
Computer Immunology

Stephanie Forrest and Catherine Beauchemin

Department of Computer Science
University of New Mexico
Albuquerque, NM 87131

(Dated: October 29, 2006)

This review describes a body of work that constructs computational immune systems that
behave analogously to the natural immune system. These artificial immune systems (AIS)
simulate the behavior the natural immune system and in some cases have been used to
solve practical engineering problems such as computer security. AIS have several
strengths that can complement wet lab immunology. It is easier to conduct simulation
experiments and to vary experimental conditions, for example, to rule out hypotheses; it
is easier to isolate a single mechanism to test hypotheses about how it functions; agent-
based models of the immune system can integrate data from several different experiments
into a single in silico experimental system.

Keywords: artificial immune system, agent-based models, in silico modeling,
computational immunology

I. INTRODUCTION

 This paper reviews a body of work that takes a synthetic, or constructive,
approach to immunology, engineering artificial immune systems (AIS) in computational
settings. In AIS both the components of the immune system and their environments are
defined as computations. In some cases, the AIS simulate immune system function in
digital environments (as in all computer simulations), and in others they are practical
solutions to real problems such as computer security. A common thread, however, is that
hypotheses about components and mechanisms are expressed mechanistically as
computer programs. When the programs are executed, their behavior is observed and, in
the case of models, compared to the behavior of the real system. In practical applications,
system behavior is evaluated by how well it solves the specified problem. The motivation
is to engineer a system that can operate successfully in an environment with constraints
similar to those faced by the natural immune system, thereby learning the functional
significance of different components and analyzing how they interact with one another.
The engineering process, like natural selection, leads to designs that are adapted to the
constraints of their environments. Engineered systems can be studied and analyzed more
easily than their biological counterparts, in some cases revealing phenomena that would
be difficult to discover experimentally.
 In contrast with other theoretical models of immunology, AIS are usually
constructed as agent-based models (ABM) (1). In ABM, entities in the model are
represented explicitly. For example, each individual cell might be represented rather than
each different cell type, as is common in other approaches such as differential equations.
An essential feature of ABM is the ability to observe how behavior at different spatial
and temporal scales arises from local mechanisms. This requires studying interactions
among large numbers of components, and to accomplish this ABM exclude much
biological detail by design. The trick is to define the model components at a proper level
of abstraction, neither including irrelevant or incorrect detail nor leaving out essential
features. The behavior and interactions of the entities in the model are encoded as
computer programs. Consequently, experimental findings and hypotheses can be
incorporated directly, even when they are not easily characterized as mathematical
equations. The low-level components and interactions of an ABM are specified as
programs, the simulation is run, and high-level behaviors are observed. For example, in a
biological simulation the high level behavior might show how cell populations change
over time. This is known as a bottom-up approach to modeling. In ABM, the simulation
can be run repeatedly, with slightly different initial conditions, revealing a distribution of
outcomes rather than a single average behavior. For some immunological phenomena,
this is relevant to understanding why some individuals become ill and others do not.
 This review first gives an overview of ABM techniques as they are typically
applied to immunology (Section II). It then describes representative examples of how
ABM have been used to develop models of immunological phenomena (Section III).
Next, it describes how similar methods have been used in engineering applications
(Section IV), where the abstractions and techniques that succeded in modeling biology
also work for computer security and other applications. Then, returning to natural

immunology, it discusses examples of AIS applied to problems of biomedical
significance (Section V). Finally, the paper speculates about the future prospects and the
usefulness of engineered immune systems.

II. AGENT-BASED MODELING FOR IMMUNOLOGY

 In the past two decades, many methods have been used to model the immune
system. Differential equation models are perhaps the most common, typically simulating
how concentrations (cells, antibodies, cytokines, etc.) change over time and identifying
critical parameters of an immune response (2, 3). Neural networks were used to model
Jerne’s immune network theory (4 - 6), and genetic algorithms were used to model the
evolution of diversity (7, 8). The concept of “shape space” (9 - 11), proposed as an
abstraction of receptor/ligand binding, provided a convenient formalism for many
subsequent models, and many immune-system models still use some form of shape-space
abstraction. More comprehensive and general immune system simulators use ABM
techniques, incorporating significant amounts of immune detail (12 - 17). This last
category is the subject of Section III.
 In an ABM each entity, or agent, represents a single cell or pathogen, and a
computer program encodes its behavior and rules for interacting with other agents. Some
common behaviors include cell death (usually by deleting the cell from the simulation),
division (by making a copy of the dividing cell), or changing an internal state variable
(for example, to model cell activation or differentiation). An agent in an ABM is a
designated region of computer memory, similar to a variable, that contains details about
the particular cell. This information can include its size, location, age, what receptors it
has on its surface, and so forth. The agents can move through space, interacting locally
with other agents at nearby locations, following a set of predefined rules. Thus, the
behavior of the low-level agents is pre-specified, and the simulation is run to observe
global behaviors, for example, to determine an epidemic threshold. ABMs specify local
interactions in terms of simple mechanisms, which give rise to the large-scale complex
dynamics of interest.
 Why is ABM an appropriate method for studying immunology? First, the agent
behaviors can directly incorporate biological knowledge or hypotheses about low-level
components, even if they cannot be expressed mathematically. Second, data from
multiple experiments can be combined into a single simulation, to test for consistency
across experiments or to identify gaps in our knowledge. In the future, integrative
methods such as ABM will likely be essential tools for comprehending and aggregating
vast amounts of experimental data. Third, the immune system is a complex biological
system with many different interacting mechanisms, and many biologically relevant
values cannot be measured directly. For example, there are too many different
protein/protein and virus/protein interactions to expect that we can isolate all of them
experimentally. In an ABM it is relatively easy to disable mechanisms altogether, adjust
their relative contributions, and to perform sensitivity testing of parameters. Through its
functional specifications of cell behavior, ABM can thus help bridge the current gap
between intracellular descriptions and multicellular infection dynamics. Variation among
individuals, each making different amounts of innate proteins that almost certainly impact
the trajectory of an infection, is an important complication. These effects can be studied

using ABM by incorporating a distribution of parameter values in the agent population.
Finally, there are important spatial and temporal interactions easily studied in ABM, for
example, paracellular signaling between infected and uninfected cells.

 Place Fig. 1 here.

 Most ABM models of immunology represent receptors and ligands as character
strings (Fig. 1) and use a string matching rule to model affinity. This clever idea was
introduced by Farmer et al. (18) as a way to perform calculations for determining
molecular complementarity and predicting the optimal size of an epitope. An overview of
the calculation is given in (19). The strings use an alphabet of m characters where each
character corresponds, for example, to a given amino acid. In the most common case,
however, m = 2, although larger alphabets have also been studied. In immunology,
binding is a threshold effect consisting of two components: the affinity of a single
receptor and ligand, and the total binding, or avidity, of multiple binding pairs. Most
models focus on affinity by simply counting the number of positions in the string where
the symbols are identical. Many variations of this basic scheme have been proposed,
including different size alphabets, different numbers of symbols in the string, and many
string matching rules. Ref. (20) reviews some of the variations. The strings, together with
some internal state information (e.g., the age of the cell), are the “agents” in an immune
system ABM. Figure 1 illustrates this modeling strategy.
 This fundamental modeling abstraction ignores nearly all of the physical details
that determine receptor/ligand interactions. Careful modeling of a single interaction, say
using a molecular dynamics simulation, is expensive computationally. By adopting
character strings, many binding events can be simulated quickly, making it feasible to
study large scale properties of the immune system. Although character strings are
unphysical, they can produce surprisingly accurate models when benchmarked to
experiment (21), suggesting that the abstraction captures important features of
receptor/ligand binding.
 Interactions between agents, and between agents and their digital environment,
determine the dynamics of an ABM. In immune modeling, most interactions are mediated
by receptor/ligand binding. So, when strings bind above the threshold value, the
simulated cells may be stimulated to proliferate, increase their mutation rates, migrate to
a new location, die, or secrete simulated molecules. Antigen can be added to the system
in various locations, in varying doses, and at different times. The model is then “run” and
the dynamics of the infection observed.
 As computers became more powerful and less expensive, ABM became a
practical method for studying complex systems such as the immune system. The
following sections review a representative sample of conceptually important systems.
The models were highly simplified and abstract in the beginning, but over time they
gained sophistication as more was learned about the immune system and advances in
computation made it feasible to construct more complex models. Thus, the original

models were one-dimensional, and since then, there has been a progression to two- and
now three-dimensional simulations.
 More detail is not always desirable, however, as it can be difficult to interpret
results from an overly complex model. A simple model that isolates a few relevant
phenomena so they can be studied in detail is often more illuminating than an overly
complicated one with many extraneous features. Thus, there is a tension between
incorporating everything that is known and abstracting away from the physical details to
capture general principles. The most compelling and influential ABM have been those
where just enough detail was included to reveal a phenomenon of interest.

III. AGENT-BASED MODELING IN IMMUNOLOGY

 Early host-pathogen immune models consisted of simple one-dimensional binary
networks of automata (22, 23). Each network contained a set of nodes, where each node
represented a cell population (for example, B cells or T cells) that could be in one of two
states: zero = population is absent, or one = present at high levels. The nodes contained
rules specifying how connected populations would interact. Thus, the presence of antigen
might trigger a high level of B cells in neighboring populations. The networks were
initialized by setting certain populations (nodes) to zero or one, and then simulating the
network to find, for example, attractor states that could be interpreted in terms of an
immune response. Ref. (19) provides more detail about these early models.
 Early ABM of the immune system focused on immune network theory and were
often implemented as cellular automata (CA) (24 - 26). Each site of the CA grid
represented an idiotype or clone, and the state of the site represented the concentration of
that particular clone. The dimensionality of the grid (e.g. one- or two-dimensional)
represented the variable characteristics of the clone (e.g. geometric shape, electric charge),
and the size of the grid represented the number of different possible values (e.g., the
number of different shapes that were possible). The interaction rules specified that a
clone situated at xr = (x 1, x 2, · , x N), where N is the dimensionality of the grid, could
stimulate the proliferation of clones that were nearby, thus simulating the phenomenon of
cross-reactivity. When these models were simulated they produced complex patterns
resembling immune activity, with stable patterns corresponding to memory, and changing
patterns attributed to perturbations caused by new antigens. A variation of this approach
represented the network of idiotypic interactions using a classifier system, in which each
classifier rule specified a particular interaction, and its strength represented the
concentration of the idiotype (27). As interest in Jerne’s network theory waned, so did the
use of such models.
 The next generation of computational immune models was more ambitious,
incorporating significantly more immunological detail, e.g., (13, 28, 29). The CA grid
was used to represent physical space, rather than abstract properties of clones. The
simulators incorporated enough detail that one model could be used to study several
aspects of immune dynamics or disease
 In the following, we discuss two examples of CA systems, IMMSIM and
ma_immune. We then describe two three-dimensional models that incorporate
molecular modeling as well as cellular modeling, Simmune and CyCells. Finally, we
describe more recent work that emphasizes graphical visualization of immunological

processes. IMMSIM is a canonical example of the ABM approach applied to
immunology, so we describe it in more detail than the other systems. These general
models are useful on their own as a means of organizing specific hypothesized
mechanisms and studying how they interconnect—the value of this synthesis is revealed
by the many extensions developed for specific purposes (Section V).

A. IMMSIM

 An early CA model of the immune system introduced in 1992 is IMMSIM (13,
28). The original version modeled the humoral response (13) and contained bit string
representations of T cells, B cells and other antigen presenting cells (APC), as well as
antigen (Ag) and antibody (Ab) molecules. Later versions added cytotoxic and helper T
cells, epithelial cells, and cellular response (30, 31).
 The original version of IMMSIM was written in APL2 with the IBM APL2
runtime environment. Bernaschi and Castiglione later developed a parallel version called
ParImm and later CIMMSIM (15). Finally, a C++ tutorial version of IMMSIM based on
CIMMSIM was developed by Steven Kleinstein (14).
 Most simulations were run on small grids, typically a 15x15 hexagonal grid and
the size of the bit-string, N, was typically eight, yielding 28 = 256 different possible
clones. The time scale of a simulation is not always specified, but ref. (14, page 74)
suggests that one time step in the simulation corresponded roughly to the time for a single
B-cell division.
 1. Representing Receptor-specific Interaction Figure 2 illustrates the schematics
of cells and molecules in an IMMSIM model using eight-bit strings. As in most AIS,
immune components are characterized by their receptors, and each receptor is represented
as a character string. Typically (and this differs among the various implementations of
IMMSIM), a B cell is composed of a single receptor and a single MHC II molecule, each
represented by a binary string. Among the B cell population, for example, the simulations
typically consider only one or two different MHC II types. Antibody molecules are
represented as a single receptor. Finally, antigen molecules consist of segments of two
different types: B cell epitopes and presentable peptide strings.

 Place Fig. 2 here.

 2. Interaction Rules Interactions between agents are specified by a set of
interaction rules. For example, a B cell’s receptor interacts with the “bare” part of an
antigen. A T cell receptor interacts with the pair made up of an antigen peptide and the
MHC II of a B cell. To determine binding the receptor strings are compared symbol by
symbol, looking for mismatches, using a variant of Hamming Distance. Two bits match if
they are complementary. Thus, zero matches one and vice-versa. Fig. 2 illustrates this
approach, where there is a two-bit mismatch between the B cell’s Receptor 57 (00111001)

and the epitope (bare part) of Antigen 228 (11100100). If the number of matches is above
the binding threshold, which is a parameter of the simulation, then the agents interact.
 On any given step of the simulation, the set of potential interactions for each
agent (a cell or antigen) is determined, and out of this set one action is chosen for each
agent probabilistically. Then, each agent’s state (naive or activated) is updated
synchronously. Possible actions include cell death, cell division, and antibody production.
If, for example, an antigen-antibody interaction is successful, they are considered to have
formed a complex and both are removed from the simulation. Finally, the entities diffuse
to a randomly chosen neighboring grid site and that concludes one time step of the
simulation.
 3. IMMSIM studies The IMMSIM models were used to investigate
immunological phenomena such as affinity maturation and hypermutation in the humoral
response (12), the rheumatoid factor paradox (32), transitions between immune and
disease states and the relative contributions from the different branches of the immune
system (30, 31), vaccine efficiency (33), and the dynamics of HIV infection (34).
 IMMSIM was a conceptually important advance because it developed a general
modeling framework that could be used for multiple studies. It incorporated enough
immunological detail to support studies involving real immunological problems.
IMMSIM also illustrates the use of bit string representations of receptors and ligands.

B. ma_immune

 A more recent example of CA used for modeling immunology is ma_immune
(35). ma_immune is implemented on a two-dimensional grid, representing a tissue that
is patrolled by generic immune cells. ma_immune was designed as a simulation platform
for localized tissue infection, where the cells affected by pathogen are immobile, tightly
packed, and the infection spreads to immediate neighbors. The simulation considers two
cell types: tissue cells that are immobile, and generic immune cells that move randomly
to neighboring locations. The simulation platform, called ma_immune, together with the
supporting visualization software MASyV, is documented and freely available (36).
 The model was used to study how the spatial distribution of agents affects the
dynamics of an infection (37), something that is difficult to assess in a differential
equation model. Differential equation models normally assume that populations (target
cells, infected cells, virions, etc.) are uniformly distributed in space. Consequently, the
rate at which target cells become infected, for example, is proportional to the total
abundance of target cells and virions, without regard for the spatial localization of the
target cells and virions. Ref. (37) showed that grouping the initially infected cells into
patches rather than distributing them uniformly on the grid reduced the infection rate,
because only cells on the perimeter of the patch have healthy neighbors to infect. This
approach yielded a better fit to experimental influenza A infection data than the
equivalent non-spatial model.
 ma_immune is conceptually important because it isolates the effect of spatial
localization and provides an elegant explanation of how spatial localization can change
infection dynamics.

C. Multipurpose Modeling Frameworks

 Two recent modeling frameworks, Simmune and CyCells, are significantly more
general than earlier systems and represent a conceptual advance in immune system
modeling.
 Simmune is a two-level immune system simulator, which represented a
significant advance in immunological modeling (17, 38, 39). At the lower level,
molecules such as cytokines are defined as continuous quantities, and their dynamics are
modeled using differential equations. At the higher level, cells are modeled as discrete
computational agents. Thus, Simmune is a hybrid of continuous and ABM techniques.
The basic framework is defined generally enough that it could in principle model almost
any kind of cell population.
 Different types of cells can be defined by the user (e.g., T cells and B cells), and
the user specifies rules for how cells move between locations on the grid. Because
molecules are represented as continuous quantities, they move using diffusion rules,
whose parameters are also be specified by the user. Simmune is run on a three-
dimensional grid, the user defines different compartments (e.g., lymph nodes, thymus),
and specifies properties for each compartment within the simulation such as its dimension,
diffusion rates for each molecular type, which types of cells are in each compartment, and
their initial concentrations. The exchange of agents between the different compartments
can be regulated, for example, which kinds of agents are allowed to pass from one
compartment to another and at what rate. In Simmune a cell’s action depends on the
stimuli it senses from its environment, known as a cellular stimulus response mechanism.
 CyCells is a similar modeling framework, but its functions and usage are better
documented (40) and its source code is available online (41). Similar to Simmune, it
represents molecular concentrations continuously and cells discretely. CyCells is
implemented on a three-dimensional square grid. In CyCells models are defined by
specifying initial numbers of cells, cell types (e.g., B cells, macrophages), and molecular
signals (e.g., cytokines). Each cell of each cell type is represented explicitly, and the
molecular signals are represented as real-valued concentrations at each site. For each type
of molecular signal, the modeler supplies a decay and/or diffusion rate. CyCells uses the
sense-process-act abstraction for cell behavior. For each cell type, the modeler specifies
its attributes, and associates with it sensing, processing, and/or action procedures. An
attribute might contain the cell’s diameter, a sensing procedure could respond to a
particular molecular concentration, the processing function might specify that the cell is
activated when it senses the molecular concentration above a threshold, and the action
could be death, division, migration, or the secretion of a molecular substance. Hence, the
framework is highly flexible, allowing both simple and complex models to be
implemented in a single framework.
 Ref. (16) used CyCells to investigate two hypotheses about the maintenance of
peripheral macrophage population sizes in the lung. Under the first hypothesis,
macrophage proliferation was local and caused by the division of resident macrophages.
Under the second hypothesis, proliferation was the result of influx of circulating blood
monocytes. Although either scenario was plausible, the model showed that the influx-
driven system is inherently more stable and that a proliferation-driven system requires
lower cell death and efflux rates than an influx-driven model. CyCells was also used to

model early infection dynamics of Mycobacterium tuberculosis bacteria (42) (see Section
VB).
 These models were conceptually important because they introduced more realistic
treatment of cytokines and the other molecular players in the immune response. By
combining continuous models of molecular diffusion on a grid with agent-based models
of cells, these hybrid models represented an important step in ABM approaches to
immune modeling. Other hybrid models combine continuous and ABM methods in
different ways, for example (43), where a cytotoxic T cell’s life cycle is divided into
stages, and all individuals in a given stage are assumed to be identical. A single integer
represents the individuals in a given stage, rather than one data structure per individual
required in a pure ABM approach.

D. Representing large repertoires in immune system models

Running an ABM that explicitly represents a realistic number of cells can be
computationally expensive. An estimated 107 unique clones comprise an individual’s B
(44) and T (45) cell repertoires. Simulations containing this many clones have become
feasible with recent increases in computing power (15, 46), although running simulations
of this size is still time-consuming. Thus, most immunology simulations use artificially
small immune cell repertoires that contain tens or hundreds of clones. This is sufficient
for studying some immunological phenomena but not sufficient to address issues such as
cross-reactivity (47, 48) and alloreactivity (49) quantitatively. Because most cells in the
repertoire are not involved in any given immune response, only a small fraction of cells
needs to be updated on any given time step. This observation led to the use of lazy
evaluation, a computational technique in which only the computations that need to be
performed are actually carried out (50). Rather than create, for example, 107 explicit B
cell clones, the majority of which would not respond to a given infection, the lazy
evaluation version of an ABM would not create any clones until the simulated infection
began, then it would produce only the 102 − 103 that have sufficient affinity to participate
in the given immune response. Although using lazy evaluation complicates the software
implementation, it can reduce the memory and running time by orders of magnitude
without affecting simulation results. This strategy has been applied to B cell (50) and T
cell (43) models.

E. Statecharts and Visualization

 Efroni, Harel, and Cohen developed an immune system programming framework
based on the visual language of Statecharts, and ref. (51) describes the structure of a
statechart model for the thymus. Statecharts, introduced by David Harel in 1987 (52), are
a method for representing complex computational processes in terms of states and the
events that cause transitions between states. It also considers substates and orthogonal
states. For example, a cell’s orthogonal states could be its expression of different
receptors, and the substates could be the conditions or substates under which the cell
expresses a particular receptor. Although the terminology and motivation are different
from that of agent-based or CA models, they share many features and we discuss them
briefly.

 Agents in the model are the moving thymocytes and the stationary epithelial cells
of the thymus. A thymocyte’s motion depends on the gradient of the various cytokines
and the thymocyte’s expression of the markers that detect these gradients. The simulation
consists of four types of cytokines and seven thymocyte markers, five of which have
binary values (expressed or unexpressed) and two of which have three values (expressed,
unexpressed, and an intermediate low level of expression). Then, for example, based on
which of the 25 × 32 = 288 different possible marker states the thymocyte is in, it is
sensitive to a particular set of cytokines and its movement is determined by the cytokine
set.

 Place Fig. 3 here.

 The diagrammatic representation of state charts is intended to be easier to
understand for people from various disciplines, thus facilitating collaboration between
modelers and experimentalists. In addition, the model’s interactive graphical front-end
allows the user to see the agents move and interact, navigate the simulation by clicking
on particular agents, and either retrieve or set information about the agent’s state and
decision process (see Figure 3). Because immunological knowledge is often incomplete,
the model lets the user define different hypotheses for the outcomes of interactions, and
choose which instance of the available hypotheses will be executed on a given run, thus
supporting exploration of different hypotheses.
 An even more sophisticated visualization tool is PathSim (Pathogen Simulation),
a simulator developed for displaying three-dimensional anatomical models of host-
pathogen interactions (53). PathSim’s programming framework is described briefly in
(54), and more information is available from the project’s web site (55).
 As more detailed information becomes available about how individual immune
cells move through tissue (56 - 58), visualization packages such as the Statechart system
and PathSim will likely play a more central role in immunological modeling.

IV. ENGINEERING AN IMMUNE SYSTEM

 This section examines a body of work that translated the mechanisms and
organizational principles of the immune system into algorithms for solving computational
problems (59, 60). It is surprising that the abstractions and concepts discovered through
immune system modeling are general enough to form the basis of nonbiological,
engineered systems. However, AIS methods have been applied to a wide range of
problems, including control engineering, robotics scheduling, fault tolerance and
bioinformatics. The most prevalent example to date has been in computer security, and
we focus on that example in the following subsections.

A computer security system should protect a computer or network of computers
from unauthorized intruders, which is analogous in functionality to the immune system
protecting the body from invasion by foreign pathogen. Further, a computer security
system should protect against insider attacks, malfunctioning software (analogous to

misbehaving cells) and other internal errors, maintaining the computer within normal
operating tolerances. The similarities between the computer security problem and the
problem of protecting a body against damage from internally and externally generated
threats are compelling, and they were recognized as early as 1987 when the term
computer virus was introduced by Adelman (71). Later, Spafford argued that computer
viruses are a form of artificial life (72), and several authors investigated the analogy
between epidemiology and the spread of computer viruses across networks (73 - 76). The
connection to immunology was made explicit in (77, 78), and since that time the ideas
have been extended to incorporate significant amounts of immunology and to tackle
ambitious computer security problems, including computer virus detection (77, 78), spam
filtering (79), and computer forensics (80).
 Many different aspects of the immune system have been used as inspiration for
engineering applications. In addition to the examples given below there has been work on
danger theory (61), idiotypic networks (62 - 64), affinity maturation through somatic
mutation (65, 66), V-region libraries (67, 68), and the innate immune system (69, 70).
Nearly all of the applications exploit analogies with the pattern matching and learning
mechanisms of the immune system to perform desired computations. The studies
illustrate how immunological processes of interest can be defined computationally and
studied in detail to understand their functional significance. As we saw in earlier sections,
most computational realizations of immunology focus on the adaptive immune response,
and that is true in the computer security domain as well, although some recent work
emphasizes the innate response.

A. Elements of a Computer Immune System

 If we set out to engineer a computer immune system to solve problems in
computer security, what functional components would we need? Similar to the natural
immune system, there are computer defenses that correspond to nonspecific and specific
responses. Firewalls evolved to prevent unwanted communication between computer
networks; access controls (e.g., logins and passwords) were developed to control how
much access users have to computers and data. These generic defenses correspond to the
immune system’s nonspecific response. Specific responses, known as intrusion-detection
systems (IDS), recognize active intrusions, including those that may not have been seen
before. An IDS continuously monitors the dynamic behavior of a computer system to
determine if a security violation or denial-of-service attack has occurred. Such violations
include injected foreign code (as in the case of viruses) or exploitation of vulnerabilities
in existing code by illegitimate users. There are two broad classes of IDS, loosely
corresponding to primary and secondary responses in natural immunology. Similar to the
primary response, anomaly IDS can detect novel forms of attack, while signature
detection systems respond only to known attacks, corresponding to a secondary response.
Finally, some systems have an automated response component that corresponds to the
effector side of the immune system, such as inflammatory processes or cytotoxic T cells.
 In earlier sections, we saw how immune systems are modeled using
computational agents, with receptors and ligands represented as short strings of symbols,
death implemented by deleting agents from the simulation, and proliferation and cell
division implemented by copying agents. These abstractions are used in the computer

security domain as well, but additional decisions must be made. These include identifying
what data will be observed to detect infection (e.g., what corresponds to normal peptides
of the body); devising a scheme for generating a diverse repertoire of detectors;
specifying the details of the adaptive response (how will new infections be noticed and
remembered); and determining what actions the immune system will take to control
infections once they have been identified. In the following, we review each of these
elements briefly.

B. Defining Self

 Protecting computers involves activities such as detecting unauthorized use of
computer accounts, maintaining the integrity of data files, mitigating denial-of-service
attacks, and detecting and eliminating computer viruses and spyware. These can be
viewed as instances of the more general problem of distinguishing self (legitimate users,
uncorrupted data, etc.) from dangerous nonself (unauthorized users, viruses, and other
malicious agents). Just as the natural immune system evolved to monitor certain
observables in the body, notably peptides, so must an AIS be designed to monitor
particular aspects of a computer.
 Thus, the first step in designing a computer immune system is deciding what data
or activity patterns will play the role of self and what entities will correspond to
pathogens. Despite debate in the immunological literature about the role of self, we
accept the notion that proteins and peptides are a fundamental unit of recognition for the
immune system. In order to build a computer immune system, a computational analog to
the protein must be found. Researchers typically make this choice with regard to a
particular class of threats in which they are interested. As the threats of interest have
evolved, so have the computer immune systems that protect against them.
 When computer immune systems were introduced, the primary threats were
computer viruses that infected user files (file infector viruses) or the code used to boot up
the operating system (boot sector viruses). The viruses consisted of short sections of
computer code attached to another program. When the host program ran (was executed),
control passed to the virus code, which searched for other uninfected files and copied
itself into them. Consequently, early systems tried to protect the integrity of programs
stored on disk, either by preprogrammed databases of virus signatures (as in popular anti-
viral software) or by change-detection programs (77, 78). Change-detection programs are
analogous to a biological system that checks for genetic damage, noticing changes to the
genetic codes that control biological processes. This approach is limited because most of
the data and code stored on computer disks are never used. Because computer viruses
don’t do damage until they are executed, it is more efficient to protect executing
programs or data being copied across a network.
 The second generation of computer immune systems explored the possibility of
protecting executing programs (81, 82). Here, the unit of protection (organism) is a single
computer, and each executing process is roughly analogous to a cell. Discrimination
between normal and abnormal behavior is based on what functions (or subroutines) are
normally invoked by the running program, in particular, the requests issued to the
operating system from the running program, known as system calls (81, 83). As a single
program executes, it might make several million system calls in a short period of time,

and this signature of normal behavior is sufficient to distinguish between normal behavior
and many attacks. A record is kept of the system call history, and the list is split up into
shorter “peptides” (typically 6-10 system calls long), which define the normal behavior of
the program. Most attacks trick the victim program into executing infrequently used code
paths, which in turn leads to anomalous patterns of system calls. This approach defends
against intrusions that target a single computer, the most prevalent example being the
buffer overflow attack (84). This more dynamic approach resembles the kind of “run-
time” checking performed by RNAi in cells that are actively translating genetic
information into proteins.
 A large number of researchers adopted the system-call approach, some seeking to
improve on the original methods (85 - 89), some applying its method to other problems
(90 - 92), and some attempting to defeat the system (93). Sana Security developed a
product known as Primary Response based on this technology and is actively marketing
it to protect servers. At this writing, the system-call method is the most mature
application of the immunology analogy to computer security.
 As the Internet expanded and information exchange became routine between
computers around the world, protecting against widespread network attacks such as email
viruses and worms became more important. We use the term virus to refer to malicious
software that requires help from computer users to spread to other computers. Email
viruses, for instance, require someone to read an email message or open an attached file
in order to spread. We use the term worm for infections that spread without user
intervention. Because they spread unaided, worms can often spread much faster than
viruses.

 Place Fig. 4 here.

 Immunological mechanisms have been employed to protect computer networks
(94). The equivalent of an organism is a local area network (LAN) of computers. TCP/IP
(Transmission Control Protocol over Internet Protocol) is the most common
communication protocol used to connect computers, and the behavior of the protected
system can be characterized by its normally occurring TCP/IP connections (95). The
connection is represented by the source IP address, the destination IP address, and the
program used to make the connection (represented as an 8-bit number). This information
specifies a network connection. The analog of a peptide is a binary string representing the
connection (by concatenating the source, the destination, and program type) (Figure 4).
All normally observed and acceptable connections, both those within the LAN and those
connecting the outside world to the LAN, form the set of self patterns, and all others
(potentially an enormous number) form the set of nonself patterns.
 To summarize, there has been an evolution of threats, which has forced a
progression from methods that protect the integrity of a computer program, to methods
that detect when an executing program behaves abnormally, to more recent methods that
protect networks of computers. All of these levels of protection are important, and the

progression has led to dynamical definitions of self that are quite different from those
taken by traditional anti-virus software, which looks for specific patterns in files stored
on hard disks. The distinction is roughly analogous to that between gene products and
genes themselves. If the immune system had evolved to inspect directly the genomes of
all cells for irregularities, we would have a system more closely analogous to anti-viral
software. Instead, the immune system monitors gene products. Anti-virus software has
recently adopted several features analogous to the innate immune system (detecting
general patterns that are harmful), but most commercial products to not yet have the
adaptive immune system’s ability to address novel threats.

C. Negative and Positive Selection

 With any of the above schemes, a strategy is needed for generating the immune
cells (called detectors) that detect abnormalities. Similar to the natural immune system,
this can be achieved with either positive or negative representations (analogous to
positive and negative selection of T cells) (96). The negative-selection algorithm (77, 97)
is based on one aspect of the multi-stage maturational process of T-cells in the thymus,
where they are censored against the body’s normally occurring peptide patterns. T cells
that react too strongly with self are deleted before they can become active and cause
autoimmunity. Although mature T-cells have survived at least two other censoring
operations, genetic rearrangements and positive selection, we focus on the negative
selection aspect here.
 The translation of this process into an algorithm for computers is straightforward.
First, we assume that the anomaly detection problem is posed as a set RS (real-self) of
strings s, all of fixed-length l of which we can access only a sample S at any given time.
The universe of all l-length strings is referred to as U, and the set of anomalous patterns
to be detected is the set U −RS. Candidate detectors (strings) are generated randomly and
censored against S; those that fail to match the strings in S (analogous to expressed
peptides in the thymus) are retained as active detectors. Such detectors are known as
negative detectors, and if S is a good sample of RS each negative detector will cover
(match) a subset of nonself without matching self. By generating sufficient numbers of
independent detectors, good coverage of the nonself set is obtained. Figure 5 shows the
relationship of these sets.

 Place Fig. 5 here.

 Since its introduction in (77), interest in negative detection has continued,
especially for applications where noticing anomalous patterns is important, including
computer virus detection (98, 99), intrusion detection (94, 100 - 102), and industrial
milling operations (103). Recently, other categories of applications have been proposed,
including color image classification (104), collaborative filtering and evolutionary design
(105), and privacy (106, 107).

 Analysis of the computational properties of the negative selection algorithm and
its descendents revealed several advantages (97, 108). One advantage is that negative
representations require virtually no communication among the individual detectors.
Negative selection is thus an important mechanism, because it allows detection to be
distributed rather than centrally controlled. Once censored by the negative-selection
process, each detector can function independently of other detectors. This is because each
detector covers part of nonself. Thus, a set of detectors can be split up over multiple sites,
reducing the coverage at any given site but providing good system-wide coverage. To
achieve similar coverage using detectors that match self would be computationally
inefficient, because each positive detector would have to check with all other positive
detectors to confirm a mismatch. This property allows several forms of distributed
processing: checking small sections of a large object independently, several independent
detector sets (Fig. 4), or independent evaluation of each detector in a single detector set.
Indeed, the natural immune system uses negative detection in a massively distributed
environment—the body.
 A second advantage of negative representations is the ability to conceal
information about the system it is protecting (106, 109). Thus, in some negative
representations it is provably difficult to infer the original (positive) set from the negative
information alone. This is analogous to the problem of trying to infer all of the normal
self proteins in the body simply by inspecting all of the mature lymphocytes. Although
this is not necessarily important for the natural immune system, it may have application
in computing for enhancing the privacy of sensitive information.

D. Affinity Maturation

 The immune system uses affinity maturation to evolve B cells that respond to
foreign antigen, and so do some computer immune systems. Clonal selection algorithms
automatically construct detectors tailored to observed patterns (110). This is a more
focused learning process than that achieved through negative selection alone. This
approach has been applied to intrusion detection (111), where the clonal selection
algorithm mimics the processes of somatic mutation and proliferation, evolving detectors
towards non-self network patterns. In this work, detectors were defined as IF/THEN rules,
which classified new patterns either as normal or abnormal. The antecedent (IF part) of
each rule specified the conditions to be tested, and the consequent (THEN) described the
class label (normal or abnormal) assigned to the rule.
 The algorithm proceeds as follows. First, a set of detector rules is generated
randomly, and each rule’s “fitness” is initialized to zero. A sample of rules is randomly
selected from the initial set. Each detector (rule) in the sample is tested against an
existing corpus of nonself patterns, and the detector in the sample with the highest score
has its fitness increased (112). This process is repeated (with new random samples) until
each detector in the population is evaluated in several contexts. Then the genetic
algorithm (113) operators of mutation and crossover are applied to the more fit
individuals to produce new candidate detectors. Finally, the new candidate detectors
undergo negative selection against a corpus of known self patterns to prevent
autoimmunity (false positives). Detectors that pass this test then enter the population,
replacing an existing detector. The algorithm departs from known biology in two ways:

first by using recombination in an algorithm mimicking somatic mutation and second by
applying negative selection after somatic mutation. However, it is effective at evolving
good sets of detectors, and it has been applied to several different problems.

E. Controlling Autoimmunity

 Early experiments with simple AIS for computer network security showed high
false-positive rates (114), corresponding to autoimmunity. False positives have been a
persistent problem for anomaly IDS, preventing their widespread adoption for computer
security. Within the computer immunology framework, several mechanisms have been
introduced for controlling autoimmunity that are similar in spirit to immunological
processes. Two examples are avidity and second signaling, described below.
 A single anomalous connection in the network does not necessarily signal an
attack, so a parameter known as the activation threshold was introduced (94). A detector
is required to accumulate enough matches to exceed the activation threshold in order to
become active. This simple modification reduced autoimmunity significantly, and of the
various methods that were tested for controlling autoimmunity, it had the most dramatic
effect. Activation thresholds are analogous to avidity in the natural immune system,
where multiple receptors on the lymphocyte must be bound simultaneously in order for it
to become activated. Here,the integration of signals takes place over time instead of in
space.
 Ref. (94) introduced a mechanism similar to the costimulation that a B cell must
receive from a T-helper cell. Originally, the second costimulatory signal was provided by
a human observer, although ref. (115) provides an interesting extension. In the original
system, a detector that survived negative selection became mature and was matched
against all new connections in the network. If it matched enough connections to exceed
the activation threshold, it was activated. However, if an activated detector did not
receive a co-stimulatory signal within a given period (typically 24 hours), it died and was
deleted. If it received costimulation, it entered a competition to become a memory
detector. Once a memory detector, it lived indefinitely, requiring only a single match for
activation, thus capturing the idea of a secondary response.
 Co-stimulation automatically eliminates detectors responsible for false positives,
and a human intervenes to confirm true positives. This allows adaptation to incomplete or
evolving definitions of self, both of which are common in the intrusion detection domain.
It also allows for shorter maturation periods in the negative-selection phase, by providing
a backup in case the maturing detector does not encounter all possible self patterns.
Costimulation in the natural immune system presumably has similar benefits, as well as
protecting against inappropriate somatic mutations. The co-stimulation process is
inefficient computationally, and the ideal system from an engineering point of view is
one where most tolerization is centralized, and peripheral tolerization addresses issues of
perpetual novelty, incomplete descriptions of self, and somatic mutation. There have been
debates in immunology about the relative roles of tolerization in the thymus and
peripheral tolerization; our experiences suggest that both are essential, because they play
complementary roles.

F. MHC and Diversity

 Generalization is an important tool in resource-limited environments. If each
detector can match multiple nonself patterns, fewer detectors are needed. However,
generalization introduces potential discrimination errors, especially those caused by
overgeneralization, in which foreign patterns that resemble self are categorized as normal.
These are known as false negatives. As the generality of detectors increases (and
specificity decreases), the potential for overgeneralization also increases.
 Using a diverse set of representations for detectors proved to be effective at
reducing the overall number of false negatives (94). Representation diversity was
achieved by permuting the bits in a detector, thus moving some co-located bits away
from one another and placing others together. Because detector matching in this system
was based on adjacent matches in the string (10), the different permutations effectively
changed the structure of the self set for each detector. Consequently, where one detector
failed to detect a pattern, a permuted version of it might succeed. This strategy was
particularly effective at reducing the number of false negatives when the nonself patterns
were similar to self patterns.
 The immune system also has limited resources, and it appears to use both
generalization and diversity. Generalization is a consequence of the fact that a
monoclonal lymphocyte can bind to a set of structurally similar peptides. It is not
unreasonable to assume that generalized detection also leads to coverage gaps (false
negatives), and if so, pathogens would evolve away from detection towards the gaps. We
speculate that each different MHC allele can be regarded as a different way of presenting
a protein (depending on which peptides it presents). Hence, varying the MHC varies
which coverage gaps exist. This idea is illustrated by the existence of diseases, such as
leprosy, that are strongly affected by MHC types.

G. Effectors

 The previous subsections outlined a mature and growing body of work defining
computational abstractions that correspond to the immune system’s ability to detect and
remember foreign pathogens. Much less effort has been devoted to the effector arm of the
immune response. Early work on immune-based approaches to control and robotics (63,
116) incorporated effectors, but most engineering applications emphasize detection. This
lacuna was emphasized in refs. (117 - 119), which hypothesized a complex feedback
control system controlled by cytokine signaling. This is an exciting and important
direction for future work in computer immunology.
 In computer security applications to date, most approaches emphasize low-level
generic actions (e.g., homeostasis), rather than targeted killing (CTL) or repair. In the
first such example, a system called “process Homeostasis” (pH) was developed for a
single computer (82). In pH, the computer autonomously monitors its own activities at
the system-call level (described in Section IV B), making small corrections to maintain
itself in a normal state. In particular, when an executing program is determined to be
behaving abnormally (by the detection apparatus), pH slows down the program by
delaying the execution of system calls. The more anomalies detected, the more
aggressively pH slows the program down. This graduated response has the advantage that
small delays (possibly corresponding to false positives) are imperceptible to users, while

long delays trigger timeout mechanisms at network and application levels, effectively
killing the misbehaving process.
 This basic approach of throttling misbehaving systems was extended to computer
networks and used for controlling the spread of email viruses and worms (120, 121). In
virus throttling, a hard limit is placed on the rate at which a single computer can initiate
new connections to other computers. When the limit is exceeded, new connection
requests are simply dropped. This simple effector mechanism was integrated with
immune-like detectors that could discriminate between different classes of connections
(for example, web requests and email messages), thus adaptively setting the appropriate
threshold for each detector (122).

H. Putting it all Together

 The previous subsections reviewed computational analogs of several
immunological processes and described how they contribute to computer security
applications. The computational mechanisms are crude compared to the details of natural
biology, and in many cases it is only the highest level concepts that have been borrowed.
Negative selection allows the system to operate without central coordination, affinity
maturation provides a directed learning process, avidity and co-stimulation help control
autoimmunity, representation diversity (analogous to allelic diversity in MHC)
compensates for gaps in coverage (false negatives), and homeostatic mechanisms help the
system achieve a graduated response to perturbations. To date, however, no system
incorporates all of these elements into a single functioning system. Some of the more
comprehensive implementations include LISYS (94), CDIS (99, 123), pH (82), and more
recently, a system developed for mobile ad hoc networks (102), although this latter
system was tested only in simulation. Figure 6 illustrates how the components were
combined in the LISYS system using the setup shown in Figure 4.

V. APPLICATIONS TO BIOMEDICINE

 Section III described ABM methods for modeling immunology. This section
describes how these methods have been used to study specific immune responses to
infection: HIV, tuberculosis, influenza, and the primary immune response in lymph nodes.

 Place Fig. 6 here.

A. Models of Human Immunodeficiency Virus

 HIV has been modeled extensively using mathematical methods, e.g., (3), and
there have been several ABMs as well. Including the two CA models of HIV in lymph
nodes described below.

 Place Fig. 7 here.

1. Modeling Multiple Timescales
 Ref. (124) introduced a CA model that reproduces the two time scales of an HIV
infection: the short time scale (weeks) associated with the primary response and the long
one (years) associated with the clinical latency period and the onset of AIDS (124). The
papers suggest that mean-field ordinary differential equation (ODE) models fail to
reproduce the two-scale dynamics of HIV because the initial immune response in the
lymphoid organs is localized. Experimental results illustrating the two-scale dynamics of
HIV along with results from CA simulations are reproduced in Figure 7.

 In the model, each site in the two-dimensional square grid represents a target cell
for HIV, namely a CD4+ T cell or a monocyte. A cell’s neighbors consist of the eight
adjacent cells. Each target cell can be in one of four states: healthy, infected-A1, infected-
A2, or dead. An infected-A1 cell corresponds to an infected cell that is capable of
spreading the infection. An infected-A2 cell corresponds to an infected cell in its final
stage before apoptosis. Infected- A2 cells can infect healthy cells only when other
infected-A2 cells are present in sufficient concentrations. The rules for the CA simulation
are the following:

• A healthy cell becomes infected-A1 in the next time step if any of its eight
neighbors are infected-A1 or if at least 2 < R < 8 of its neighbors are infected-A2.

• An infected-A1 cell becomes infected-A2 after τ time steps.
• An infected-A2 cell dies in the next time step.
• A dead cell is replaced by a healthy cell with probability prepl and otherwise

remains dead in the next time step.
• New cells are created as infected-A1 cells with probability pinfec, such that the rate

at which dead cells are replaced by infected-A1 cells is

!

pnewinfec = prepl " pinfec.
The last rule simulates the arrival of infected cells, either from other compartments or
from the activation of latent infected cells.

 Place Fig. 8 here.

 In the model, infection is permanent because new infected cells are continually
added. These infection seeds lead to the formation of predictable square waves of
infection, as seen in Figures 8(b,c). In turn, the square waves interact with each other,
ultimately forming a more complex square wave pattern, illustrated in Figure 8(d).

2. Spatial Effects

 Ref. (125) describes a three-dimensional model of HIV, which incorporates
additional biophysical properties. The model’s goal is to study the role of spatial effects
in viral propagation.
 Assuming that virus is released as a single burst by an infectious cell, the
diffusion coefficient was determined and an expression was derived for the probability
Pb(i) that a cell i sites away from the burst becomes infected. From this, the basic
reproduction ratio (R0) was calculated for HIV, taking into consideration the localized
spatial nature of viral bursts. The calculation predicts that viral propagation is limited by
viral stability at low target cell density, and by geometry (target cell’s radius) at high cell
density.
 Each site of the three-dimensional grid can be in one of three states: empty (E),
infected (I), or target (T). The following rules determine the simulation dynamics:

• A target cell at site i becomes infected at the next time step with a probability

!

Pb
j" i

(i $ j) .

• A site containing an infected cell becomes empty in the next time step (death).
• An empty site acquires a target cell in the next time step with probability

!

"
T

+
1

n
#T
nn

$, where nn indicates nearest-neighbor lattice sites, and n is the total

number of nearest neighbors (six for the simple cubic lattice used in (125)). The
terms δT and σT are the rate of repopulation of empty lattice site due to the
division of immediate neighbors, and influx of cells from peripheral blood or
from the thymus, respectively.

 The spatiotemporal dynamics of the model are determined by propagation
efficiency and recovery rate. If the propagation efficiency causes the reproduction ratio to
be less than one, the infection does not propagate. The long-term dynamics of the model
are determined by the rate of recovery of target cells. Infection propagates as radial wave
fronts, leaving a wake of empty cells. If cells recover quickly, virus can diffuse from
producer cells in the wave front back across the wake. After the initial wave propagates
to the edge of the grid, the system can settle into a chaotic attractor in which which
infected, target, and empty sites coexist (125). If recovery is slow, the infection
propagates transiently as a unidirectional wave In this case, infection can be sustained
only if the influx of target cells to random empty sites of the grid is non-zero (σT ≠ 0).

3. Summary and comparison

 Neither model accounts for target cell motility. This assumption is more serious in
the case of the first model because the model simulates HIV dynamics on the scale of
several weeks, even years. Allowing the cells to move, for example, would prevent the
formation of the perfect square waves, and it could potentially prevent the emergence of
the more complicated square patterns that were interpreted as the onset of AIDS.
 The second model is interesting because it highlights how ABM can be used to
study the contribution of spatial effects on viral propagation, and how this contribution
can change the conclusions arrived at using mean-field approaches. Although the results
need to be validated in more realistic models, the finding that ODE models, such as those

proposed in (126), might overestimate viral infectiousness by more than an order of
magnitude is of interest to modelers and experimentalists alike.

B. Models of Mycobacterium tuberculosis

 We discuss two recent models of Mycobacterium tuberculosis (Mtb), one special-
purpose simulation known as the Segovia et al. model (127) and one using the CyCells
simulator (128). Although the models are similar, there are three key differences. First,
the Segovia et al. model simulates a two-dimensional slice of tissue, while the CyCells
model is in three dimensions. The models also treat cell movement differently. The high
density of cells in granulomas makes accurate treatment of collisions between cells and
cell pressure in overcrowded regions crucial. In the Segovia et al. model, cells move
discretely from grid site to grid site. In the CyCells Mtb model, cell positions are defined
by continuous-valued coordinates, and cells adjust their position in response to pressure
from other cells. Cells can overlap to account for the fact that real cells can deform to
pack tightly, but they are subject to a repulsive force which increases with increasing
overlap (42). Finally, the two models differ in how they represent extracellular bacteria.
In the CyCells model, extracellular bacteria are modeled explicitly, like T cells and
macrophages, rather than as a continuous-valued concentration at each site, as in the
Segovia et al. model.

1. Two-dimensional model

 The Segovia et al. model (127) is defined on a two-dimensional square grid with
toroidal boundary conditions, representing a cross-section of alveolar lung tissue. The
size of one lattice site matches the diameter of the largest cells in the model:
macrophages, with a diameter of 20 µm. The discrete agents are macrophages and T cells,
both of which move randomly on the grid biased by cytokine concentration. The
macrophages can be in any of four states: resting, infected, chronically infected, or
activated. Resting macrophages ingest extracellular bacteria and either kill them and
remain in the resting state, or become infected. Once phagocytosed, the intracellular
bacteria grow according to the logistic equation. An infected macrophage with only a
small number of Mtb (< Nc) is activated in the presence of T cells. Otherwise, it becomes
chronically infected once the number of intracellular Mtb exceeds a set threshold.
Chronically infected macrophages die either by bursting (releasing all their Mtb) or from
contact with cytotoxic T cells (releasing a smaller number of Mtb). An activated
macrophage clears all of its intracellular Mtb and kills most of the extracellular Mtb in
the site it occupies.
 Extracellular Mtb and cytokines are represented as real-valued variables which
diffuse across the grid. In contrast with the CyCells model, there is one generic cytokine
type, which biases the random movement of T cells and macrophages. Cytokines are
released by infected, chronically infected, and activated macrophages, and they are
cleared at a fixed rate. In a real infection, the immune response can lead to multicellular
structures known as granulomas. In the model granulomas arise from the attractive effect
of cytokines and because the motility of infected macrophages is reduced compared to
resting ones.

 The model is distinctive because its designers conducted an extensive sensitivity
analysis of 12 of the 27 major parameters using the number of extracellular bacterium
and granuloma size as outcome variables. For example, intracellular growth rate of Mtb
is positively correlated with the number of extracellular Mtb at early times of the
infection and at much later times post-infection, but is negatively correlated at
intermediate times. This suggests that at early times, a large growth rate is necessary for
the infection to establish itself while at later times, a smaller growth rate is more
favorable to insuring a large and lasting infection.

2. CyCells model of tuberculosis

 The second model, built at about the same time using CyCells, is three-
dimensional, represents a slightly richer set of cytokines, and uses more realistic rules for
cell movement (42). The simulation volume is discretized as a three-dimensional cubic
lattice with toroidal boundary conditions. As in the earlier model, two cell types are
modeled, macrophages and T cells. The CyCells model includes TNF, IL-10 and IFN-γ,
although the three cytokines act as surrogates for an even greater array of cytokines.
Cytokines diffuse through the grid with fixed diffusion and clearance rates. IFN-γ has the
effect of down-regulating IL-10, and it causes newly infected macrophages to activate
and clear intracellular bacteria in the presence of T cells. IL-10 can shut off TNF
production by newly infected macrophages, and TNF increases the chance that newly
infected macrophages become activated and clear intracellular bacterium.
 Macrophages in the model can be in one of three states: uninfected, newly
infected, and chronically infected. Uninfected macrophages become newly infected by
phagocytosing extracellular Mtb. Newly infected macrophages can produce cytokines
and/or kill their intracellular Mtb provided that they encounter T cells and are exposed to
the appropriate local cytokine environment. Over time, infected macrophages lose the
ability to acquire these functions (to activate), and they become chronically infected.
 The cells in the model can reside at any point in three-dimensional space. Cell
movement follows a persistent random walk where each cell type has a speed at which it
moves for a fixed time interval, after which it randomly picks a new direction. Cells
sense the local cytokine concentration at their grid site, but in some cases they interact
with cells from neighboring sites as well as their own site.
 Simulations with this model replicated qualitative outcomes from several different
experiments in murine models of tuberculosis. This included the unrestricted growth of
Mtb in the presence of macrophages alone, and restricted replication following the influx
of immune T cells. The model also qualitatively reproduced experimental results on the
effects of IFN−γ, where reduced signaling due to IFN−γ leads to enhanced mycobacterial
growth. These results were surprising because the model is highly simplified, yet it
captured some of the contradictory effects of IL-10, which both inhibits inflammation
(reducing macrophage influx) and inhibits macrophage activation.

C. Models of influenza

 Until recently, there were relatively few mathematical or computational models of
influenza. The first one, dating back to 1976, investigated influenza infection dynamics in

mice (129). It was a simple model, consisting of seven variables (or compartments) and
five rate parameters. The second model in 1994 studied the dynamics of influenza
infection in humans (2). It is more complex, uses ordinary differential equations with
delays and consists of 13 variables and 60 parameters.
 ABM approaches to influenza date back at least to Smith et al.’s study of the
effect of repeated annual influenza vaccination (47, 130). This model focused on cross-
reactive memory by observing that immune memory resembles associative memories
used in computing, in particular, Kanerva’s Sparse Distributed Memory (131). In the
model, B cells (naive cells, plasma cells and memory cells) and antibodies were
represented as memory elements, and antigens (both vaccines and infectious strains) were
interpreted as memory probes. All of these elements were represented as strings of 20
symbols over a four-letter alphabet where each symbol could take on one of four
different values. The model simulated a realistic sized B-cell repertoire and was used to
investigate vaccine design for influenza. The results suggested the antigenic distance
hypothesis that variation in repeat vaccine efficacy is due to differences in antigenic
distances among vaccine strains and between vaccine strains and the epidemic strain in
particular outbreaks. Since the original publications, the model has been extended and
refined (132, 133), which led to the concept of Antigenic Cartography (21, 134, 135).
Antigenic cartography is now a core component of the human influenza vaccine strain
selection process.
 A more recent ABM influenza model, the above-mentioned ma_immune,
consists of a two-dimensional square lattice where each site corresponds to a ciliated lung
epithelial cell that can be in one of five states: healthy, containing, expressing, infectious,
or dead. Additionally, a population of generic immune cells patrol the simulated tissue
(the grid), moving randomly from site to site. The simulation is initiated with a certain
fraction of cells containing virions. After four hours, these cells start expressing viral
peptides, which means that they can be recognized and killed by the patrolling immune
cells. Then, two hours later, the expressing epithelial cells also start to infect their
immediate neighbors. Finally, after a cell has been infected for twenty-four hours, it dies.
Dead epithelial cells are replaced by healthy cells at a fixed rate. When a generic immune
cell encounters an epithelial cell expressing viral peptide, it kills that cell, and recruitment
takes place by probabilistically adding a new immune cell to a random locations on the
simulation grid.
 In (35), the model was calibrated to the dynamics of an influenza A viral infection,
reproducing the general shape of a response to an uncomplicated viral infection and
giving quantitatively reasonable results when parameterized for a particular viral
infection. When the parameter values were set to biologically plausible values or ranges,
only five of the twelve parameters could be fit using available experimental data. Even
with these restrictions, the model was able to reproduce accurately the available
dynamical features of an influenza A infection. The model’s agreement with available
data also compares well to the Bocharov and Romanyukha differential equation model
(2). The results obtained with the ma_immune model suggest that by adding additional
details to the model, such as specific immune cell types, explicit representation of virions
and the appropriate cytokines, that ma_immune could become a useful model of
influenza A infection.

D. Model of a primary immune response in a lymph node

Ref. (136) describes an ABM of a primary immune response induced by antigen in a skin
draining lymph node. The ABM consists of a two-dimensional plane. The plane
corresponds to a 10 µm slice (approximately one cell diameter) through a hypothetical
spherical lymph node 2 mm in diameter (the side dimension of the simulation plane). The
model includes T cells, B cells, and dendritic cells (DCs). Random motion paths for each
cell in the simulation were designed individually and scaled to their known approximate
speed based on observations from two-photon microscopy (56, 57). Additional
constraints were placed on the paths such that B cells would be confined to the follicles
(except five hours after exposure to antigen when their movement is restricted to the
outer edge of the follicles near the T cell area), DCs to the T cell area, and T cells to the T
cell area and outer edges of the follicles for 90% and 10% of their paths, respectively.
When a collision occurs between two cells, the cells’ motion along their respective paths
is halted temporarily to mimic intercellular interaction. This model is conceptually
important because it was constructed by an experimentalist, showing that ABM
techniques are starting to bridge the gap between theory and experiment.

VI. SUMMARY AND CONCLUSIONS

 The previous sections have reviewed a body of work that seeks to construct
computational immune systems that behave analogously to the natural immune system.
Some of the examples (Sections III and V) were developed as models and others (Section
IV) as practical solutions to engineering problems. In both cases, computer immunology
proceeds by hypothesizing a sufficient set of mechanisms needed to produce a desired
behavior and implementing them as computer programs. This constructive approach to
understanding immunology differs from experimental methods that selectively remove
functionality such as experiments with knockout mice. Although the computational
mechanisms are crude compared to their biological analogs, the resulting computer
immune systems can exhibit surprisingly realistic behaviors and sometimes be calibrated
closely with experimental data (Section V). In the context of engineering problems, it is
often possible to analyze the functional behavior of a given mechanism more rigorously
than what might be achieved experimentally, in some cases providing insight into the
natural immune system.
 The ABM approach to immune modeling (Section II) led to the comprehensive
abstract models described in Section III, which in turn were used to create specialized
models of particular immunological phenomena (Section V). As computational power
increased, the geometry of the models expanded from one-dimensional to two- and now
three-dimensional simulations, as well as some details about cell movement. In addition,
visualization methods became more sophisticated, simplifying the task of understanding
and specifying the models. This facilitated the use of models by experimentalists,
culminating in the Catron model (Section VD) in which the model itself was developed
by an experimentalist. In the future, we can expect these trends to continue, with even
more ambitious and detailed models, more sophisticated visualizations that run in real-
time, and more direct involvement by experimentalists in the model building process.

 There are strengths and limitations to this approach. It can be difficult to identify
the proper level of abstraction, decide what aspects of the immune response are important
and what their proper role or “purpose” is, and how they should be translated into
computation. In spite of these limitations, computational abstractions and concepts have
proved powerful enough to provide important insights into immunological processes
(Section V) and to solve challenging engineering problems (Section IV). By abstracting
away from physical realism, AIS can enhance our understanding of the large-scale
patterns of interaction that occur among the millions of individual components that
comprise a natural immune system. Efforts to build an immune system tailored for
computer networks have highlighted the crucial roles played by certain immune system
mechanisms.
 The synthetic approach to modeling immune system behavior has generated
interest, but there is a question about what an ABM model can contribute to
understanding the natural immune system. There are several ways that the models
described in this paper can complement experimentation in “wet labs.” First, if a
synthetic computer model can be constructed that captures the relevant phenomena, it is
much easier to perform experiments on the model than on the natural system. In
particular, it is much easier to isolate mechanisms and test hypotheses about how they
function and what their significance is to the overall system. For example, the Smith
model showed that the antigenic distance hypothesis provided a parsimonious
explanation of complex results on vaccine effectiveness (47). Second, in an era when an
overwhelming volume of experimental results have become available it is no longer
humanly possible to comprehend all of the data that might be relevant to a problem of
interest. Synthetic models, such as CyCells can be used to integrate specialized models
for different phenomena into one system to see how they interact (e.g., do the
assumptions of one specialized model contradict those of another). Models that can
incorporate data and hypotheses from many different experiments will likely be
necessary in the future to integrate knowledge so it can be used productively. Although
many of the models described here do not lend themselves to rigorous mathematical
analysis, they encode assumptions and hypotheses in a precise, mechanical way. Running
models allows researchers to identify gaps and inconsistencies in their knowledge by
making assumptions explicit, allowing them to make predictions, generate new
hypotheses, and suggest new experiments. By better understanding the functional
significance of different components of the immune system, it may be possible to better
predict the effects of therapeutic interventions. In the future, models similar to those
described in this review may be used to predict efficacy of new treatments and vaccines,
thus avoiding some costly experiments.
 The modeling process itself has value. Although we have focused in this paper on
the artifacts that modeling produces, modeling is not only about building a model. At its
best, it involves an iterative process of model construction, model analysis, followed by
the creation of new models determined by the results of the analysis. An important
feature of the models described here is their flexibility, allowing researchers to try out
variations within the same framework and to add complexity to the model incrementally.
This greatly simplifies the work of testing alternative hypotheses, designing experiments,
and discovering both necessary and sufficient mechanisms to explain observed behavior.

VII. ACKNOWLEDGMENTS

 The authors thank G. Bezerra, D. Chao, R. De Boer, F. Koster, J. Mata, M. Moses,
and A. Somayaji for their help with this manuscript. For many years the Adaptive
Computation Lab. at UNM has attracted an unusually talented and creative group of
students, all of whom have contributed to the ideas described in this paper. Alan Perelson
introduced SF to the complexities of immunology and contributed many of the important
insights describe in this paper.
 SF gratefully acknowledges the support of the National Science Foundation
(grants CCR-0331580, CCR-0311686 and CCF 0621900 and DBI-0309147) and the
Santa Fe Institute. CB acknowledges the UNM/LANL Joint Science and Technology
Laboratory for her support. This publication was made possible by NIH Grant Number
RR-1P20RR18754 from the Institutional Development Award (IDeA) Program of the
National Center for Research Resources. Its contents are solely the responsibility of the
authors and do not necessarily represent the official views of NIH or NSF.

Fig. 1: Receptors and ligands are modeled as strings, illustrated on the left for the
example of a T-cell receptor binding to a MHC/peptide complex. Binding is modeled by
a string matching rule, for example, by counting the number of positions in the string at
which the symbols are complementary (known as Hamming Distance). Repertoires are
represented in the model as sets of strings, shown on the right.

Fig. 2: Schematic representation of IMMSIM, adapted from (13). The figure depicts T
cells, B cells and other APCs, antibodies, and antigen molecules. On antigen, epitopes are
shown exposed and the presentable peptides are boxed. Receptors, MHCs, epitopes and
peptides are numbered according to the decimal value of their eight-bit string. For
example, the B cell’s Receptor 57 is represented as (00111001), with zeroes and ones
depicted as short and long blocks, respectively.

Fig. 3: A screenshot of the Statecharts graphical interface during execution. Figure
reproduced from (51).

Fig. 4: Architecture of the LISYS intrusion detection system (94): The shaded area shows
the local area network (LAN) of computers to be protected, although the network may
have connections with external computers. Normally occurring connections between
computers are indicated by directed arrows. Each computer in the LAN contains its own
detector set (collection of immune cells). Each detector represents a single connection
consisting of the source computer for the connection, the destination computer, and the
port number for the program that initiates the connection. Binding between detectors and
new connections is measured using the r-contiguous bits matching rule (10) (not shown).

Fig. 5: Self nonself discrimination. A universe U of data points inside the black border is
partitioned into two sets: self (shown in blue) and nonself (everything else). The points in
the space correspond to features of the problem domain, e.g., fragments of computer code
or individual network connections. Negative detectors analogous to T cells are generated
randomly. Those that overlap with self (shown in red) are deleted by the negative
selection algorithm. This leaves a set of detectors (shown in black) that collectively cover
most of nonself.

Fig. 6: Detector lifecycle in a computer immune system. Detectors corresponding to
network connections are generated with random bit patterns. Each detector is immature
for two days while it undergoes negative selection (analogous to T cells in the thymus).
During this time, it is matched against all new network connections, and if it matches
even a single connection, it is deleted and replaced by a new randomly created detector.
After two days, the detector is labeled “mature.” For the next seven days it is matched
against all new network connections. If during this time, the activation threshold is
exceeded, the detector is activated, and otherwise it dies (analogous to B cells). Once
activated, the detector must receive co-stimulation from a human operator within twenty
four hours (analogous to T cell help), otherwise it dies. There is no effector arm in this
system. Activated detectors that receive co-stimulation signal an alarm rather than taking
autonomous action. After co-stimulation, the activated detectors enter the memory pool,
living indefinitely. Figure adapted from (94).

Fig. 7: Experimental HIV data (left panel) and simulation results from the CA model
(right panel). Figures reproduced from (124). In the left panel, the density of CD4+ T
cells (open squares) and virus concentration (full circles) are shown. In the right panel,
the density of healthy (open squares) and infected (full circles) target cells are shown.

Fig. 8: Screenshots from the Zorzenon dos Santos and Coutinho CA simulation of HIV
infection at (a) 5, (b) 18, (c) 25, and (d) 200 weeks. Colors mark healthy (blue), infected
A1 (yellow) infected A2 (green), and dead (red) CD4+ T cells or monocytes, the targets
of HIV. Figure reproduced from (124).

References:

1. Bonabeau E, Agent-based modeling: Methods and techniques for simulating
human systems. PNAS 2002;99:7280–7287.

2. Bocharov GA, Romanyukha AA, Mathematical model of antiviral immune
response III. Influenza A virus infection. J Theor Biol 1994;167:323–360.

3. Perelson AS, Neumann A, Markowitz M, Leonard J, Ho D, HIV-1 dynamics in
vivo: virion clearance rate, infected cell life-span, and viral generation time.
Science 1996;271:1582–1586.

4. Jerne NK, Towards a network theory of the immune system. Ann Inst Pasteur
Imm 1974;125 C:373–389.

5. Varela F, Coutinho A, Dupire B, Vaz NM, Cognitive networks: immune, neural,
and otherwise. In: Perelson AS, ed., Theoretical Immunology, Part Two, Addison-
Wesley, Redwood City, CA, 1988 .

6. Vertosick FT, Kelly RH, Immune network theory: A role for parallel distributed
processing. Immunology 1989;66:1–7.

7. Oprea M, Forrest S, How the immune system generates diversity: Pathogen space
coverage with random and evolved antibody libraries. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO), San Francisco, CA:
Morgan-Kaufmann, 1999;1651–1656.

8. Hightower RR, Forrest S, Perelson AS, The evolution of emergent organization in
immune system gene libraries. In: Eshelman LJ, ed., Proceedings of the 6th
International Conference on Genetic Algorithms, San Francisco, CA: Morgan
Kaufmann, 1995 344–350.

9. Perelson A, Oster G, Theoretical studies of clonal selection: minimal antibody
repertoire size and reliability of self-non-self discrimination. J Theor Biol
1979;81:645–670.

10. Percus JK, Percus O, Perelson AS, Predicting the size of the antibody combining
region from consideration of efficient self/non-self discrimination. Proceedings of
the National Academy of Science 1993;90:1691–1695.

11. Weinand R, Somatic mutation and exploration of the antibody landscape: A
shape-space computer model. In: Perelson AS, Kauffman SA, eds., Molecular
Evolution on Rugged Landscapes: Proteins, RNA and the Immune System,
Addison-Wesley, Redwood City, CA., 1991.

12. Celada F, Seiden PE, Affinity maturation and hypermutation in a simulation of
the humoral response. Eur J Immunol June 1996;26:1350–1358.

13. Seiden PE, Celada F, A model for simulating cognate recognition and response in
the immune system. J Theor Biol 1992;158:329–357.

14. Kleinstein SH, Seiden PE, Simulating the immune system. Computing in Science
and Engineering 2000;2:69–77.

15. Bernaschi M, Castiglione F, Design and implementation of an immune system
simulator. Comput Biol Med 2001;31:303–331.

16. Warrender C, Forrest S, Segel L, Homeostasis of peripheral immune effectors.
Bulletin of Mathematical Biology 2004;66:1493–514.

17. Meier-Schellersheim M, Xu X, Angermann B, Kunkel EJ, Jin T, Germain RN,
Key role of local regulation in chemosensing revealed by a new molecular

interaction-based modeling method. PLoS Computational Biology 2006;2:710–
724.

18. Farmer JD, Packard NH, Perelson AS, The immune system, adaptation, and
machine learning. Physica D 1986;22:187–204.

19. Perelson AS, Weisbuch G, Immunology for physicists. Rev Mod Phys Oct.
1997;69:1219–1267.

20. Smith DJ, Forrest S, Hightower R, Perelson AS, Deriving shape space parameters
from immunological data for a model of cross-reactive memory. Journal of
Theoretical Biology 1997;189:141–150.

21. Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus
ADME, et al., Mapping the antigenic and genetic evolution of influenza virus.
Science 2004;371–6.

22. Kaufman M, Urbain J, Thomas R, Towards a logical analysis of the immune
response. J Theor Biol 1985;114:527–561.

23. Weisbuch G, Atlan H, Control of the immune response. J Phys A: Math Gen
1988;21:L189–L192.

24. Dasgupta S, Monte Carlo simulation of the shape space model of immunology.
Physica A 1992;189:403–410.

25. Stauffer D, Weisbuch G, High-dimensional simulation of the shape-space model
for the immune system. Physica A 1992;180:42–52.

26. De Boer R, van der Laan JD, Hogeweg P, Randomness and pattern scale in the
immune network: A cellular automata approach. In: Stein WD, Varela FJ, eds.,
Thinking About Biology: An Introductory Essay, 231–252, Reading, MA:
Addison-Wesley, 1993.

27. Farmer JD, Packard NH, Perelson AS, The immune system, adaptation, and
machine learning. Physica D 1986;22:187–204.

28. Celada F, Seiden PE, A computer model of cellular interactions in the immune
system. Immunol Today February 1992;13:56–62.

29. Kesmir C, Boer RJD, A spatial model of germinal center reactions: cellular
adhesion based sorting of b cells results in efficient affinity maturation. Journal of
Theoretical Biology 2003;222:9–22.

30. Bezzi M, Celada F, Ruffo S, Seiden PE, The transition between immune and
disease states in a cellular automaton model of clonal immune response. Physica
A 1997;245:145–163.

31. Celada F, Seiden PE, Modeling immune cognition. Proceedings of the 1998 IEEE
International Conference on Systems, Man and Cybernetics, San Diego, CA 11–
14 October 1998; 3787–3792. IEEE Catalog Number 98CH36218.

32. Stewart JJ, Agosto H, Litwin S, Welsh JD, Shlomchik M, Weigert M, et al., A
solution to the rheumatoid factor paradox: Pathologic rheumatoid factors can be
tolerized by competition with natural rheumatoid factors. J Immunol
1997;159:1728–1738.

33. Kohler B, Puzone R, Seiden PE, Celada F, A systematic approach to vaccine
complexity using an automaton model of the cellular and humoral immune system.
i. viral characteristics and polarized responses. Vaccine 2000;19:862–876.

34. Bernaschi M, Castiglione F, Selection of escape mutants from immune
recognition during HIV. Immunol Cell Biol 2002;80:307–313. Special issue
devoted to Immuno-informatics.

35. Beauchemin C, Samuel J, Tuszynski J, A simple cellular automaton model for
influenza A viral infections. J Theor Biol 2005;232:223–234. Draft available on
arXiv:q-bio.CB/0402012.

36. Beauchemin C, MASyV: a Multi-Agent System Visualization package 2003.
Open source software available online on SourceForge at:
http://masyv.sourceforge.net.

37. Beauchemin C, Probing the effects of the well-mixed assumption on viral
infection dynamics. J Theor Biol 2006;242:464–477. Draft available on arXiv:q-
bio.CB/0505043.

38. Meier-Schellersheim M, Mack G, SIMMUNE, a tool for simulating and analyzing
Immune System behavior. arXiv:cs.MA/9903017 1999.

39. Meier-Schellersheim M, The Immune System as a Complex System: Description
and Simulation of the Interactions of its Constituents. Ph.D. thesis, Physics
Department, University of Hamburg, Hamburg, Germany 2001.

40. Warrender CE, Modeling intercellular interactions in the peripheral immune
system. Ph.D. thesis, Computer Science Department, University of New Mexico,
Albuquerque, NM, USA 2004.

41. Warrender CE, CyCells simulator 2005. Open source GNU GPL software
available online on SourceForge at: http://sourceforge.net/projects/cycells.

42. Warrender C, Forrest S, Koster F, Modeling intercellular interactions in early
Mycobaterium infection. B Math Biol 2006;.

43. Chao DL, Davenport MP, Forrest S, Perelson AS, A stochastic model of cytotoxic
T cell responses. Journal of Theoretical Biology 2004;228:227–40.

44. K¨ohler G, Frequency of precursor cells against the enzyme beta-galactosidase: an
estimate of the BALB/c strain antibody repertoire. Eur J Immunol 1976;6:340–7.

45. Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P, A direct
estimate of the human αβ T cell receptor diversity. Science 1999;286:958–61.

46. Detours V, Mehr R, Perelson AS, A quantitative theory of affinity-driven cell
repertoire selection. J Theor Biol 1999;200:389–403.

47. Smith DJ, Forrest S, Ackley DH, Perelson AS, Variable efficacy of repeated
annual influenza vaccination. Proc of the National Academy of Sciences (PNAS)
1999;96:14001–14006.

48. D L Chao MP, Davenport, Forrest S, Perelson AS, The effects of thymic selection
on the range of t cell cross-reactivity. European Journal of Immunology
2005;35:3452–3459.

49. Detours V, Perelson AS, Explaining high alloreactivity as a quantitative
consequence of affinity-driven thymocyte selection. Proc Natl Acad Sci
1999;96:5153–5158.

50. Smith DJ, Forrest S, Ackley DH, Perelson AS, Using lazy evaluation to simulate
realistic-size repertoires in models of the immune system. Bull Math Biol
1998;60:647–658.

51. Efroni S, Harel D, Cohen IR, Toward rigorous comprehension of biological
complexity: Modeling, execution, and visualization of thymic T-cell maturation.
Genome Res 2003;13:2485–2497.

52. Harel D, Statecharts: a visual formalism for complex systems. Sci Comput
Program 1987;8:231–274.

53. Harris S, Scientists model interaction of viruses and immune system. Virginia
Tech Research 2004;Published by the Office of the Vice President for Research,
Virginia Tech, Blacksburg, Virginia, USA.

54. Polys NF, Bowman DA, North C, Laubenbacher RC, Duca K, PathSim visualizer:
an Information-Rich Virtual Environment framework for systems biology. In:
Brutzman DP, Chittaro L, Puk R, eds., Proceeding of the Ninth International
Conference on 3D Web Technology, Web3D 2004, Monterey, California, USA, 5–
8 April 2004, ACM, 2004 7–14.

55. Duca K, Laubenbacher R, Polys NF, Luktuke R, McGee J, Shah J, The PathSim
Project 2003.

56. Miller MJ, Wei SH, Parker I, Cahalan MD, Two-photon imaging of lymphocyte
motility and antigen response in intact lymph node. Science 2002;296:1869–1873.

57. Miller MJ, Hejazi AS, Wei SH, Cahalan MD, Parker I, T cell repertoire scanning
is promoted by dynamic dendritic cell behavior and random T cell motility in the
lymph node. P Natl Acad Sci USA 2004;101:998–1003.

58. Mempel TR, Henrickson SE, von Adrian UH, T-cell priming by dendritic cells in
lymph nodes occurs in three distinct phases. Nature 2004;427:154–159.

59. Dasgupta D, ed., Artificial Immune Systems and Their Applications. Heidelberg,
GERMANY: Springer, 1999.

60. de Castro LN, Timmis J, Artificial Immune Systems: A New Computational
Intelligence Approach. Springer, 2002.

61. Cayzer S, Aickelin U, The danger theory and its application to artificial immune
systems. In: Proc. of the 1st International Conference on Artificial Immune
Systems (ICARIS-2002), University of Kent at Canterbury, 2002 141–148.

62. Bersini H, Hints for adaptive problem solving gleaned from immune networks.
Technical report, IRIDIA - Universite Libre de Bruxelles, Bruxelles, Belgium
1990.

63. Bersini H, Immune network and adaptive control. In: Proceedings of the First
European Conference on Artificial Life, Paris, FR, 1992 217–26.

64. de Castro LN, Zuben FJV, ainet: An artificial immune network for data analysis.
In: Abbass HA, Sarker RA, Newton CS, eds., Data Mining: A Heuristic Approach,
USA: Idea Group Publishing, 2001 231–259.

65. Forrest S, Javornik B, Smith R, Perelson A, Using genetic algorithms to explore
pattern recognition in the immune system. Evolutionary Computation
1993;1:191–211.

66. de Castro L, Zuben FV, The clonal selection algorithm with engineering
applications. In: Proc. of the Genetic and Evolutionary Computation Conference,
2000 36–37.

67. Hart E, Ross P, An immune system approach to scheduling in changing
environments. In: Banzhaf W, Daida J, Eiben A, Garzon M, Honavar V, Jakiela

M, et al., eds., Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO), Morgan Kaufmann, 1999 1559–1566.

68. Cayzer S, Smith J, Marshall J, Kovacs T, What have gene libraries done for AIS?
In: Jacom C, Pilat M, Bentley P, Timmis J, eds., Artificial Immune Systems,
volume 3627 of Lecture Notes in Computer Science, Springer-Verlag Berline
Heidelberg, 2005 86–99.

69. Greensmith J, Aicklin U, Cayzer S, Introducing dendritic cells as a novel
immune-inspired algorithm for anomaly detection. In: Jacom C, Pilat M, Bentley
P, Timmis J, eds., Artificial Immune Systems, volume 3627 of Lecture Notes in
Computer Science, Springer-Verlag Berline Heidelberg, 2005 153–167.

70. Trapnell B, A peer-to-peer blacklisting strategy inspired by leukocyte-
endothelium interaction. In: Jacom C, Pilat M, Bentley P, Timmis J, eds.,
Artificial Immune Systems, volume 3627 of Lecture Notes in Computer Science,
Springer-Verlag Berline Heidelberg, 2005 339–352.

71. Cohen F, Computer viruses. Computers & Security 1987;6:22–35.
72. Spafford EH, Computer viruses—a form of artificial life? In: Langton CG, Taylor

C, Farmer JD, Rasmussen S, eds., Artificial Life II, 727–745, Redwood City, CA:
Addison-Wesley, 1992.

73. Kephart JO, White SR, Chess DM, Computers and epidemiology. IEEE Spectrum
1993;30:20–26.

74. Murray WH, The application of epidemiology to computer viruses. Computers &
Security 1988;7:139–150.

75. Pastor-Satorras R, Vespignani A, Epidemic spreading in scale-free networks.
Physical Review Letters 2001;86:3200–3203.

76. Newman M, Forrest S, Balthrop J, Email networks and the spread of computer
viruses. Physical Review E 2002;66.

77. Forrest S, Perelson AS, Allen L, Cherukuri R, Self-nonself discrimination in a
computer. In: Proceedings of the 1994 IEEE Symposium on Research in Security
and Privacy, Los Alamitos, CA: IEEE Computer Society Press, 1994.

78. Kephart JO, Sorkin GB, ArnoldWC, Chess DM, Tesauro GJ,White SR,
Biologically inspired defenses against computer viruses. In: IJCAI ’95,
International Joint Conference on Artificial Intelligence, 1995.

79. Oda T, White T, Immunity from spam: An analysis of an artificial immune
system for junk email detection. In: Jacob C, Pilat M, Bentley P, Timmis J, eds.,
Artificial Immune Systems, Lecture Notes in Computer Science, Germany:
Springer-Verlag, 2005 276–289.

80. Li T, Ding J, Liu X, Yang P, A new model of immune-based network surveillance
and dynamic computer forensics. In: L Wang KC, Ong Y, eds., Proceedings of
the The First International Conference on Natural Computation, IEEE, Springer-
Verlag Berlin Heidelberg, 2005 804813.

81. Forrest S, Hofmeyr S, Somayaji A, Longstaff T, A sense of self for Unix
processes. In: Proceedings of the 1996 IEEE Symposium on Computer Security
and Privacy, IEEE Press, 1996.

82. Somayaji A, Forrest S, Automated response using system-call delays. In: Usenix
Security Syposium, 2000.

83. Hofmeyr S, Somayaji A, Forrest S, Intrusion detection using sequences of system
calls. Journal of Computer Security 1998;6:151–180.

84. Cowan C, Wagle P, Pu C, Beattie S, Walpole J, Buffer overflows: Attacks and
defenses for the vulnerability of the decade. In: DARPA Information Survivability
Conference and Exposition (DISCEX 2000), 2000 119–129.

85. Marceau C, Characterizing the behavior of a program using multiple-length n-
grams. In: Proceedings of the New Security Paradigms Workshop 2000, Cork,
Ireland: Association for Computing Machinery, 2000 .

86. Naiman DQ, Statistical anomaly detection via httpd data analysis. Computational
Statistics and Data Analysis in press;.

87. Lee W, Stolfo S, Data mining approaches for intrusion detection. In: 7th USENIX
Security Symposium, 1998 .

88. Sekar R, Bendre M, Bollineni P, Dhurjati D, A fast automaton-based method for
detecting anomalous program behaviors. In: IEEE Symposium on Security and
Privacy, 2001 .

89. Jones A, Li S, Temporal signatures for intrusion detection. In: Seventeenth Annual
Computer Security Applications Conference, 10-14 Dec. 2001, New Orleans, LA,
USA, Los Alamitos, CA, USA : IEEE Computer Society, 2001, 2001 252–61.

90. Stillerman M, Marceau C, Stillman M, Intrusion detection for distributed
applications. Communications of the ACM 1999;42:62–69.

91. Jones A, Lin Y, Application intrusion detection using language library calls. In:
Proceedings of the 17th Annual Computer Security Applications Conference, New
Orleans, Louisiana, 2001 .

92. Michael C, Ghosh A, Two state-based approaches to program-based anomaly
detection. In: Proceedings of the 16th Annual Computer Security Applications
Conference (ACSAC’00), New Orleans, LA, 2000 .

93. Wagner D, Dean D, Intrusion detection via static analysis. In: IEEE Symposium
on Security and Privacy, 2001 .

94. Hofmeyr SA, Forrest S, Architecture for an artificial immune system.
Evolutionary Computation Journal 2000;8:443–473.

95. Mukherjee B, Heberlein LT, Levitt KN, Network intrusion detection. IEEE
Networks 1994;26–41.

96. Kappler JW, Roehm N, Marrack P, T cell tolerance by clonal elimination in the
thymus. Cell 1987;49:273–280.

97. D’haeseleer P, Forrest S, Helman P, An immunological approach to change
detection: algorithms, analysis and implications. In: Proceedings of the 1996
IEEE Symposium on Computer Security and Privacy, IEEE Press, 1996.

98. Lamont GB, Marmelstein RE, Veldhuizen DAV, A distributed architecture for a
self-adaptive computer virus immune system. In: New Ideas in Optimization,
Advanced Topics in Computer Science Series, 167–183, London: McGraw-Hill,
1999.

99. Dasgupta D, ed., An agent based architecture for a computer virus immune
system, GECCO 2000 Workshop on Artificial Immune Systems, 2000.

100. Kim J, Bentley PJ, An evaluation of negative selection in an artificial immune
system for network intrusion detection. In: Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO), San Francisco, CA: Morgan-
Kauffman, 2001 1330–1337.

101. Williams PD, Anchor KP, Bebo JL, Gunsch GH, Lamont GD, Cdis: Towards a
computer immune system for detecting network intrusions. In: Lee W, Me L,
Wespi A, eds., Fourth International Symposium, Recent Advances in Intrusion
Detection, Berlin: Springer, 2001 117–133.

102. Sarafijanovic S, Boudec JYL, An artificial immune system for misbehavior
detection in mobile ad-hoc networks with virtual thymus, clustering, danger signal,
and memory detectors. In: Nicosia G, Cutello V, Bentley P, Timmis J, eds.,
Artificial Immune Systems, volume LNCS 3239 of Lecture Notes in Computer
Science, Germany: Springer-Verlag Berlin Heidelberg, 2004 342–355.

103. Dasgupta D, Forrest S, Novelty detection in time series data using ideas from
immunology. In: Proceedings of The International Conference on Intelligent
Systems, 1996 Best paper award.

104. Sathyanath S, Sahin F, Artificial immune systems approach to a real time color
image classification problem. In: Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, 2001.

105. Chao DL, Forrest S, Information immune systems. Genetic Programming and
Evolvable Machines 2003;4:311–331.

106. Esponda F, Ackley ES, Forrest S, Helman P, On-line negative databases. Journal
of Unconventional Computing 2005;1:201–220.

107. de Mare M, Wright R, Secure set membership using 3SAT. In: Eighth
International Conference on Information and Communications Security
(ICICS ’06), Lecture Notes in Computer Science, Springer Verlag, (in press) .

108. Esponda F, Forrest S, Helman P, A formal framework for positive and negative
detection schemes. IEEE Transactions on System, Man, and Cybernetics
2004;34:357–373.

109. Esponda F, Jia H, Forrest S, Helman P, Protecting data privacy through hard-to-
reverse negative databases. In: Proc. of the Information Security Conference
(ISCO6), Springer Lecture Notes in Computer Science, Springer Verlag, 2006.

110. de Castro LN, Zuben FJV, Learning and optimization using the clonal selection
principle. IEEE Transactions on Evolutionary Computation 2002;6:239–251.

111. Kim J, Bentley PJ, Towards an artificial immune system for network intrusion
detection: An investigation of clonal selection with a negative selection operator.
In: Proceedings of the 2001 Congress on Evolutionary Computation, 2001.

112. Smith R, Forrest S, Perelson AS, Searching for diverse, cooperative populations
with genetic algorithms. Evolutionary Computation 1993;1:127–149.

113. Holland JH, Adaptation in Natural and Artificial Systems. Cambridge, MA: MIT
Press, 1992. Second edition (First edition, 1975).

114. Glickman M, Balthrop J, Forrest S, A machine learning evaluation of an artificial
immune system. Evolutionary Computation Journal 2005;13:179–212.

115. Begnum K, Burgess M, A scaled, immunological approach to anomaly
countermeasures (combining ph with cfengine). Integrated Network Management
2003;31–42.

116. Ishiguro A, Kuboshiki S, Ichikawa S, Uchikawa Y, Gait control of hexapod
walking robots using mutual-coupled immune networks. Advance Robotics
1996;10:179–195.

117. Segel L, Bar-Or RL, Immunology viewed as the study of an autonomous
decentralized system. In: Dasgupta D, ed., Artificial Immune Systems and their
Applications, 65–88, Berlin: Springer-Verlag, 1998.

118. Segel L, Bar-Or RL, On the role of feedback in promoting conflicting goals of the
adaptive immune system. J Immunology 1999;163:1342–1349.

119. Bersini H, Self-assertion vs. self-recognition: A tribute to Francisco Varela. In:
Timmis J, Bentley P, eds., Proceedings of the First International Conference on
Artificial Immune Systems (ICARIS), 2002 107–112.

120. Williamson MM, Throttling viruses: Restricting propagation to defeat malicous
mobile code. In: Proceedings of ACSAC Security Conference, Las Vegas, Nevada,
2002 Available from http://www.hpl.hp.com/techreports/2002/HPL-2002-
172.html.

121. Balthrop J, Forrest S, Newman M, Williamson M, Technological networks and
the spread of computer viruses. Science 2004;304:527–9.

122. Balthrop J, RIOT: A responsive system for mitigating computer network
epidemics and attacks. Master’s thesis, The University of New Mexico,
Albuquerque, NM 2005.

123. Harmer PK, Williams PD, Gunsch GH, Lamont GB, Artificial immune system
architecture for computer security applications. IEEE Transactions on
Evolutionary Computation 2002;6:252–280.

124. Zorzenon dos Santos RM, Coutinho S, Dynamics of HIV infection: A cellular
automata approach. Phys Rev Lett 2001;87.

125. Strain MC, Richman DD,Wong JK, Levine H, Spatiotemporal dynamics of HIV
propagation. J Theor Biol 2002;218:85–96.

126. Perelson AS, Essunger P, Cao Y, Vesanen M, Hurley A, Saksela K, et al., Decay
characteristics of HIV-1 infected compartments during combination therapy.
Nature 1997;387:188–191.

127. Segovia-Juarez JL, Ganguli S, Kirschner D, Identifying control mechanisms of
granuloma formation during M. tuberculosis infection using an agent-based model.
J Theor Biol 2004;231:357–376.

128. CWarrender, Forrest S, Koster F, Modeling intercellular interactions in early
mycobacterium infection. Bulletin of Mathematical Biology (in press).

129. Larson EW, Dominik JW, Rowberg AH, Higbee GA, Influenza virus population
dynamics in the respiratory tract of experimentally infected mice. Infect Immun
1976;13:438–447.

130. Smith DJ, Lapedes AS, Forrest S, deJong JC, Osterhaus ADME, Fouchier RAM,
et al., Modeling the effects of updating the influenza vaccine on the efficacy of
repeated vaccination. In: Osterhaus ADME, Cox NJ, Hampson AW, eds., Options
for the Control of Influenza Virus IV, volume 1219 of International Congress
Series, Amsterdam: Excerpta Medica (Elsevier), 2001 655–660. Proceedings of
the World Congress on Options for the Control of Influenza Virus IV, Crete,
Greece, 23–28 September 2000.

131. Kanerva P, Sparse Distributed Memory. Cambridge, MA: MIT Press, 1988.

132. Rimmelzwaan G, Berkhoff E, Nieuwkoop N, Smith D, Fouchier R, Osterhaus A,
Multiple clustered comutations are required for full functional compensation of a
detrimental mutation in an influenza virus CTL epitope. Journal of General
Virology (in press).

133. Voordouw A, Sturkenboom M, Dieleman J, Stijnen T, Smith D, van der Lei J, et
al., Annual revaccination against influenza effectively reduces mortality risk in
community dwelling elderly. Journal of the American Medical Association
2004;2089–95.

134. Boon ACM, de Mutsert G, van Baarle D, Smith DJ, Lapedes AS, Fouchier RAM,
et al., Recognition of homo- and heterosubtypic variants of influenza a viruses by
human CD8+ T lymphocytes. J Immunolology 2004;172:2453–60.

135. Smith D, Predictability and preparedness in influenza control. Science
2006;312:392–394.

136. Catron DM, Itano AA, Pape KA, Mueller DL, Jenkins MK, Visualizing the first
50 hr of the primary immune response to a soluble antigen. Immunity
2004;21:341–347.

