own model of CTL responses, and illustrate its behavior
in three different settings.

2 The cytotoxic T cell response

CTLs play a unique role in our immune systems. They
reside in tissue or circulate through the body via the blood
and lymph to detect cells that have been compromised by
foreign organisms, such as viruses and bacteria. After the
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Figure 1. A schematic representation of the
primary and secondary T cell responses to
infection. A virus enters the body and rapidly
infects the host (dotted line). The cells of the
immune system (solid line) respond by repli-
cating and eliminating the virus. Upon a sec-
ond exposure to the same virus, the immune
system eliminates the virus before massive
infection occurs.

first exposure to a virus, T cells rapidly replicate and attack
infected cells in a primary response. The T cell population
then decreases, leaving behind a population of long-lived
memory cells (Figure 1). The virus is typically eliminated
within two weeks. If the individual is infected again by the
same virus, the memory T cells mount a much larger and
faster secondary response, which can often clear an infec-
tion before it becomes symptomatic. Thus, each infection
prepares the immune system to be more effective in subse-
quent encounters. However, this response is very specific to
a particular infectious agent and will usually not protect the
individual from unrelated viruses. A lifetime of exposure to
pathogens shapes an organism’s repertoire of memory cells,
making the states of different individuals’ immune systems
unique.

The above description is a population-level view of the
immune response. The behaviors of the virus and T cell
populations are described in the aggregate, not as the ac-
tions of individual cells. T cells have traditionally been
studied using functional assays, in which the behavior of
a culture of cells is studied in vitro. These kinds of data
give information about the behavior of populations of cells.
Newer technologies, such as CFSE labeling [27] and two-
photon laser microscopy [9], allow immunologists to ob-
serve or infer the behavior of T cells at the level of the in-
dividual cell in vivo. These newer data provide a differ-
ent view of immune cell behavior that must be reconciled
with earlier population-level results. We claim that stochas-

tic modeling techniques, described in the next section, will
allow us to integrate these two kinds of data.

3 Approaches to immunological modeling

Differential equation models have long been used for im-
mune system modeling [1, 4, 6, 14, 20, 32, 37, 38]. In these
models, populations of antigens and immune cell types
are continuous variables in systems of ordinary differential
equations (ODEs). Analytical techniques allow modelers
to define regimes of system behavior and their associated
parameters and initial conditions. For example, one can de-
termine the model parameters for which an infection is ef-
fectively cleared by the immune system [6]. The solutions
capture the average behavior of large populations of per-
fectly mixed, identical cells. Many techniques that could
make these models more faithful to biological reality, such
as adding time delays or partial differential equations [1],
complicate solving the models analytically or even numeri-
cally. Moreover, data on the behavior of individual cells is
difficult to incorporate directly, and these data must gener-
ally be recast as population-level phenomena. For example,
we can estimate both the minimum and average time it takes
for a cell to divide, but an ODE model would typically ex-
press population growth using only the average cell cycle
time.

Agent-based simulation is a promising new technique
made feasible with the advent of greater computer power.
These systems monitor the actions of a large number of
simple entities, or agents, in order to observe their global
behavior. Each agent consists of state variables and a set of
rules that governs its behavior, and they can interact either
directly with each other or indirectly through the environ-
ment. Because all individuals in a population are explicitly
represented, they can have unique histories and behaviors.
The global behavior of these agents is observed in a discrete
time or event-driven simulation.

Agent-based modeling has many features suited to mod-
eling the immune response. It is adept at incorporating
stochastic events, which appear to be crucial in regulating
immune function [17]. A single chance event, such as the
serendipitous recognition of a cancer antigen by a single cell
in the immune system, can determine the fate of an organ-
ism [33]. The addition of randomness to a model allows one
to explore the distribution of possible outcomes, as in [13],
as opposed to only the single most likely one addressed
by most mathematical models. This is especially valuable
when studying immune responses, as even genetically iden-
tical individuals can exhibit different responses to the same
antigen [26]. Because small numbers of cells are involved
at the beginning of an immune response [7,16], using a dis-
crete model might be more suitable than a continuous one.
The existing agent-based models of the immune system,
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such as IMMSIM [10, 23, 39], the B cell model of Smith et
al. [41], and the self-nonself discrimination model of Lang-
man and Cohn [11, 24], take advantage of these features.
Another advantage of agent-based models is that by explic-
itly representing the individual cells, they are in many ways
closer to the modeled system. In contrast to population-
level models, agent-based model parameters correspond to
actual properties of the cells, and the output of these mod-
els can be processed so that they can be observed at the any
level, from the level of the individual cells to the population
level.

Unfortunately, agent-based modeling can be computa-
tionally costly. The CTL population alone may have as
many as cells in a human, and running a model with
this many distinct entities would be prohibitive. To address
such problems, agent-based models can be implemented to
take advantage of multiple computers, such as the paral-
lel version of IMMSIM known as PARIMM [5]. Because
agent-based models must be run many times to characterize
the distribution of outcomes, they should be as simple and
efficient as possible without sacrificing essential aspects of
the immune response. Using techniques such as lazy evalu-
ation [40] allows models to instantiate only cells that partic-
ipate in an immune response, but a response in a mouse can
involve on the order of CTLs [8], which is still a large
number to simulate explicitly.

For computational efficiency, we have chosen to use a
stochastic stage-structured approach [28] to modeling the
immune response. Stage-structured models have long been
used to model populations in ecology [25, 43] but have not
yet been applied to immune systems. In these models, an
individual’s life cycle is divided into stages, such as devel-
opmental maturity or body size. All individuals in a given
stage are assumed to be identical. Therefore, only a sin-
gle integer is required to represent the individuals in a given
stage, rather than the data structure per individual needed by
an agent-based approach. By making our model orders of
magnitude more efficient than equivalent agent-based mod-
els, we can easily run the model a larger number of times
and on less powerful computers. The transition probabili-
ties between these stages is specified, and the model can be
used to predict the demographics of a given initial popula-
tion over time. Stochasticity can be added to the model if
needed, for example to model the distribution of possible
outcomes. Analytical techniques have been developed for
these models, but when there are interacting populations,
in our case T cells, infected cells, and virus, it is easier to
run the model on a computer multiple times. In order to al-
low T cells to interact with the viral infection, we run the
T cell model and the viral model synchronously and at each
time step the populations can interact. For example, at some
stages T cells can eliminate infected cells, so at each time
step the number of infected cells is reduced by a function of

the number of T cells that are in these stages.
By using discrete rather than continuous populations and

by explicitly specifying the actions and transitions of cells
as probabilities per individual cell, our model enforces the
realistic behavior of individual cells without the computa-
tional cost of representing each cell explicitly. We strike a
balance between the unrealistically small number of popu-
lations used by analytical approaches and the unwieldy one-
agent-per-cell implementations of agent-based models. Be-
cause we do not intend to solve our system analytically, we
can accommodate multiple cell states. However, to make
the model more efficient than an equivalent agent-based
model, we must limit the number of possible cell states to a
manageable number (described in section 5).

4 T cell behavior

We can infer much of the life cycle of CTLs at the cel-
lular level from experimental data. For simplicity, the de-
scription that follows omits many essential components of
the immune response, such as the innate immune system,
dendritic cells, and CD4 T cells; their role in facilitating
the CTL response is implicit in the model.

T cell precursors are generated in the bone marrow and
mature in the thymus. Each T cell responds to a particu-
lar peptide bound in the groove of a particular cell surface
protein, called a major histocompatibility (MHC) molecule.
The total repertoire of T cells covers an enormous range of
possible MHC-peptide complexes. As a consequence, there
is the possibility that some of these T cells will react to the
body’s own cells. The thymus performs selection on these
new T cells, only allowing those that are not likely to re-
act to the body to mature and leave the thymus. Once ma-
ture, T cells migrate to secondary lymphoid organs where
they essentially lie dormant as naı̈ve cells. When a naı̈ve
cell is exposed to its cognate peptide in sufficient quantity,
it is committed to a programmed response that causes it to
divide and become an effector cell even in the absence of
further antigenic stimulation [21, 44]. Larger doses of anti-
gen can induce larger responses primarily by stimulating a
greater number of naı̈ve cells, not by stimulating individual
cells to a larger degree [21]. For the first 24 hours, the newly
activated T cells do not replicate [18, 34, 44, 45], but after
this initial phase, they can rapidly divide a fixed number of
times and acquire effector functions, such as cytotoxicity
(i.e., the ability to kill cells) [21]. Effector CTLs kill cells
either by releasing perforins that create holes in the target
cell’s membrane or by triggering apoptosis, or cell suicide,
in the target. During this period of rapid expansion, the cells
also have a high death rate, reducing net population growth.
After the programmed division cycles, the death rate domi-
nates CTL kinetics and the population declines rapidly [3].
If the pathogen is not cleared by this time, the remaining T
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Figure 2. A simplified state transition diagram
for the T cell life cycle. The actual model has
hundreds of states.

cells might stop responding to infected cells.

Although most of the T cells participating in the response
die, a small subpopulation persists as memory cells [30].
Memory cells are able to mount a faster and more aggres-
sive secondary response in future encounters with the same
or closely related pathogens [15]. Upon antigenic stimula-
tion, memory cells begin to proliferate almost immediately
and develop cytotoxicity within a few hours [2]. Their repli-
cation rates are approximately the same as effectors in the
primary response, but their lower death rates allow them to
accumulate faster [19,45]. In addition, both the shorter time
to acquire effector functions and the larger starting popu-
lations allow them to clear infected cells much faster than
effectors in the primary response can. Immunological mem-
ory forms the basis of vaccination, in which an organism is
exposed to viral antigens in order to build immune memory
to the virus.

5 Our model of T cell behavior

We have incorporated the elements of the T cell life cy-
cle into a model. The number of possible T cell states in
our model is in the hundreds, but because T cells basically
follow a linear development path [35], the number of state
transition probabilities we need to define is small (Figure 2).
In fact, most of these states are needed solely to keep track
of the amount of time a cell needs to wait before it can tran-
sition between two other states, so most of the transition
probabilities are 1.

Our model runs in discrete one-hour time steps, and all
entities in the model act synchronously at each time step.
If it takes 24 hours for a cell to transition from state to
state , 24 separate stages would represent the cells that
are in the process of this transition, one for each hour. At
the end of each simulation hour, the members of each of
these stages are automatically promoted to the next. Using
a smaller time step would require the model to have more
states, while a larger step would yield less accurate results.
Many transitions in the model are stochastic, and instead
of automatically transferring all members of a stage, only a
random fraction of them are. In such situations, we assume
that all members of a stage have the same probability
of transitioning, and the number that transition in a given
hour could be determined by generating random values
between 0 and 1 then counting the number that are less than

. For computational efficiency, rather than generating
random values we generate only one uniformly distributed
random value and use it to draw from a binomial distribu-
tion , which gives the same overall behavior.

Naı̈ve T cells specific to a particular antigen are in the
same stage until they are stimulated. Our model accom-
modates T cells of different specificities by instantiating
separate stage-based models for each, but for the purposes
of discussion we will assume that there is only one T cell
specificity. As naı̈ve cells are stimulated, they are promoted
through a series of 19 stages that represent the 19 hours be-
fore a naı̈ve cell can begin its programmed response. The
cells in these stages do not interact with infected cells, but
when they emerge after 19 simulation hours, they become
effectors and start responding to infected cells and divid-
ing. In our model, T cells take a minimum of 5 hours to
divide, so the first T cell divisions can take place 24 hours
after antigenic stimulation, which agrees with experimental
findings.

Infected cells, uninfected cells, and virus levels are mod-
eled by a set of difference equations that interact with the
T cell models at each time step. In this model of viral in-
fection, viruses infect uninfected cells, converting them to
infected cells, which in turn produce more virus [31,36,46].
A constant source replenishes the pool of uninfected cells,
which allows the body to recover after infection. We use
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deterministic difference equations because the number of
infected cells is generally large, so using a random number
generator to add stochasticity would have little effect.

We implement the programmed divisions of effector
cells by keeping track of the number of times a cell di-
vides. Each new effector cell is placed in a stage of ef-
fectors that have not yet divided. When one reproduces, it
is moved with its daughter to the next division stage. Af-
ter 15 divisions (about 5 days of replicating), the cells stop
dividing [3]. Therefore, the model simply needs to store
values for the number of cells that have divided 0 through
15 times, which is much more efficient than storing the ages
of billions of individual effector cells. After the cells stop
dividing at the end of the programmed response, the high
death rate in effect during the entire response causes the cell
population to rapidly decline.

A cell can not divide arbitrarily quickly, and we en-
force a minimum division time by using a 2-phase cell cycle
model [42]. A cell cycle starts in phase , during which the
cell does not divide. At each time step, a cell has a constant
probability of entering phase , which has a fixed length.
At the end of the phase, both the parent cell and the new
daughter cell enter the phase of the next division stage.
Therefore, a cell’s minimum time to division is the length
of the phase. Without this phase, some cells could divide
an arbitrarily large number of times in a time interval.

To implement the 2-phase cell cycle model, each divi-
sion stage is further divided into sub-stages in the phase
and phase. At each time step we draw from a binomial
distribution to determine the number of cells in the sub-
stage that transition to . We also allocate one sub-stage per
time step that the cells remain in phase, and cells in these
sub-stages are promoted to the next stage at each simulated
hour. We use one-hour time steps, so if cells remain in
phase for hours, there will be phase sub-stages per
division stage. We assume that the minimum time to divi-
sion is about 5 hours [44], so each division stage’s phase
has 5 sub-stages. If we assume that a T cell can divide 50
times, there could to be up to 300 subpopulations of cells
per T cell clone, or 50 phase subpopulations and 250
phase subpopulations. These 300 subpopulations efficiently
represent the millions of effectors that can originate from a
single T cell clone in an immune response.

After 5 cell divisions [34, 35], effector cells have a con-
stant probability per time step of becoming memory cells,
which results in a final memory pool that is about 5% of the
size of the peak response [12]. It can take 2 or 3 weeks
for a cell to develop a full memory cell phenotype after
the initial infection [22]. Therefore, memory cells are not
likely to join the immune response that initially generated
them. Memory cells are dormant until antigenic stimula-
tion. When stimulated by antigen, they can rapidly start
responding to the infection.
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Figure 3. Primary and secondary CTL re-
sponses to viral infection. The dashed lines
represent virus levels, with the secondary ex-
posure to the virus at day 28. The solid line
represents the number of T cells specific to
this virus, including naı̈ve, effector, and mem-
ory cells.

The current version of this model, written in Java, is
available upon request from the first author. We chose
to implement the program in Java to make it platform-
independent, and we have found its performance to be sat-
isfactory.

6 Preliminary results

Our model reproduces population-level phenomena seen
experimentally in laboratory mice, and we describe some
of these results below. We begin with an experiment that
illustrates the basic differences between primary and sec-
ondary responses, then proceed to describe our model of
experiments that replicate results found in laboratory exper-
iments.

6.1 Primary and secondary immune responses

We simulated the primary and secondary responses to an
acute infection (Figure 3). For this trial, we were not at-
tempting to match our results to a particular experiment but
were instead interested in testing the overall dynamics of
the T cell response in the model. We simulated the injec-
tion of 5,000 virus particles into a mouse, and the primary
response began after approximately one day. The response
peaked at day 7 then declined to form a stable memory pool.
At day 28, an identical injection was administered, and the
secondary response was faster and larger than the primary.
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The secondary response began almost immediately after the
second exposure to the virus, and the lower death rate of
memory-derived effectors [19] caused the T cell population
to increase more rapidly than in the primary response. The
secondary response also generated a larger pool of stable
memory cells. Therefore, the simulated mouse’s immuno-
logical memory could be “boosted” by multiple exposures
to the same antigen, making future responses to it even more
effective.

6.2 The programmed response

One of the implications of the programmed T cell re-
sponse is that the immune response is initiated by antigen
but its outcome is antigen-independent. If this is the case,
then removing antigen after the start of a response should
not affect it. This was tested in mice infected by the bac-
terium L. monocytogenes [3, 29]. Antibiotics were admin-
istered to eliminate the bacteria 24 hours after inoculation,
which quickly removed all antigen. The peak of the T cell
response occurred at the same time in the mice administered
antibiotics and in the control mice, which were not given an-
tibiotics. The early elimination of infected cells only caused
a small reduction in the magnitude of the responses. The
removal of antigen did not greatly affect the timing or the
magnitude of the T cell response.

Our model predicts a similar outcome (Figure 4). The
reduced response in our model was due to the shortened
recruitment time for naı̈ve cells; when the simulated infec-
tion was eliminated after 36 hours instead of 24, the mag-
nitude of the T cell response matched that of the control
case (data not shown). Incorporating the programmed re-
sponse might be essential to modeling the efficacy of vacci-
nations. Vaccines often use attenuated strains of pathogens
that have diminished reproductive capacity and are rapidly
cleared from the body. If the purpose of a vaccine is to
induce a large response in order to build a large pool of spe-
cific memory cells, then a large dose of an attenuated virus
might be effective even if the virus level drops rapidly. If the
T cell response were totally antigen-dependent, short peri-
ods of antigenic stimulation would not initiate an adequate
response.

6.3 Näıve population size effects

The size of the initial naı̈ve cell population can affect the
outcome of an infection. Presumably, increasing the num-
ber of naı̈ve cells can result in a larger and more effective re-
sponse to infection. This hypothesis was tested experimen-
tally in mice [16]. The number of naı̈ve cells in mice was
experimentally increased before infection in order to deter-
mine how the number of responding naı̈ve cells affects the
T cell response to an acute infection. Increasing the number
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Figure 4. T cell response to an infection inter-
rupted by antibiotic treatment. The antigen
(dashed line) was removed from the system
after 24 hours. The T cell response (solid line)
is almost unaffected by the removal of anti-
gen. The antigen and T cell levels of the con-
trol case, in which the antigen is not removed,
are plotted for comparison (dotted lines).

of naı̈ve cells by 1000-fold moved the peak of the infec-
tion between 1 and 2 days earlier and reduced the viral load
by about 2 logs. In other words, the infection was smaller
and eliminated sooner. Our model’s results are in agree-
ment with the mouse experiments; increasing the number
of naı̈ve cells in the model 1000-fold, the peak virus load
was one day earlier and between 2 and 3 logs smaller than
in the control case (Figure 5).

7 Conclusions

We have presented a model of the CTL response and
memory formation that features realistic behavior at the
level of the individual cells yet is more efficient than stan-
dard agent-based approaches to modeling. In doing so, we
are able to incorporate various stages of the T cell life cycle
using the most detailed observations from laboratory exper-
iments. The model yields results that are consistent with
experiment.

The value of modeling goes beyond simply predicting
the behavior of a system. The process of building the model
highlights gaps and inconsistencies in our understanding of
the immune response. If our model produces unrealistic re-
sults, then we can modify and test the assumptions made on
the immune-cell level to rectify the model’s output. The
most plausible of these models can become working hy-
potheses of T cell behavior that experimentalists could ver-
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Figure 5. The effect of increasing the number
of naı̈ve cells. One model run started with 50
naı̈ve cells (solid line) and a modest virus load
(dashed line). The other model run started
with 50,000 naı̈ve cells (dotted line) and the
same virus load (dash-dot line).

ify in the lab. The creation of models tests the intuition of
immunologists. When the mechanisms of the immune re-
sponse are studied in reductionistic detail, it is easy to lose
sight of the system as a whole. Our model integrates the
knowledge gained in laboratory experiments to form a co-
herent system that simulates an immune response. Our pre-
liminary results show that the model can reproduce a wide
variety of laboratory results. This approach to bridging the
gap between cellular-level and whole organism studies re-
quires close collaborations between experimental biologists
and computer scientists.
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