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This review describes a body of work that constructs computational immune systems that 
behave analogously to the natural immune system. These artificial immune systems (AIS) 
simulate the behavior the natural immune system and in some cases have been used to 
solve practical engineering problems such as computer security. AIS have several 
strengths that can complement wet lab immunology.  It is easier to conduct simulation 
experiments and to vary experimental conditions, for example, to rule out hypotheses; it 
is easier to isolate a single mechanism to test hypotheses about how it functions; agent-
based models of the immune system can integrate data from several different experiments 
into a single in silico experimental system. 
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I. INTRODUCTION 
 
 This paper reviews a body of work that takes a synthetic, or constructive, 
approach to immunology, engineering artificial immune systems (AIS) in computational 
settings. In AIS both the components of the immune system and their environments are 
defined as computations. In some cases, the AIS simulate immune system function in 
digital environments (as in all computer simulations), and in others they are practical 
solutions to real problems such as computer security. A common thread, however, is that 
hypotheses about components and mechanisms are expressed mechanistically as 
computer programs. When the programs are executed, their behavior is observed and, in 
the case of models, compared to the behavior of the real system. In practical applications, 
system behavior is evaluated by how well it solves the specified problem. The motivation 
is to engineer a system that can operate successfully in an environment with constraints 
similar to those faced by the natural immune system, thereby learning the functional 
significance of different components and analyzing how they interact with one another. 
The engineering process, like natural selection, leads to designs that are adapted to the 
constraints of their environments. Engineered systems can be studied and analyzed more 
easily than their biological counterparts, in some cases revealing phenomena that would 
be difficult to discover experimentally. 
 In contrast with other theoretical models of immunology, AIS are usually 
constructed as agent-based models (ABM) (1). In ABM, entities in the model are 
represented explicitly. For example, each individual cell might be represented rather than 
each different cell type, as is common in other approaches such as differential equations. 
An essential feature of ABM is the ability to observe how behavior at different spatial 
and temporal scales arises from local mechanisms. This requires studying interactions 
among large numbers of components, and to accomplish this ABM exclude much 
biological detail by design. The trick is to define the model components at a proper level 
of abstraction, neither including irrelevant or incorrect detail nor leaving out essential 
features. The behavior and interactions of the entities in the model are encoded as 
computer programs. Consequently, experimental findings and hypotheses can be 
incorporated directly, even when they are not easily characterized as mathematical 
equations. The low-level components and interactions of an ABM are specified as 
programs, the simulation is run, and high-level behaviors are observed.  For example, in a 
biological simulation the high level behavior might show how cell populations change 
over time. This is known as a bottom-up approach to modeling. In ABM, the simulation 
can be run repeatedly, with slightly different initial conditions, revealing a distribution of 
outcomes rather than a single average behavior. For some immunological phenomena, 
this is relevant to understanding why some individuals become ill and others do not. 
 This review first gives an overview of ABM techniques as they are typically 
applied to immunology (Section II). It then describes representative examples of how 
ABM have been used to develop models of immunological phenomena (Section III). 
Next, it describes how similar methods have been used in engineering applications 
(Section IV), where the abstractions and techniques that succeded in modeling biology 
also work for computer security and other applications. Then, returning to natural 



immunology, it discusses examples of AIS applied to problems of biomedical 
significance (Section V). Finally, the paper speculates about the future prospects and the 
usefulness of engineered immune systems. 
 

II. AGENT-BASED MODELING FOR IMMUNOLOGY 
 
 In the past two decades, many methods have been used to model the immune 
system. Differential equation models are perhaps the most common, typically simulating 
how concentrations (cells, antibodies, cytokines, etc.) change over time and identifying 
critical parameters of an immune response (2, 3). Neural networks were used to model 
Jerne’s immune network theory (4 - 6), and genetic algorithms were used to model the 
evolution of diversity (7, 8). The concept of “shape space” (9 - 11), proposed as an 
abstraction of receptor/ligand binding, provided a convenient formalism for many 
subsequent models, and many immune-system models still use some form of shape-space 
abstraction. More comprehensive and general immune system simulators use ABM 
techniques, incorporating significant amounts of immune detail (12 - 17). This last 
category is the subject of Section III. 
 In an ABM each entity, or agent, represents a single cell or pathogen, and a 
computer program encodes its behavior and rules for interacting with other agents. Some 
common behaviors include cell death (usually by deleting the cell from the simulation), 
division (by making a copy of the dividing cell), or changing an internal state variable 
(for example, to model cell activation or differentiation). An agent in an ABM is a 
designated region of computer memory, similar to a variable, that contains details about 
the particular cell.  This information can include its size, location, age, what receptors it 
has on its surface, and so forth.  The agents can move through space, interacting locally 
with other agents at nearby locations, following a set of predefined rules. Thus, the 
behavior of the low-level agents is pre-specified, and the simulation is run to observe 
global behaviors, for example, to determine an epidemic threshold. ABMs specify local 
interactions in terms of simple mechanisms, which give rise to the large-scale complex 
dynamics of interest. 
 Why is ABM an appropriate method for studying immunology? First, the agent 
behaviors can directly incorporate biological knowledge or hypotheses about low-level 
components, even if they cannot be expressed mathematically. Second, data from 
multiple experiments can be combined into a single simulation, to test for consistency 
across experiments or to identify gaps in our knowledge. In the future, integrative 
methods such as ABM will likely be essential tools for comprehending and aggregating 
vast amounts of experimental data. Third, the immune system is a complex biological 
system with many different interacting mechanisms, and many biologically relevant 
values cannot be measured directly. For example, there are too many different 
protein/protein and virus/protein interactions to expect that we can isolate all of them 
experimentally. In an ABM it is relatively easy to disable mechanisms altogether, adjust 
their relative contributions, and to perform sensitivity testing of parameters. Through its 
functional specifications of cell behavior, ABM can thus help bridge the current gap 
between intracellular descriptions and multicellular infection dynamics. Variation among 
individuals, each making different amounts of innate proteins that almost certainly impact 
the trajectory of an infection, is an important complication. These effects can be studied 



using ABM by incorporating a distribution of parameter values in the agent population. 
Finally, there are important spatial and temporal interactions easily studied in ABM, for 
example, paracellular signaling between infected and uninfected cells. 
 
 
 
 Place Fig. 1 here.  
 
 
 
 Most ABM models of immunology represent receptors and ligands as character 
strings (Fig. 1) and use a string matching rule to model affinity. This clever idea was 
introduced by Farmer et al. (18) as a way to perform calculations for determining 
molecular complementarity and predicting the optimal size of an epitope. An overview of 
the calculation is given in (19). The strings use an alphabet of m characters where each 
character corresponds, for example, to a given amino acid. In the most common case, 
however, m = 2, although larger alphabets have also been studied. In immunology, 
binding is a threshold effect consisting of two components: the affinity of a single 
receptor and ligand, and the total binding, or avidity, of multiple binding pairs. Most 
models focus on affinity by simply counting the number of positions in the string where 
the symbols are identical. Many variations of this basic scheme have been proposed, 
including different size alphabets, different numbers of symbols in the string, and many 
string matching rules. Ref. (20) reviews some of the variations. The strings, together with 
some internal state information (e.g., the age of the cell), are the “agents” in an immune 
system ABM. Figure 1 illustrates this modeling strategy. 
 This fundamental modeling abstraction ignores nearly all of the physical details 
that determine receptor/ligand interactions. Careful modeling of a single interaction, say 
using a molecular dynamics simulation, is expensive computationally. By adopting 
character strings, many binding events can be simulated quickly, making it feasible to 
study large scale properties of the immune system. Although character strings are 
unphysical, they can produce surprisingly accurate models when benchmarked to 
experiment (21), suggesting that the abstraction captures important features of 
receptor/ligand binding. 
 Interactions between agents, and between agents and their digital environment, 
determine the dynamics of an ABM. In immune modeling, most interactions are mediated 
by receptor/ligand binding. So, when strings bind above the threshold value, the 
simulated cells may be stimulated to proliferate, increase their mutation rates, migrate to 
a new location, die, or secrete simulated molecules. Antigen can be added to the system 
in various locations, in varying doses, and at different times. The model is then “run” and 
the dynamics of the infection observed. 
 As computers became more powerful and less expensive, ABM became a 
practical method for studying complex systems such as the immune system. The 
following sections review a representative sample of conceptually important systems. 
The models were highly simplified and abstract in the beginning, but over time they 
gained sophistication as more was learned about the immune system and advances in 
computation made it feasible to construct more complex models. Thus, the original 



models were one-dimensional, and since then, there has been a progression to two- and 
now three-dimensional simulations. 
 More detail is not always desirable, however, as it can be difficult to interpret 
results from an overly complex model. A simple model that isolates a few relevant 
phenomena so they can be studied in detail is often more illuminating than an overly 
complicated one with many extraneous features. Thus, there is a tension between 
incorporating everything that is known and abstracting away from the physical details to 
capture general principles. The most compelling and influential ABM have been those 
where just enough detail was included to reveal a phenomenon of interest. 
 

III. AGENT-BASED MODELING IN IMMUNOLOGY 
 

 Early host-pathogen immune models consisted of simple one-dimensional binary 
networks of automata (22, 23). Each network contained a set of nodes, where each node 
represented a cell population (for example, B cells or T cells) that could be in one of two 
states: zero = population is absent, or one = present at high levels. The nodes contained 
rules specifying how connected populations would interact. Thus, the presence of antigen 
might trigger a high level of B cells in neighboring populations. The networks were 
initialized by setting certain populations (nodes) to zero or one, and then simulating the 
network to find, for example, attractor states that could be interpreted in terms of an 
immune response. Ref. (19) provides more detail about these early models. 
 Early ABM of the immune system focused on immune network theory and were 
often implemented as cellular automata (CA) (24 - 26). Each site of the CA grid 
represented an idiotype or clone, and the state of the site represented the concentration of 
that particular clone. The dimensionality of the grid (e.g. one- or two-dimensional) 
represented the variable characteristics of the clone (e.g. geometric shape, electric charge), 
and the size of the grid represented the number of different possible values (e.g., the 
number of different shapes that were possible). The interaction rules specified that a 
clone situated at xr  = ( x 1, x 2, · , x N), where N is the dimensionality of the grid, could 
stimulate the proliferation of clones that were nearby, thus simulating the phenomenon of 
cross-reactivity. When these models were simulated they produced complex patterns 
resembling immune activity, with stable patterns corresponding to memory, and changing 
patterns attributed to perturbations caused by new antigens. A variation of this approach 
represented the network of idiotypic interactions using a classifier system, in which each 
classifier rule specified a particular interaction, and its strength represented the 
concentration of the idiotype (27). As interest in Jerne’s network theory waned, so did the 
use of such models. 
 The next generation of computational immune models was more ambitious, 
incorporating significantly more immunological detail, e.g., (13, 28, 29). The CA grid 
was used to represent physical space, rather than abstract properties of clones. The 
simulators incorporated enough detail that one model could be used to study several 
aspects of immune dynamics or disease 
 In the following, we discuss two examples of CA systems, IMMSIM and 
ma_immune. We then describe two three-dimensional models that incorporate 
molecular modeling as well as cellular modeling, Simmune and CyCells. Finally, we 
describe more recent work that emphasizes graphical visualization of immunological 



processes. IMMSIM is a canonical example of the ABM approach applied to 
immunology, so we describe it in more detail than the other systems. These general 
models are useful on their own as a means of organizing specific hypothesized 
mechanisms and studying how they interconnect—the value of this synthesis is revealed 
by the many extensions developed for specific purposes (Section V). 
 

A. IMMSIM 
 

 An early CA model of the immune system introduced in 1992 is IMMSIM (13, 
28). The original version modeled the humoral response (13) and contained bit string 
representations of T cells, B cells and other antigen presenting cells (APC), as well as 
antigen (Ag) and antibody (Ab) molecules. Later versions added cytotoxic and helper T 
cells, epithelial cells, and cellular response (30, 31). 
 The original version of IMMSIM was written in APL2 with the IBM APL2 
runtime environment. Bernaschi and Castiglione later developed a parallel version called 
ParImm and later CIMMSIM (15). Finally, a C++ tutorial version of IMMSIM based on 
CIMMSIM was developed by Steven Kleinstein (14). 
 Most simulations were run on small grids, typically a 15x15 hexagonal grid and 
the size of the bit-string, N, was typically eight, yielding 28 = 256 different possible 
clones. The time scale of a simulation is not always specified, but ref. (14, page 74) 
suggests that one time step in the simulation corresponded roughly to the time for a single 
B-cell division. 
 1. Representing Receptor-specific Interaction   Figure 2 illustrates the schematics 
of cells and molecules in an IMMSIM model using eight-bit strings. As in most AIS, 
immune components are characterized by their receptors, and each receptor is represented 
as a character string. Typically (and this differs among the various implementations of 
IMMSIM), a B cell is composed of a single receptor and a single MHC II molecule, each 
represented by a binary string. Among the B cell population, for example, the simulations 
typically consider only one or two different MHC II types. Antibody molecules are 
represented as a single receptor. Finally, antigen molecules consist of segments of two 
different types: B cell epitopes and presentable peptide strings. 
 
 
 
 Place Fig. 2 here. 
 
 
 
 2. Interaction Rules   Interactions between agents are specified by a set of 
interaction rules. For example, a B cell’s receptor interacts with the “bare” part of an 
antigen. A T cell receptor interacts with the pair made up of an antigen peptide and the 
MHC II of a B cell. To determine binding the receptor strings are compared symbol by 
symbol, looking for mismatches, using a variant of Hamming Distance. Two bits match if 
they are complementary. Thus, zero matches one and vice-versa. Fig. 2 illustrates this 
approach, where there is a two-bit mismatch between the B cell’s Receptor 57 (00111001) 



and the epitope (bare part) of Antigen 228 (11100100). If the number of matches is above 
the binding threshold, which is a parameter of the simulation, then the agents interact. 
 On any given step of the simulation, the set of potential interactions for each 
agent (a cell or antigen) is determined, and out of this set one action is chosen for each 
agent probabilistically. Then, each agent’s state (naive or activated) is updated 
synchronously. Possible actions include cell death, cell division, and antibody production. 
If, for example, an antigen-antibody interaction is successful, they are considered to have 
formed a complex and both are removed from the simulation. Finally, the entities diffuse 
to a randomly chosen neighboring grid site and that concludes one time step of the 
simulation. 
 3. IMMSIM studies   The IMMSIM models were used to investigate 
immunological phenomena such as affinity maturation and hypermutation in the humoral 
response (12), the rheumatoid factor paradox (32), transitions between immune and 
disease states and the relative contributions from the different branches of the immune 
system (30, 31), vaccine efficiency (33), and the dynamics of HIV infection (34). 
 IMMSIM was a conceptually important advance because it developed a general 
modeling framework that could be used for multiple studies. It incorporated enough 
immunological detail to support studies involving real immunological problems. 
IMMSIM also illustrates the use of bit string representations of receptors and ligands. 
 

B. ma_immune 
 

 A more recent example of CA used for modeling immunology is ma_immune 
(35). ma_immune is implemented on a two-dimensional grid, representing a tissue that 
is patrolled by generic immune cells. ma_immune was designed as a simulation platform 
for localized tissue infection, where the cells affected by pathogen are immobile, tightly 
packed, and the infection spreads to immediate neighbors. The simulation considers two 
cell types: tissue cells that are immobile, and generic immune cells that move randomly 
to neighboring locations. The simulation platform, called ma_immune, together with the 
supporting visualization software MASyV, is documented and freely available (36). 
 The model was used to study how the spatial distribution of agents affects the 
dynamics of an infection (37), something that is difficult to assess in a differential 
equation model. Differential equation models normally assume that populations (target 
cells, infected cells, virions, etc.) are uniformly distributed in space. Consequently, the 
rate at which target cells become infected, for example, is proportional to the total 
abundance of target cells and virions, without regard for the spatial localization of the 
target cells and virions. Ref. (37) showed that grouping the initially infected cells into 
patches rather than distributing them uniformly on the grid reduced the infection rate, 
because only cells on the perimeter of the patch have healthy neighbors to infect. This 
approach yielded a better fit to experimental influenza A infection data than the 
equivalent non-spatial model. 
 ma_immune is conceptually important because it isolates the effect of spatial 
localization and provides an elegant explanation of how spatial localization can change 
infection dynamics. 
 

C. Multipurpose Modeling Frameworks 



 
 Two recent modeling frameworks, Simmune and CyCells, are significantly more 
general than earlier systems and represent a conceptual advance in immune system 
modeling. 
 Simmune is a two-level immune system simulator, which represented a 
significant advance in immunological modeling (17, 38, 39). At the lower level, 
molecules such as cytokines are defined as continuous quantities, and their dynamics are 
modeled using differential equations. At the higher level, cells are modeled as discrete 
computational agents. Thus, Simmune is a hybrid of continuous and ABM techniques. 
The basic framework is defined generally enough that it could in principle model almost 
any kind of cell population. 
 Different types of cells can be defined by the user (e.g., T cells and B cells), and 
the user specifies rules for how cells move between locations on the grid. Because 
molecules are represented as continuous quantities, they move using diffusion rules, 
whose parameters are also be specified by the user. Simmune is run on a three-
dimensional grid, the user defines different compartments (e.g., lymph nodes, thymus), 
and specifies properties for each compartment within the simulation such as its dimension, 
diffusion rates for each molecular type, which types of cells are in each compartment, and 
their initial concentrations. The exchange of agents between the different compartments 
can be regulated, for example, which kinds of agents are allowed to pass from one 
compartment to another and at what rate. In Simmune a cell’s action depends on the 
stimuli it senses from its environment, known as a cellular stimulus response mechanism. 
 CyCells is a similar modeling framework, but its functions and usage are better 
documented (40) and its source code is available online (41). Similar to Simmune, it 
represents molecular concentrations continuously and cells discretely. CyCells is 
implemented on a three-dimensional square grid. In CyCells models are defined by 
specifying initial numbers of cells, cell types (e.g., B cells, macrophages), and molecular 
signals (e.g., cytokines). Each cell of each cell type is represented explicitly, and the 
molecular signals are represented as real-valued concentrations at each site. For each type 
of molecular signal, the modeler supplies a decay and/or diffusion rate. CyCells uses the 
sense-process-act abstraction for cell behavior. For each cell type, the modeler specifies 
its attributes, and associates with it sensing, processing, and/or action procedures. An 
attribute might contain the cell’s diameter, a sensing procedure could respond to a 
particular molecular concentration, the processing function might specify that the cell is 
activated when it senses the molecular concentration above a threshold, and the action 
could be death, division, migration, or the secretion of a molecular substance. Hence, the 
framework is highly flexible, allowing both simple and complex models to be 
implemented in a single framework. 
 Ref. (16) used CyCells to investigate two hypotheses about the maintenance of 
peripheral macrophage population sizes in the lung. Under the first hypothesis, 
macrophage proliferation was local and caused by the division of resident macrophages. 
Under the second hypothesis, proliferation was the result of influx of circulating blood 
monocytes. Although either scenario was plausible, the model showed that the influx-
driven system is inherently more stable and that a proliferation-driven system requires 
lower cell death and efflux rates than an influx-driven model. CyCells was also used to 



model early infection dynamics of Mycobacterium tuberculosis bacteria (42) (see Section 
VB). 
 These models were conceptually important because they introduced more realistic 
treatment of cytokines and the other molecular players in the immune response. By 
combining continuous models of molecular diffusion on a grid with agent-based models 
of cells, these hybrid models represented an important step in ABM approaches to 
immune modeling. Other hybrid models combine continuous and ABM methods in 
different ways, for example (43), where a cytotoxic T cell’s life cycle is divided into 
stages, and all individuals in a given stage are assumed to be identical. A single integer 
represents the individuals in a given stage, rather than one data structure per individual 
required in a pure ABM approach. 
 

D. Representing large repertoires in immune system models 
 
Running an ABM that explicitly represents a realistic number of cells can be 
computationally expensive. An estimated 107 unique clones comprise an individual’s B 
(44) and T (45) cell repertoires. Simulations containing this many clones have become 
feasible with recent increases in computing power  (15, 46), although running simulations 
of this size is still time-consuming. Thus, most immunology simulations use artificially 
small immune cell repertoires that contain tens or hundreds of clones. This is sufficient 
for studying some immunological phenomena but not sufficient to address issues such as 
cross-reactivity (47, 48) and alloreactivity (49) quantitatively. Because most cells in the 
repertoire are not involved in any given immune response, only a small fraction of cells 
needs to be updated on any given time step. This observation led to the use of lazy 
evaluation, a computational technique in which only the computations that need to be 
performed are actually carried out (50). Rather than create, for example, 107 explicit B 
cell clones, the majority of which would not respond to a given infection, the lazy 
evaluation version of an ABM would not create any clones until the simulated infection 
began, then it would produce only the 102 − 103 that have sufficient affinity to participate 
in the given immune response. Although using lazy evaluation complicates the software 
implementation, it can reduce the memory and running time by orders of magnitude 
without affecting simulation results. This strategy has been applied to B cell (50) and T 
cell (43) models. 
 

E. Statecharts and Visualization 
 
 Efroni, Harel, and Cohen developed an immune system programming framework 
based on the visual language of Statecharts, and ref. (51) describes the structure of a 
statechart model for the thymus. Statecharts, introduced by David Harel in 1987 (52), are 
a method for representing complex computational processes in terms of states and the 
events that cause transitions between states. It also considers substates and orthogonal 
states. For example, a cell’s orthogonal states could be its expression of different 
receptors, and the substates could be the conditions or substates under which the cell 
expresses a particular receptor. Although the terminology and motivation are different 
from that of agent-based or CA models, they share many features and we discuss them 
briefly. 



 Agents in the model are the moving thymocytes and the stationary epithelial cells 
of the thymus. A thymocyte’s motion depends on the gradient of the various cytokines 
and the thymocyte’s expression of the markers that detect these gradients. The simulation 
consists of four types of cytokines and seven thymocyte markers, five of which have 
binary values (expressed or unexpressed) and two of which have three values (expressed, 
unexpressed, and an intermediate low level of expression). Then, for example, based on 
which of the 25 × 32 = 288 different possible marker states the thymocyte is in, it is 
sensitive to a particular set of cytokines and its movement is determined by the cytokine 
set. 
 
 
 Place Fig. 3 here.  
 
 
 
 The diagrammatic representation of state charts is intended to be easier to 
understand for people from various disciplines, thus facilitating collaboration between 
modelers and experimentalists. In addition, the model’s interactive graphical front-end 
allows the user to see the agents move and interact, navigate the simulation by clicking 
on particular agents, and either retrieve or set information about the agent’s state and 
decision process (see Figure 3). Because immunological knowledge is often incomplete, 
the model lets the user define different hypotheses for the outcomes of interactions, and 
choose which instance of the available hypotheses will be executed on a given run, thus 
supporting exploration of different hypotheses. 
 An even more sophisticated visualization tool is PathSim (Pathogen Simulation), 
a simulator developed for displaying three-dimensional anatomical models of host-
pathogen interactions (53). PathSim’s programming framework is described briefly in 
(54), and more information is available from the project’s web site (55). 
 As more detailed information becomes available about how individual immune 
cells move through tissue (56 - 58), visualization packages such as the Statechart system 
and PathSim will likely play a more central role in immunological modeling. 
 

IV. ENGINEERING AN IMMUNE SYSTEM 
 
 This section examines a body of work that translated the mechanisms and 
organizational principles of the immune system into algorithms for solving computational 
problems (59, 60). It is surprising that the abstractions and concepts discovered through 
immune system modeling are general enough to form the basis of nonbiological, 
engineered systems. However, AIS methods have been applied to a wide range of 
problems, including control engineering, robotics scheduling, fault tolerance and 
bioinformatics. The most prevalent example to date has been in computer security, and 
we focus on that example in the following subsections. 

A computer security system should protect a computer or network of computers 
from unauthorized intruders, which is analogous in functionality to the immune system 
protecting the body from invasion by foreign pathogen. Further, a computer security 
system should protect against insider attacks, malfunctioning software (analogous to 



misbehaving cells) and other internal errors, maintaining the computer within normal 
operating tolerances. The similarities between the computer security problem and the 
problem of protecting a body against damage from internally and externally generated 
threats are compelling, and they were recognized as early as 1987 when the term 
computer virus was introduced by Adelman (71). Later, Spafford argued that computer 
viruses are a form of artificial life (72), and several authors investigated the analogy 
between epidemiology and the spread of computer viruses across networks (73 - 76). The 
connection to immunology was made explicit in (77, 78), and since that time the ideas 
have been extended to incorporate significant amounts of immunology and to tackle 
ambitious computer security problems, including computer virus detection (77, 78), spam 
filtering (79), and computer forensics (80). 
 Many different aspects of the immune system have been used as inspiration for 
engineering applications. In addition to the examples given below there has been work on 
danger theory (61), idiotypic networks (62 - 64), affinity maturation through somatic 
mutation (65, 66), V-region libraries (67, 68), and the innate immune system (69, 70). 
Nearly all of the applications exploit analogies with the pattern matching and learning 
mechanisms of the immune system to perform desired computations. The studies 
illustrate how immunological processes of interest can be defined computationally and 
studied in detail to understand their functional significance. As we saw in earlier sections, 
most computational realizations of immunology focus on the adaptive immune response, 
and that is true in the computer security domain as well, although some recent work 
emphasizes the innate response. 
  

A. Elements of a Computer Immune System 
 
 If we set out to engineer a computer immune system to solve problems in 
computer security, what functional components would we need? Similar to the natural 
immune system, there are computer defenses that correspond to nonspecific and specific 
responses. Firewalls evolved to prevent unwanted communication between computer 
networks; access controls (e.g., logins and passwords) were developed to control how 
much access users have to computers and data. These generic defenses correspond to the 
immune system’s nonspecific response. Specific responses, known as intrusion-detection 
systems (IDS), recognize active intrusions, including those that may not have been seen 
before. An IDS continuously monitors the dynamic behavior of a computer system to 
determine if a security violation or denial-of-service attack has occurred. Such violations 
include injected foreign code (as in the case of viruses) or exploitation of vulnerabilities 
in existing code by illegitimate users. There are two broad classes of IDS, loosely 
corresponding to primary and secondary responses in natural immunology. Similar to the 
primary response, anomaly IDS can detect novel forms of attack, while signature 
detection systems respond only to known attacks, corresponding to a secondary response. 
Finally, some systems have an automated response component that corresponds to the 
effector side of the immune system, such as inflammatory processes or cytotoxic T cells.  
 In earlier sections, we saw how immune systems are modeled using 
computational agents, with receptors and ligands represented as short strings of symbols, 
death implemented by deleting agents from the simulation, and proliferation and cell 
division implemented by copying agents. These abstractions are used in the computer 



security domain as well, but additional decisions must be made. These include identifying 
what data will be observed to detect infection (e.g., what corresponds to normal peptides 
of the body); devising a scheme for generating a diverse repertoire of detectors; 
specifying the details of the adaptive response (how will new infections be noticed and 
remembered); and determining what actions the immune system will take to control 
infections once they have been identified. In the following, we review each of these 
elements briefly. 
 

B. Defining Self 
 
 Protecting computers involves activities such as detecting unauthorized use of 
computer accounts, maintaining the integrity of data files, mitigating denial-of-service 
attacks, and detecting and eliminating computer viruses and spyware. These can be 
viewed as instances of the more general problem of distinguishing self (legitimate users, 
uncorrupted data, etc.) from dangerous nonself (unauthorized users, viruses, and other 
malicious agents). Just as the natural immune system evolved to monitor certain 
observables in the body, notably peptides, so must an AIS be designed to monitor 
particular aspects of a computer. 
 Thus, the first step in designing a computer immune system is deciding what data 
or activity patterns will play the role of self and what entities will correspond to 
pathogens. Despite debate in the immunological literature about the role of self, we 
accept the notion that proteins and peptides are a fundamental unit of recognition for the 
immune system. In order to build a computer immune system, a computational analog to 
the protein must be found. Researchers typically make this choice with regard to a 
particular class of threats in which they are interested. As the threats of interest have 
evolved, so have the computer immune systems that protect against them. 
 When computer immune systems were introduced, the primary threats were 
computer viruses that infected user files (file infector viruses) or the code used to boot up 
the operating system (boot sector viruses). The viruses consisted of short sections of 
computer code attached to another program. When the host program ran (was executed), 
control passed to the virus code, which searched for other uninfected files and copied 
itself into them. Consequently, early systems tried to protect the integrity of programs 
stored on disk, either by preprogrammed databases of virus signatures (as in popular anti-
viral software) or by change-detection programs (77, 78). Change-detection programs are 
analogous to a biological system that checks for genetic damage, noticing changes to the 
genetic codes that control biological processes. This approach is limited because most of 
the data and code stored on computer disks are never used. Because computer viruses 
don’t do damage until they are executed, it is more efficient to protect executing 
programs or data being copied across a network. 
 The second generation of computer immune systems explored the possibility of 
protecting executing programs (81, 82). Here, the unit of protection (organism) is a single 
computer, and each executing process is roughly analogous to a cell. Discrimination 
between normal and abnormal behavior is based on what functions (or subroutines) are 
normally invoked by the running program, in particular, the requests issued to the 
operating system from the running program, known as system calls (81, 83). As a single 
program executes, it might make several million system calls in a short period of time, 



and this signature of normal behavior is sufficient to distinguish between normal behavior 
and many attacks. A record is kept of the system call history, and the list is split up into 
shorter “peptides” (typically 6-10 system calls long), which define the normal behavior of 
the program. Most attacks trick the victim program into executing infrequently used code 
paths, which in turn leads to anomalous patterns of system calls. This approach defends 
against intrusions that target a single computer, the most prevalent example being the 
buffer overflow attack (84). This more dynamic approach resembles the kind of “run-
time” checking performed by RNAi in cells that are actively translating genetic 
information into proteins. 
 A large number of researchers adopted the system-call approach, some seeking to 
improve on the original methods (85 - 89), some applying its method to other problems 
(90 - 92), and some attempting to defeat the system (93). Sana Security developed a 
product known as Primary Response based on this technology and is actively marketing 
it to protect servers. At this writing, the system-call method is the most mature 
application of the immunology analogy to computer security. 
 As the Internet expanded and information exchange became routine between 
computers around the world, protecting against widespread network attacks such as email 
viruses and worms became more important. We use the term virus to refer to malicious 
software that requires help from computer users to spread to other computers. Email 
viruses, for instance, require someone to read an email message or open an attached file 
in order to spread. We use the term worm for infections that spread without user 
intervention. Because they spread unaided, worms can often spread much faster than 
viruses. 
 
 
 
 Place Fig. 4 here. 
 
 
 
 Immunological mechanisms have been employed to protect computer networks 
(94). The equivalent of an organism is a local area network (LAN) of computers. TCP/IP 
(Transmission Control Protocol over Internet Protocol) is the most common 
communication protocol used to connect computers, and the behavior of the protected 
system can be characterized by its normally occurring TCP/IP connections (95). The 
connection is represented by the source IP address, the destination IP address, and the 
program used to make the connection (represented as an 8-bit number). This information 
specifies a network connection. The analog of a peptide is a binary string representing the 
connection (by concatenating the source, the destination, and program type) (Figure 4). 
All normally observed and acceptable connections, both those within the LAN and those 
connecting the outside world to the LAN, form the set of self patterns, and all others 
(potentially an enormous number) form the set of nonself patterns. 
 To summarize, there has been an evolution of threats, which has forced a 
progression from methods that protect the integrity of a computer program, to methods 
that detect when an executing program behaves abnormally, to more recent methods that 
protect networks of computers. All of these levels of protection are important, and the 



progression has led to dynamical definitions of self that are quite different from those 
taken by traditional anti-virus software, which looks for specific patterns in files stored 
on hard disks. The distinction is roughly analogous to that between gene products and 
genes themselves. If the immune system had evolved to inspect directly the genomes of 
all cells for irregularities, we would have a system more closely analogous to anti-viral 
software. Instead, the immune system monitors gene products. Anti-virus software has 
recently adopted several features analogous to the innate immune system (detecting 
general patterns that are harmful), but most commercial products to not yet have the 
adaptive immune system’s ability to address novel threats. 
 

C. Negative and Positive Selection 
 
 With any of the above schemes, a strategy is needed for generating the immune 
cells (called detectors) that detect abnormalities. Similar to the natural immune system, 
this can be achieved with either positive or negative representations (analogous to 
positive and negative selection of T cells) (96). The negative-selection algorithm (77, 97) 
is based on one aspect of the multi-stage maturational process of T-cells in the thymus, 
where they are censored against the body’s normally occurring peptide patterns. T cells 
that react too strongly with self are deleted before they can become active and cause 
autoimmunity. Although mature T-cells have survived at least two other censoring 
operations, genetic rearrangements and positive selection, we focus on the negative 
selection aspect here. 
 The translation of this process into an algorithm for computers is straightforward. 
First, we assume that the anomaly detection problem is posed as a set RS (real-self) of 
strings s, all of fixed-length l of which we can access only a sample S at any given time. 
The universe of all l-length strings is referred to as U, and the set of anomalous patterns 
to be detected is the set U −RS. Candidate detectors (strings) are generated randomly and 
censored against S; those that fail to match the strings in S (analogous to expressed 
peptides in the thymus) are retained as active detectors. Such detectors are known as 
negative detectors, and if S is a good sample of RS each negative detector will cover 
(match) a subset of nonself without matching self. By generating sufficient numbers of 
independent detectors, good coverage of the nonself set is obtained. Figure 5 shows the 
relationship of these sets. 
 
 
 
 Place Fig. 5 here. 
 
 
 
 Since its introduction in (77), interest in negative detection has continued, 
especially for applications where noticing anomalous patterns is important, including 
computer virus detection (98, 99), intrusion detection (94, 100 - 102), and industrial 
milling operations (103). Recently, other categories of applications have been proposed, 
including color image classification (104), collaborative filtering and evolutionary design 
(105), and privacy (106, 107). 



 Analysis of the computational properties of the negative selection algorithm and 
its descendents revealed several advantages (97, 108). One advantage is that negative 
representations require virtually no communication among the individual detectors. 
Negative selection is thus an important mechanism, because it allows detection to be 
distributed rather than centrally controlled. Once censored by the negative-selection 
process, each detector can function independently of other detectors. This is because each 
detector covers part of nonself. Thus, a set of detectors can be split up over multiple sites, 
reducing the coverage at any given site but providing good system-wide coverage. To 
achieve similar coverage using detectors that match self would be computationally 
inefficient, because each positive detector would have to check with all other positive 
detectors to confirm a mismatch. This property allows several forms of distributed 
processing: checking small sections of a large object independently, several independent 
detector sets (Fig. 4), or independent evaluation of  each detector in a single detector set. 
Indeed, the natural immune system uses negative detection in a massively distributed 
environment—the body. 
 A second advantage of negative representations is the ability to conceal 
information about the system it is protecting (106, 109). Thus, in some negative 
representations it is provably difficult to infer the original (positive) set from the negative 
information alone. This is analogous to the problem of trying to infer all of the normal 
self proteins in the body simply by inspecting all of the mature lymphocytes. Although 
this is not necessarily important for the natural immune system, it may have application 
in computing for enhancing the privacy of sensitive information. 
 

D. Affinity Maturation 
 
 The immune system uses affinity maturation to evolve B cells that respond to 
foreign antigen, and so do some computer immune systems. Clonal selection algorithms 
automatically construct detectors tailored to observed patterns (110). This is a more 
focused learning process than that achieved through negative selection alone. This 
approach has been applied to intrusion detection (111), where the clonal selection 
algorithm mimics the processes of somatic mutation and proliferation, evolving detectors 
towards non-self network patterns. In this work, detectors were defined as IF/THEN rules, 
which classified new patterns either as normal or abnormal. The antecedent (IF part) of 
each rule specified the conditions to be tested, and the consequent (THEN) described the 
class label (normal or abnormal) assigned to the rule. 
 The algorithm proceeds as follows. First, a set of detector rules is generated 
randomly, and each rule’s “fitness” is initialized to zero. A sample of rules is randomly 
selected from the initial set. Each detector (rule) in the sample is tested against an 
existing corpus of nonself patterns, and the detector in the sample with the highest score 
has its fitness increased (112). This process is repeated (with new random samples) until 
each detector in the population is evaluated in several contexts. Then the genetic 
algorithm (113) operators of mutation and crossover are applied to the more fit 
individuals to produce new candidate detectors. Finally, the new candidate detectors 
undergo negative selection against a corpus of known self patterns to prevent 
autoimmunity (false positives). Detectors that pass this test then enter the population, 
replacing an existing detector. The algorithm departs from known biology in two ways: 



first by using recombination in an algorithm mimicking somatic mutation and second by 
applying negative selection after somatic mutation. However, it is effective at evolving 
good sets of detectors, and it has been applied to several different problems. 
 

E. Controlling Autoimmunity 
 
 Early experiments with simple AIS for computer network security showed high 
false-positive rates (114), corresponding to autoimmunity. False positives have been a 
persistent problem for anomaly IDS, preventing their widespread adoption for computer 
security. Within the computer immunology framework, several mechanisms have been 
introduced for controlling autoimmunity that are similar in spirit to immunological 
processes. Two examples are avidity and second signaling, described below. 
 A single anomalous connection in the network does not necessarily signal an 
attack, so a parameter known as the activation threshold was introduced (94). A detector 
is required to accumulate enough matches to exceed the activation threshold in order to 
become active. This simple modification reduced autoimmunity significantly, and of the 
various methods that were tested for controlling autoimmunity, it had the most dramatic 
effect. Activation thresholds are analogous to avidity in the natural immune system, 
where multiple receptors on the lymphocyte must be bound simultaneously in order for it 
to become activated. Here,the integration of signals takes place over time instead of in 
space. 
 Ref. (94) introduced a mechanism similar to the costimulation that a B cell must 
receive from a T-helper cell. Originally, the second costimulatory signal was provided by 
a human observer, although ref. (115) provides an interesting extension. In the original 
system, a detector that survived negative selection became mature and was matched 
against all new connections in the network. If it matched enough connections to exceed 
the activation threshold, it was activated. However, if an activated detector did not 
receive a co-stimulatory signal within a given period (typically 24 hours), it died  and was 
deleted. If it received costimulation, it entered a competition to become a memory 
detector. Once a memory detector, it lived indefinitely, requiring only a single match for 
activation, thus capturing the idea of a secondary response. 
 Co-stimulation automatically eliminates detectors responsible for false positives, 
and a human intervenes to confirm true positives. This allows adaptation to incomplete or 
evolving definitions of self, both of which are common in the intrusion detection domain. 
It also allows for shorter maturation periods in the negative-selection phase, by providing 
a backup in case the maturing detector does not encounter all possible self patterns. 
Costimulation in the natural immune system presumably has similar benefits, as well as 
protecting against inappropriate somatic mutations. The co-stimulation process is 
inefficient computationally, and the ideal system from an engineering point of view is 
one where most tolerization is centralized, and peripheral tolerization addresses issues of 
perpetual novelty, incomplete descriptions of self, and somatic mutation. There have been 
debates in immunology about the relative roles of tolerization in the thymus and 
peripheral tolerization; our experiences suggest that both are essential, because they play 
complementary roles. 
 

F. MHC and Diversity 



 
 Generalization is an important tool in resource-limited environments. If each 
detector can match multiple nonself patterns, fewer detectors are needed. However, 
generalization introduces potential discrimination errors, especially those caused by 
overgeneralization, in which foreign patterns that resemble self are categorized as normal. 
These are known as false negatives. As the generality of detectors increases (and 
specificity decreases), the potential for overgeneralization also increases.  
 Using a diverse set of representations for detectors proved to be effective at 
reducing the overall number of false negatives (94). Representation diversity was 
achieved by permuting the bits in a detector, thus moving some co-located bits away 
from one another and placing others together. Because detector matching in this system 
was based on adjacent matches in the string (10), the different permutations effectively 
changed the structure of the self set for each detector. Consequently, where one detector 
failed to detect a pattern, a permuted version of it might succeed. This strategy was 
particularly effective at reducing the number of false negatives when the nonself patterns 
were similar to self patterns. 
 The immune system also has limited resources, and it appears to use both 
generalization and diversity. Generalization is a consequence of the fact that a 
monoclonal lymphocyte can bind to a set of structurally similar peptides. It is not 
unreasonable to assume that generalized detection also leads to coverage gaps (false 
negatives), and if so, pathogens would evolve away from detection towards the gaps. We 
speculate that each different MHC allele can be regarded as a different way of presenting 
a protein (depending on which peptides it presents). Hence, varying the MHC varies 
which coverage gaps exist. This idea is illustrated by the existence of diseases, such as 
leprosy, that are strongly affected by MHC types. 
 

G. Effectors 
 
 The previous subsections outlined a mature and growing body of work defining 
computational abstractions that correspond to the immune system’s ability to detect and 
remember foreign pathogens. Much less effort has been devoted to the effector arm of the 
immune response. Early work on immune-based approaches to control and robotics (63, 
116) incorporated effectors, but most engineering applications emphasize detection. This 
lacuna was emphasized in refs. (117 - 119), which hypothesized a complex feedback 
control system controlled by cytokine signaling. This is an exciting and important 
direction for future work in computer immunology. 
 In computer security applications to date, most approaches emphasize low-level 
generic actions (e.g., homeostasis), rather than targeted killing (CTL) or repair. In the 
first such example, a system called “process Homeostasis” (pH) was developed for a 
single computer (82). In pH, the computer autonomously monitors its own activities at 
the system-call level (described in Section IV B), making small corrections to maintain 
itself in a normal state. In particular, when an executing program is determined to be 
behaving abnormally (by the detection apparatus), pH slows down the program by 
delaying the execution of system calls. The more anomalies detected, the more 
aggressively pH slows the program down. This graduated response has the advantage that 
small delays (possibly corresponding to false positives) are imperceptible to users, while 



long delays trigger timeout mechanisms at network and application levels, effectively 
killing the misbehaving process. 
 This basic approach of throttling misbehaving systems was extended to computer 
networks and used for controlling the spread of email viruses and worms (120, 121). In 
virus throttling, a hard limit is placed on the rate at which a single computer can initiate 
new connections to other computers. When the limit is exceeded, new connection 
requests are simply dropped. This simple effector mechanism was integrated with 
immune-like detectors that could discriminate between different classes of connections 
(for example, web requests and email messages), thus adaptively setting the appropriate 
threshold for each detector (122). 
 

H. Putting it all Together 
 
 The previous subsections reviewed computational analogs of several 
immunological processes and described how they contribute to computer security 
applications. The computational mechanisms are crude compared to the details of natural 
biology, and in many cases it is only the highest level concepts that have been borrowed. 
Negative selection allows the system to operate without central coordination, affinity 
maturation provides a directed learning process, avidity and co-stimulation help control 
autoimmunity, representation diversity (analogous to allelic diversity in MHC) 
compensates for gaps in coverage (false negatives), and homeostatic mechanisms help the 
system achieve a graduated response to perturbations. To date, however, no system 
incorporates all of these elements into a single functioning system. Some of the more 
comprehensive implementations include LISYS (94), CDIS (99, 123), pH (82), and more 
recently, a system developed for mobile ad hoc networks (102), although this latter 
system was tested only in simulation. Figure 6 illustrates how the components were 
combined in the LISYS system using the setup shown in Figure 4. 
 

V. APPLICATIONS TO BIOMEDICINE 
 
 Section III described ABM methods for modeling immunology. This section 
describes how these methods have been used to study specific immune responses to 
infection: HIV, tuberculosis, influenza, and the primary immune response in lymph nodes.  
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A. Models of Human Immunodeficiency Virus 
 
 HIV has been modeled extensively using mathematical methods, e.g., (3), and 
there have been several ABMs as well. Including the two CA models of HIV in lymph 
nodes described below. 
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1. Modeling Multiple Timescales 
 Ref. (124) introduced a CA model that reproduces the two time scales of an HIV 
infection: the short time scale (weeks) associated with the primary response and the long 
one (years) associated with the clinical latency period and the onset of AIDS (124). The 
papers suggest that mean-field ordinary differential equation (ODE) models fail to 
reproduce the two-scale dynamics of HIV because the initial immune response in the 
lymphoid organs is localized. Experimental results illustrating the two-scale dynamics of 
HIV along with results from CA simulations are reproduced in Figure 7. 
 
 In the model, each site in the two-dimensional square grid represents a target cell 
for HIV, namely a CD4+ T cell or a monocyte. A cell’s neighbors consist of the eight 
adjacent cells. Each target cell can be in one of four states: healthy, infected-A1, infected-
A2, or dead. An infected-A1 cell corresponds to an infected cell that is capable of 
spreading the infection. An infected-A2 cell corresponds to an infected cell in its final 
stage before apoptosis. Infected- A2 cells can infect healthy cells only when other 
infected-A2 cells are present in sufficient concentrations. The rules for the CA simulation 
are the following: 

• A healthy cell becomes infected-A1 in the next time step if any of its eight 
neighbors are infected-A1 or if at least 2 < R < 8 of its neighbors are infected-A2. 

• An infected-A1 cell becomes infected-A2 after τ time steps. 
• An infected-A2 cell dies in the next time step. 
• A dead cell is replaced by a healthy cell with probability prepl and otherwise 

remains dead in the next time step. 
• New cells are created as infected-A1 cells with probability pinfec, such that the rate 

at which dead cells are replaced by infected-A1 cells is 

! 

pnewinfec = prepl " pinfec. 
The last rule simulates the arrival of infected cells, either from other compartments or 
from the activation of latent infected cells. 
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 In the model, infection is permanent because new infected cells are continually 
added. These infection seeds lead to the formation of predictable square waves of 
infection, as seen in Figures 8(b,c). In turn, the square waves interact with each other, 
ultimately forming a more complex square wave pattern, illustrated in Figure 8(d). 
 

2. Spatial Effects 



 
 Ref. (125) describes a three-dimensional model of HIV, which incorporates 
additional biophysical properties. The model’s goal is to study the role of spatial effects 
in viral propagation. 
 Assuming that virus is released as a single burst by an infectious cell, the 
diffusion coefficient was determined and an expression was derived for the probability 
Pb(i) that a cell i sites away from the burst becomes infected. From this, the basic 
reproduction ratio (R0) was calculated for HIV, taking into consideration the localized 
spatial nature of viral bursts. The calculation predicts that viral propagation is limited by 
viral stability at low target cell density, and by geometry (target cell’s radius) at high cell 
density. 
 Each site of the three-dimensional grid can be in one of three states: empty (E), 
infected (I), or target (T). The following rules determine the simulation dynamics: 

• A target cell at site i becomes infected at the next time step with a probability 

! 
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• A site containing an infected cell becomes empty in the next time step (death). 
• An empty site acquires a target cell in the next time step with probability 

! 

"
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+
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$ , where nn indicates nearest-neighbor lattice sites, and n is the total 

number of nearest neighbors (six for the simple cubic lattice used in (125)). The 
terms δT and σT are the rate of repopulation of empty lattice site due to the 
division of immediate neighbors, and influx of cells from peripheral blood or 
from the thymus, respectively. 

 
 The spatiotemporal dynamics of the model are determined by propagation 
efficiency and recovery rate. If the propagation efficiency causes the reproduction ratio to 
be less than one, the infection does not propagate. The long-term dynamics of the model 
are determined by the rate of recovery of target cells. Infection propagates as radial wave 
fronts, leaving a wake of empty cells. If cells recover quickly, virus can diffuse from 
producer cells in the wave front back across the wake. After the initial wave propagates 
to the edge of the grid, the system can settle into a chaotic attractor in which which 
infected, target, and empty sites coexist (125). If recovery is slow, the infection 
propagates transiently as a unidirectional wave In this case, infection can be sustained 
only if the influx of target cells to random empty sites of the grid is non-zero (σT  ≠ 0). 
 

3. Summary and comparison 
 
 Neither model accounts for target cell motility. This assumption is more serious in 
the case of the first model because the model simulates HIV dynamics on the scale of 
several weeks, even years. Allowing the cells to move, for example, would prevent the 
formation of the perfect square waves, and it could potentially prevent the emergence of 
the more complicated square patterns that were interpreted as the onset of AIDS. 
 The second model is interesting because it highlights how ABM can be used to 
study the contribution of spatial effects on viral propagation, and how this contribution 
can change the conclusions arrived at using mean-field approaches. Although the results 
need to be validated in more realistic models, the finding that ODE models, such as those 



proposed in (126), might overestimate viral infectiousness by more than an order of 
magnitude is of interest to modelers and experimentalists alike. 
 

B. Models of Mycobacterium tuberculosis 
 
 We discuss two recent models of Mycobacterium tuberculosis (Mtb), one special-
purpose simulation known as the Segovia et al. model (127) and one using the CyCells 
simulator (128). Although the models are similar, there are three key differences. First, 
the Segovia et al. model simulates a two-dimensional slice of tissue, while the CyCells 
model is in three dimensions. The models also treat cell movement differently. The high 
density of cells in granulomas makes accurate treatment of collisions between cells and 
cell pressure in overcrowded regions crucial. In the Segovia et al. model, cells move 
discretely from grid site to grid site. In the CyCells Mtb model, cell positions are defined 
by continuous-valued coordinates, and cells adjust their position in response to pressure 
from other cells. Cells can overlap to account for the fact that real cells can deform to 
pack tightly, but they are subject to a repulsive force which increases with increasing 
overlap (42). Finally, the two models differ in how they represent extracellular bacteria. 
In the CyCells model, extracellular bacteria are modeled explicitly, like T cells and 
macrophages, rather than as a continuous-valued concentration at each site, as in the 
Segovia et al. model. 
 

1. Two-dimensional model 
 
 The Segovia et al. model (127) is defined on a two-dimensional square grid with 
toroidal boundary conditions, representing a cross-section of alveolar lung tissue. The 
size of one lattice site matches the diameter of the largest cells in the model: 
macrophages, with a diameter of 20 µm. The discrete agents are macrophages and T cells, 
both of which move randomly on the grid biased by cytokine concentration. The 
macrophages can be in any of four states: resting, infected, chronically infected, or 
activated. Resting macrophages ingest extracellular bacteria and either kill them and 
remain in the resting state, or become infected. Once phagocytosed, the intracellular 
bacteria grow according to the logistic equation. An infected macrophage with only a 
small number of Mtb (< Nc) is activated in the presence of T cells. Otherwise, it becomes 
chronically infected once the number of intracellular Mtb exceeds a set threshold. 
Chronically infected macrophages die either by bursting (releasing all their Mtb) or from 
contact with cytotoxic T cells (releasing a smaller number of Mtb). An activated 
macrophage clears all of its intracellular Mtb and kills most of the extracellular Mtb in 
the site it occupies. 
 Extracellular Mtb and cytokines are represented as real-valued variables which 
diffuse across the grid. In contrast with the CyCells model, there is one generic cytokine 
type, which biases the random movement of T cells and macrophages. Cytokines are 
released by infected, chronically infected, and activated macrophages, and they are 
cleared at a fixed rate. In a real infection, the immune response can lead to multicellular 
structures known as granulomas. In the model granulomas arise from the attractive effect 
of cytokines and because the motility of infected macrophages is reduced compared to 
resting ones. 



 The model is distinctive because its designers conducted an extensive sensitivity 
analysis of 12 of the 27 major parameters using the number of extracellular bacterium 
and granuloma size as outcome variables. For example, intracellular growth rate of Mtb 
is positively correlated with the number of extracellular Mtb at early times of the 
infection and at much later times post-infection, but is negatively correlated at 
intermediate times. This suggests that at early times, a large growth rate is necessary for 
the infection to establish itself while at later times, a smaller growth rate is more 
favorable to insuring a large and lasting infection. 
 

2. CyCells model of tuberculosis 
 
 The second model, built at about the same time using CyCells, is three-
dimensional, represents a slightly richer set of cytokines, and uses more realistic rules for 
cell movement (42). The simulation volume is discretized as a three-dimensional cubic 
lattice with toroidal boundary conditions. As in the earlier model, two cell types are 
modeled, macrophages and T cells. The CyCells model includes TNF, IL-10 and IFN-γ, 
although the three cytokines act as surrogates for an even greater array of cytokines. 
Cytokines diffuse through the grid with fixed diffusion and clearance rates. IFN-γ has the 
effect of down-regulating IL-10, and it causes newly infected macrophages to activate 
and clear intracellular bacteria in the presence of T cells. IL-10 can shut off TNF 
production by newly infected macrophages, and TNF increases the chance that newly 
infected macrophages become activated and clear intracellular bacterium.  
 Macrophages in the model can be in one of three states: uninfected, newly 
infected, and chronically infected. Uninfected macrophages become newly infected by 
phagocytosing extracellular Mtb. Newly infected macrophages can produce cytokines 
and/or kill their intracellular Mtb provided that they encounter T cells and are exposed to 
the appropriate local cytokine environment. Over time, infected macrophages lose the 
ability to acquire these functions (to activate), and they become chronically infected. 
 The cells in the model can reside at any point in three-dimensional space. Cell 
movement follows a persistent random walk where each cell type has a speed at which it 
moves for a fixed time interval, after which it randomly picks a new direction. Cells 
sense the local cytokine concentration at their grid site, but in some cases they interact 
with cells from neighboring sites as well as their own site. 
 Simulations with this model replicated qualitative outcomes from several different 
experiments in murine models of tuberculosis. This included the unrestricted growth of 
Mtb in the presence of macrophages alone, and restricted replication following the influx 
of immune T cells. The model also qualitatively reproduced experimental results on the 
effects of IFN−γ, where reduced signaling due to IFN−γ leads to enhanced mycobacterial 
growth. These results were surprising because the model is highly simplified, yet it 
captured some of the contradictory effects of IL-10, which both inhibits inflammation 
(reducing macrophage influx) and inhibits macrophage activation. 
 

C. Models of influenza 
 
 Until recently, there were relatively few mathematical or computational models of 
influenza. The first one, dating back to 1976, investigated influenza infection dynamics in 



mice (129). It was a simple model, consisting of seven variables (or compartments) and 
five rate parameters. The second model in 1994 studied the dynamics of influenza 
infection in humans (2). It is more complex, uses ordinary differential equations with 
delays and consists of 13 variables and 60 parameters. 
 ABM approaches to influenza date back at least to Smith et al.’s study of the 
effect of repeated annual influenza vaccination (47, 130). This model focused on cross-
reactive memory by observing that immune memory resembles associative memories 
used in computing, in particular, Kanerva’s Sparse Distributed Memory (131). In the 
model, B cells (naive cells, plasma cells and memory cells) and antibodies were 
represented as memory elements, and antigens (both vaccines and infectious strains) were 
interpreted as memory probes.  All of these elements were represented as strings of 20 
symbols over a four-letter alphabet  where each symbol could take on one of four 
different values. The model simulated a realistic sized B-cell repertoire and was used to 
investigate vaccine design for influenza. The results suggested the antigenic distance 
hypothesis that variation in repeat vaccine efficacy is due to differences in antigenic 
distances among vaccine strains and between vaccine strains and the epidemic strain in 
particular outbreaks. Since the original publications, the model has been extended and 
refined (132, 133), which led to the concept of Antigenic Cartography (21, 134, 135). 
Antigenic cartography is now a core component of the human influenza vaccine strain 
selection process. 
 A more recent ABM influenza model, the above-mentioned ma_immune, 
consists of a two-dimensional square lattice where each site corresponds to a ciliated lung 
epithelial cell that can be in one of five states: healthy, containing, expressing, infectious, 
or dead. Additionally, a population of generic immune cells patrol the simulated tissue 
(the grid), moving randomly from site to site. The simulation is initiated with a certain 
fraction of cells containing virions. After four hours, these cells start expressing viral 
peptides, which means that they can be recognized and killed by the patrolling immune 
cells. Then, two hours later, the expressing epithelial cells also start to infect their 
immediate neighbors. Finally, after a cell has been infected for twenty-four hours, it dies. 
Dead epithelial cells are replaced by healthy cells at a fixed rate. When a generic immune 
cell encounters an epithelial cell expressing viral peptide, it kills that cell, and recruitment 
takes place by probabilistically adding a new immune cell to a random locations on the 
simulation grid. 
 In (35), the model was calibrated to the dynamics of an influenza A viral infection, 
reproducing the general shape of a response to an uncomplicated viral infection and 
giving quantitatively reasonable results when parameterized for a particular viral 
infection. When the parameter values were set to biologically plausible values or ranges, 
only five of the twelve parameters could be fit using available experimental data. Even 
with these restrictions, the model was able to reproduce accurately the available 
dynamical features of an influenza A infection. The model’s agreement with available 
data also compares well to the Bocharov and Romanyukha differential equation model 
(2). The results obtained with the ma_immune model suggest that by adding additional 
details to the model, such as specific immune cell types, explicit representation of virions 
and the appropriate cytokines, that ma_immune could become a useful model of 
influenza A infection. 
 



D. Model of a primary immune response in a lymph node 
 
Ref. (136) describes an ABM of a primary immune response induced by antigen in a skin 
draining lymph node. The ABM consists of a two-dimensional plane. The plane 
corresponds to a 10 µm slice (approximately one cell diameter) through a hypothetical 
spherical lymph node 2 mm in diameter (the side dimension of the simulation plane). The 
model includes T cells, B cells, and dendritic cells (DCs). Random motion paths for each 
cell in the simulation were designed individually and scaled to their known approximate 
speed based on observations from two-photon microscopy (56, 57). Additional 
constraints were placed on the paths such that B cells would be confined to the follicles 
(except five hours after exposure to antigen when their movement is restricted to the 
outer edge of the follicles near the T cell area), DCs to the T cell area, and T cells to the T 
cell area and outer edges of the follicles for 90% and 10% of their paths, respectively. 
When a collision occurs between two cells, the cells’ motion along their respective paths 
is halted temporarily to mimic intercellular interaction. This model is conceptually 
important because it was constructed by an experimentalist, showing that ABM 
techniques are starting to bridge the gap between theory and experiment. 
 

VI. SUMMARY AND CONCLUSIONS 
 
 The previous sections have reviewed a body of work that seeks to construct 
computational immune systems that behave analogously to the natural immune system. 
Some of the examples (Sections III and V) were developed as models and others (Section 
IV) as practical solutions to engineering problems. In both cases, computer immunology 
proceeds by hypothesizing a sufficient set of mechanisms needed to produce a desired 
behavior and implementing them as computer programs. This constructive approach to 
understanding immunology differs from experimental methods that selectively remove 
functionality such as experiments with knockout mice. Although the computational 
mechanisms are crude compared to their biological analogs, the resulting computer 
immune systems can exhibit surprisingly realistic behaviors and sometimes be calibrated 
closely with experimental data (Section V). In the context of engineering problems, it is 
often possible to analyze the functional behavior of a given mechanism more rigorously 
than what might be achieved experimentally, in some cases providing insight into the 
natural immune system.  
 The ABM approach to immune modeling (Section II) led to the comprehensive 
abstract models described in Section III, which in turn were used to create specialized 
models of particular immunological phenomena (Section V). As computational power 
increased, the geometry of the models expanded from one-dimensional to two- and now 
three-dimensional simulations, as well as some details about cell movement.  In addition, 
visualization methods became more sophisticated, simplifying the task of understanding 
and specifying the models. This facilitated the use of models by experimentalists, 
culminating in the Catron model (Section VD) in which the model itself was developed 
by an experimentalist. In the future, we can expect these trends to continue, with even 
more ambitious and detailed models, more sophisticated visualizations that run in real-
time, and more direct involvement by experimentalists in the model building process. 



 There are strengths and limitations to this approach. It can be difficult to identify 
the proper level of abstraction, decide what aspects of the immune response are important 
and what their proper role or “purpose” is, and how they should be translated into 
computation. In spite of these limitations, computational abstractions and concepts have 
proved powerful enough to provide important insights into immunological processes 
(Section V) and to solve challenging engineering problems (Section IV). By abstracting 
away from physical realism, AIS can enhance our understanding of the large-scale 
patterns of interaction that occur among the millions of individual components that 
comprise a natural immune system. Efforts to build an immune system tailored for 
computer networks have highlighted the crucial roles played by certain immune system 
mechanisms. 
 The synthetic approach to modeling immune system behavior has generated 
interest, but there is a question about what an ABM model can contribute to 
understanding the natural immune system. There are several ways that the models 
described in this paper can complement experimentation in “wet labs.” First, if a 
synthetic computer model can be constructed that captures the relevant phenomena, it is 
much easier to perform experiments on the model than on the natural system. In 
particular, it is much easier to isolate mechanisms and test hypotheses about how they 
function and what their significance is to the overall system. For example, the Smith 
model showed that the antigenic distance hypothesis provided a parsimonious 
explanation of complex results on vaccine effectiveness (47). Second, in an era when an 
overwhelming volume of experimental results have become available it is no longer 
humanly possible to comprehend all of the data that might be relevant to a problem of 
interest. Synthetic models, such as CyCells can be used to integrate specialized models 
for different phenomena into one system to see how they interact (e.g., do the 
assumptions of one specialized model contradict those of another). Models that can 
incorporate data and hypotheses from many different experiments will likely be 
necessary in the future to integrate knowledge so it can be used productively. Although 
many of the models described here do not lend themselves to rigorous mathematical 
analysis, they encode assumptions and hypotheses in a precise, mechanical way. Running 
models allows researchers to identify gaps and inconsistencies in their knowledge by 
making assumptions explicit, allowing them to make predictions, generate new 
hypotheses, and suggest new experiments. By better understanding the functional 
significance of different components of the immune system, it may be possible to better 
predict the effects of therapeutic interventions. In the future, models similar to those 
described in this review may be used to predict efficacy of  new treatments and vaccines, 
thus avoiding some costly experiments. 
 The modeling process itself has value. Although we have focused in this paper on 
the artifacts that modeling produces, modeling is not only about building a model. At its 
best, it involves an iterative process of model construction, model analysis, followed by 
the creation of new models determined by the results of the analysis. An important 
feature of the models described here is their flexibility, allowing researchers to try out 
variations within the same framework and to add complexity to the model incrementally. 
This greatly simplifies the work of testing alternative hypotheses, designing experiments, 
and discovering both necessary and sufficient mechanisms to explain observed behavior. 
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Fig. 1: Receptors and ligands are modeled as strings, illustrated on the left for the 
example of a T-cell receptor binding to a MHC/peptide complex. Binding is modeled by 
a string matching rule, for example, by counting the number of positions in the string at 
which the symbols are complementary (known as Hamming Distance). Repertoires are 
represented in the model as sets of strings, shown on the right. 



 
 

 
 
Fig. 2: Schematic representation of IMMSIM, adapted from (13). The figure depicts T 
cells, B cells and other APCs, antibodies, and antigen molecules. On antigen, epitopes are 
shown exposed and the presentable peptides are boxed. Receptors, MHCs, epitopes and 
peptides are numbered according to the decimal value of their eight-bit string. For 
example, the B cell’s Receptor 57 is represented as (00111001), with zeroes and ones 
depicted as short and long blocks, respectively. 



 

 
 
 
Fig. 3: A screenshot of the Statecharts graphical interface during execution.  Figure 
reproduced from (51). 



 
 

 
 
Fig. 4: Architecture of the LISYS intrusion detection system (94): The shaded area shows 
the local area network (LAN) of computers to be protected, although the network may 
have connections with external computers. Normally occurring connections between 
computers are indicated by directed arrows. Each computer in the LAN contains its own 
detector set (collection of immune cells). Each detector represents a single connection 
consisting of the source computer for the connection, the destination computer, and the 
port number for the program that initiates the connection. Binding between detectors and 
new connections is measured using the r-contiguous bits matching rule (10) (not shown). 



 
 
 
 

 
 
Fig. 5: Self nonself discrimination. A universe U of data points inside the black border is 
partitioned into two sets: self (shown in blue) and nonself (everything else). The points in 
the space correspond to features of the problem domain, e.g., fragments of computer code 
or individual network connections. Negative detectors analogous to T cells are generated 
randomly. Those that overlap with self (shown in red) are deleted by the negative 
selection algorithm. This leaves a set of detectors (shown in black) that collectively cover 
most of nonself. 



 
 
 
 
 
 

 
 
 
 
Fig. 6: Detector lifecycle in a computer immune system. Detectors corresponding to 
network connections are generated with random bit patterns. Each detector is immature 
for two days while it undergoes negative selection (analogous to T cells in the thymus). 
During this time, it is matched against all new network connections, and if it matches 
even a single connection, it is deleted and replaced by a new randomly created detector. 
After two days, the detector is labeled “mature.” For the next seven days it is matched 
against all new network connections. If during this time, the activation threshold is 
exceeded, the detector is activated, and otherwise it dies (analogous to B cells). Once 
activated, the detector must receive co-stimulation from a human operator within twenty 
four hours (analogous to T cell help), otherwise it dies. There is no effector arm in this 
system. Activated detectors that receive co-stimulation signal an alarm rather than taking 
autonomous action. After co-stimulation, the activated detectors enter the memory pool, 
living indefinitely. Figure adapted from (94). 
 



 
 
 
 
Fig. 7: Experimental HIV data (left panel) and simulation results from the CA model 
(right panel). Figures reproduced from (124). In the left panel, the density of CD4+ T 
cells (open squares) and virus concentration (full circles) are shown. In the right panel, 
the density of healthy (open squares) and infected (full circles) target cells are shown. 



 
 

 
 
 
 
Fig. 8: Screenshots from the Zorzenon dos Santos and Coutinho CA simulation of HIV 
infection at (a) 5, (b) 18, (c) 25, and (d) 200 weeks. Colors mark healthy (blue), infected 
A1 (yellow) infected A2 (green), and dead (red) CD4+ T cells or monocytes, the targets 
of HIV. Figure reproduced from (124). 
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