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Abstract

Artificial Immune System (AIS) is a new intelligent problem-solving technique that being used in some
industrial applications. This paper presents such an immunity-based agorithm for tool breakage detedion.
The method is inspired by the negative-selection mechanism of the immune system, which is able to
discriminate between the self (body elements) and the non-self (foreign pathogens). However, in our
industrial applicaion, the self is defined to be normal cutting operation and the non-self is any deviation
beyond allowable variation of the cutting force The propased agorithm is illustrated with a simulation
study of milling operations and the performance of the dgorithm in deteding the occurrence of toadl
bre&age is reported. The results sow that the negative-seledion agorithm deteded tool bregage in all
the test cases.

I ntroduction

Manufadurers are dways looking for ways to improve productivity without compromising on quality of
manufaduring processs. To this end, much attention has been direded towards automated manufaduring.
In drilli ng or high-speed milling industries, or-line monitoring of the todl bregage is a key component in
unmanned madhining operations.

In most milling industries, areliable and effedive tool breakage detedion technique is required to respond
to unexpeded toad failure [Altintas and Yellowley, 1989. In particular, such a monitoring technique is
necessary to prevent possible damage to the workpiece ad the machine tool or to avoid production of
defedive parts and passble overloading of tools. The normal operation of a milling cutter is often
charaderized from the measurements of some parameters that are correlated with tod wea. It is essential
to deted the occurrence of abnormal events as quickly as possible before any significant performance
degradation results. This can be done by continuous monitoring of the system for changes from the normal
behavior patterns.

Thus, a signal may be sent to the machine controller/operator for triggering an emergency stop o the
madine and the tool changed. Severa tedhniques have been suggested in the literature for monitoring tool
bre&age in different madhining operations [Altintas and Yellowley, 1989. Recent efforts include Time
series analysis [Tansel and McLaughlin, 1993, Artificial Intelligence (Al) tedhniques [Chryssolouris and
Guill ot, 1990, pattern recognition methods [Li and Wu, 1989, fuzzy set theory [Du et al., 1992, and
neural networks [Tansel and McLaughlin, 1993H to the problem of recognizing the cutting states and
detedingtoadl breskage. Among these, neural network-based tedhniques have been used to deted detedion
of toal bregkage in mill ing and monitoring manufaduring processes [Guillot and Ouafi, 1997.

However, most existing methods require prior knowledge a@out various fault conditions [Kozma et al.,
199] or tod breskage patterns [Guill ot and Ouafi, 1997. It is difficult to oltain a variety of good toal
bre&age patterns in an industrial environment. A robust method should deted any unacceptable (unseen)
change rather than looking for spedfic known activity patterns. This paper proposes a new detedion
algorithm for tod condition monitoring in milling operations. The dgorithm is based on ideas from the
immune system. It is a probabili stic method that notices changes in force pattern of tools without requiring



prior knowledge of what changes it is looking for. In this way it resembles the gproach to novelty
detedion taken by ART neura architedures [Caudell and Newman, 1993. Both neural networks and our
immune system-based algorithm are biologicdly inspired techniques that have the capability of identifying
patterns of interest. However, they use diff erent mecdhanisms for recogniti on and leaning.

In the next sedion, the basic immunity-based detedion agorithm is described. The problem, simulated
cutting force dynamics in a milling process is discussed in sedion 3. In sedion 4, the proposed method is
demonstrated for tod bregkage detedion by monitoring (simulated) cutting force patterns. This includes
the preprocessng of sensory data and the implementation detail s of generating detecor sets for monitoring
tool conditions. Sedion 5 reports the results of different set of experiments and our observations in
performance evaluation. Conclusions are given in sedion 6.

I mmunity-Based Change Detection Algorithm

This detedion algorithm is inspired by the information-processng properties of the natural immune system
[Forrest et al., 1994]. The immune system uses leaning, memory, and associative retrieval to solve pattern
recognition problems. Vertebrate immune systems are cgable of distinguishing virtually any foreign cdl
or molecule from the body's own cdls which are aeaed and circulated internally. This is known as the
self-nonself discrimination problem [Percus et al., 1993. In the immune system, T cdls have receptors on
their surfacethat can deted foreign proteins (antigens). During the generation of T cdls, receptors are
made by a pseudo-random genetic rearrangement process Then they undergo a cansoring process cdled
negative seledion, in the thymus where T cdls that read against self-proteins are destroyed, so only those
that do not bind to self-proteins are dlowed to leave the thymus. This censoring processis very important
in self-nonself discrimination. Our artificial immune system [Forrest et al., 1994 is a simplificaion of the
complex chemistry of antibody/antigen recognition in natural immune systems. The basic principle of our
negative-seledion algorithm is as foll ows:

» Define self as a multiset S of strings of length | over a finite dphabet, a clledion that we wish to
proted or monitor. For example, S may be asegmented file, or a normal pattern of adivity of some
system or process

» Generate aset R of detectors, each of which fails to match any string in S. We use apartial matching
rule, in which two strings match if and only if they are identicd at least r contiguous positions, where r
isasuitably chosen parameter (as described in [Forrest et al., 1994)).

e Monitor Sfor changes by continually matching the detedors against S. If any detedor ever matches, a
change (or deviation) must have occurred.

Matching Rule

We adopted a partial-matching rule based on a prespedfied degreeof similarity. To measure this simil arity,
we ae airrently using an r contiguous matching rule between two strings of equal length. Thus, for any
two strings x and y, match(x, y) istrueif x and y agree(match) on at least r contiguous locations (r less than
equal 1), asill ustrated in figure 1.

X: bcabcbad
Y: dcabdcba

Figure 1. lllustration of Matching Rule: x and y are two strings defined over the four-letter alphabet a, b, c,
d. X and Y match at three @ntiguous locations (underlined). Thus, match(x, y) istrue for r < 3 and false for
r>3.

A partial-matching rule provides a detedor its cgpability of deteding sample strings in its neighborhood
acording to the threshold value, r. This is demonstrated in figure 2, for the binary string. The graphs in
figure 2 ill ustrate that the coverage of a string of defined length increases exponentially with the deaease
of r. Thoughthe maximum coverage can be atieved with r = 1, but the generated detectors will probably



be matched with many self strings resulting in false detedion. On the other hand, a perfea matching (for r
= |) implies that symbals are identicd at ead location in two strings; acaordingly, a very large number of
detedors are nealed to deted patterns in the non-self space An optimal r value estimates a reasonable size
detedor set for the successof this method.
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Figure 2. The figure shows (in log scale) how the number of points that can be covered by each binary
string (of defined length in its gring space varies with diff erent matching threshold.

When a non-overlapping set of detedors is generated with a suitable matching threshold, ead detedor can
serve & a distinct novelty pattern classin the non-self space However, in case of overlapping detedors,
multi ple detedors may be adivated for a sample (abnormal) pattern, and need more detedors to provide
sufficient enough coverage in the non-self space

Generating Detectors

There ae many posshle ways to generate detedors in the non-self space These gproaches generally have
different computational complexities, and their complexity is dependent on the choice of matching rule. In
the original description of the negative-selection algorithm [Forrest et al., 199¥], candidate detedors are
generated randomly and then tested (censored) to seeif they match any self string. If a match is found, the
candidate is rejeded. This process is repeaed urtil the desired number of detedors is generated. A
probabili stic analysis is used to estimate the number of detedors that are required to provide agiven level
of reliability. The major limitation of the random generation approach appeas to be mputational
difficulty of generating valid detedors, which grows exponentially with the size of self. Also for many
choices of | and r, and compasitions of self, the random generation of strings for detedors may be
prohibitive.

In this paper, we generate detedor sets using an improved algorithm proposed by [Helman and Forrest,
19H] which runs in linea time with the size of self. The dgorithm has two phases; first it employs a
dynamic programming technique to count recurrences in order to define an enumeration of all unmatched
strings (i.e. al feasible detedors). Second, a random subset of this enumeration is chosen to generate a
detedor set. In other words, given a clledion of self strings S and matching threshold r, the first phase of
the dgorithm determines the total number of unmatched strings that exists for the defined self (S); then in
the second phase, some of them are seleded to generate detedors for monitoring self (normal patterns).

Simulation of Cutting Tool Dynamics

The dynamics of a machining process can generally be monitored when it operating in a defined
environment [Altintas and Y ellowley, 1989. Usually, the methods for monitoring a milling processtili ze



measurements of cutting parameters correlated with tool breskage [Elbestawi et a., 1994. These aitting
parameters include temperature [Palmai, 1987, cutting force [Elbestawi et al., 1994, vibration [Moore ad
Reif, 1997, torque [Takata & al., 1985], amustic emission [Liang and Dornfeld, 1989, etc. Of these
parameters, cutting forces [Elbestawi et al., 1994[Tarng and Lee 1997 [Li et a., 19927 are widely used
for tool bre&age detedion for several reasons:

»  Cutting force signals are much less dependent on the structure.

» Cutting force signals can be simulated easily and more acarately than accéeration and amustic
emission signals.

e The aitting forceis a very goodindicator of the vibration between the tod and workpiecebecaise of
their higher sensitivity and more rapid response to the dhanges in cutting state.

The autting force variation charaderistics of normal and broken todls are different. Under normal (stable)
cutting conditions, the cutting force periodicdly varies with the tooth frequency, Q, that depends on the
spindle spedd:
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where N isthe spindle speed inrpmand P isthe number of teeh on the cutter.

Q, @

If the todl is broken, it can not remove the same amount of materia as the other teeh. Accordingly, the
number of tooth periods deviates from the stable aitting pattern depends on the number of teeth that are
adively involved in the atting zone.

Some gproaches for tool bredkage detedion are based on the analysis of signal spedra obtained from prior
FFT signal preprocessng where signal magnitude & spedfic frequencies increases when tool fradures
occur. However, Moore and Reif [Moore and Reif, 1997 demonstrated that tool breskkage can be more
reliably monitored in the time-domain than in the frequency-domain.

We prepared ssimulated data for cutting operations using the vibratory model described in [Elbestawi et al.,
199] [Tlusty and Ismail, 1983. This model has been used by many other investigators for tool bregkage
detedion [Tansel and McLaughlin, 1993g][ Tarng and Leg 1997.

To generate data, the spindle was represented by a vibratory system with two degrees of freedom in the two
orthogonal diredions X and Y. We nsidered a four-tooth cutter with uniform pitch, performing an end-
milling, half immersion cut in the X-diredion. In this model, the instantaneous cutting force d angle ¢ is
assumed to be proportional to the cip thickness, h. Forces ading on the tocth are the tangentia force F,
and radial force F.. The instantaneous tangential force F, can be gproximated by considering the toal
displacement as:

F= K¢bh 2
subjed to the condition that if F;< 0 then F, = 0.

In equation 2, K. is the dynamic cutting force mefficient, b is the axial depth of cut, and h is the chip
thickness The instantaneous chip thicknessis obtained from:

h=fsing-z+z,,

where f; is the fead rate per tocth, and z is the displacement of the tod normal to the machined surface
which is derived from vibratory displacements in the X and Y diredions; z, is the minimum undulation
left behind in precaling cuts at the angle ¢.



Now the displacement, zin the diredion normal to the ait surfaceis given by:

Z = Xsing + ycosp 3

The rresponding instantaneous radial component of the cutting force

F =K,Fk (4
In previous gudies [Elbestawi et a., 1994 [Tlusty and Ismail, 1983, the value of K, was assumed as 0.3.

For non-helicd teeth, the instantaneous cutting force in the X and Y diredions can be obtained by
decomposing the cutting forces F, and F, into the X and Y diredions:

F, = Fcosp + F, sing = F,(cosp + K, sing)
F, = -Fsing + F, cosp = F(-sing + K, cosp) (5)

In case of multi-tooth mill ing, the instantaneous cutting forcesin the X and Y diredions can be expressed
as:

FX =3 50)F, (@)

Fy = ié(i)ﬁ(sbi) ®)
and
1 g <4 <o,
5(I)_O otherwise. (")

In equation 7, ¢, d. are the start and exit angle of cut, and ¢; is the autting edge rotation angle of the i
toath.

Now, the instantaneous resultant cutting force,
F = (FX?+FY?)"? (8)

At every angle ¢, the vibration amplitude induced by cutting forces are used where the force @mponents of
F (Fx and F,) excite vibrations in X and Y diredions which can be determined from the eguations of motion
for the system:

F,=mX+c X+KX

N . 9
Fy:myy+cyy+kyy. ©)

In equation 9, the structural parameters of two modes of vibration are m is the mass, ¢ is the damping
coefficient, and Kk is the stiffness. At time step t, the cutter has rotated by the angle ¢, from the reference



axis'Y. The F, and F, components of the aitting force ecite vibrationsin the x and y diredions. The aitting
force profiles were simulated using forth-order Runge-Kutta method for every time step (& = 0.0001 seg),
where displacements at step, t+1 are caculated from the aitting force data & step t. So the mmputation
loopis repeaed for every time step &, then as a whole cycle per tooth period. The defledions are used to
determine the uncut chip thicknessfor ead tocth in cut (in the diredion normal to the cut surface z). Once
the uncut chip thicknessis determined, its value is used to determine instantaneous cutting forces.

In our experiments, one tocth is engaged in the ait at an angle ¢, where the cutting angle varies from 0 to
12 for every tooth engagement. The complete breakage of one tocth was simulated where the broken tooth
did not remove aty material or started to remove less material than the other teeth that gave periodic
amplitude fluctuations in cutting force

References [Elbestawi et al., 1994 [Tlusty and Ismail, 1983 can be reviewed for the detailed analysis of
the vibratory model, and cdculation of the aitting force and vibration. The parameter values used in our
simulation are & foll ows:

Damping coeff., ¢, = ¢, = 4719 kgfs, Mass m,=m, = 10kg;
Spring constant, ky = k, = 8.1 * 10° N/m; Fed rate/tooth, f,= 0.2 mm;
Cutting coefficient, K. = 6.67* 10° N/m; Depth of cut, b=0.508 mm;
Spindle speed, Ns= 600rpm; Spindle diameter, D = 40 mm.

Tool Breakage Monitoring

We formulated the tool bredage detedion problem in terms of the problem of deteding temporal changes
(or abnormal patterns) in cutting force patterns resulting from the broken cutter. The patterns are excoded
as drings and are monitored for whether or not the current strings are different (matched using negative
seledion), where achange (or match) implies a shift in the normal behavior in cutting force patterns.

Data Preprocessing:

i) 1

A Coding Scheme

Figure 3: lllustration of a mapping technique for encoding close analog values into a discrete form. For
binary encodingwith n bits/data, the number of intervals and the size of each interval (d) are shown here.



We first preprocess ensory data into a form suitable for our detedion algorithm. Preprocessng can be
viewed as constructing an aternative representation in an attempt to capture the regularities of the data
whil e preserving the information content. Further, any change that exceedls all owable variation in the data
pattern should idedly be refleded in the representation space This can be aproblem when perhaps very
small changesin red-valued data need to be monitored. To handle this, we use an approach that maps close
red-valued data into a discrete form: an analog value is normalized with resped to a defined range and
discretized into bins (or intervals). Eadh datum is assgned the integer corresponding to the bin in which it
falls.

The integer is then encoded using binary representation. However, if an observed value fall's outside the
spedfied range, it is mapped to al O's or al 1's depending on which side of the range it crossed. The
number of bits used in the discretizaion thus determines the size of the bins. If ead datum is encoded by n
bits (which may be dhosen acarding to the desired predsion), then there ae 2" - 2 different bins between
the maximum (MAX) and minimum (MIN) ranges of data (seefigure 3).

Implementation Details
In our implementation, raw sensory data ae sampled from a moving time window and mapped to binary
form. Each window, therefore, isthe concatenation of afixed number (cdled Win_size) of data paints. We

colled the bit strings from a successon of windows, diding along the time series in discrete steps
(Win_shift) for the normal data set. Aslong as the time series data pattern maintains smilar behavior, these
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Figure 4. Schematic diagram showing the processng stages of the immune system based fault detecion.



colleaed strings are sufficient to define normal behavior of the system. This colledion of strings for
windows is our self set (S). We then generate strings that do not match any of the strings in S to be
members of the detedor set. The generation of detedors in this detedion algorithm is usually performed
off-line, asin the @ase of neural networks (supervised) training for fault detedion [Guill ot and Ouafi, 1997]
or developing rule-based expert-systems for deteding faultsanomalies etc. [Frank, 199(0. Overal, our
approach can be summarized as follows (seefigure 4):

1. Colled time series (sensor) data that sufficiently exhibit the normal behavior of a system (these may
be raw data & each time step, or average values over alonger time interval).

2. Examine the data series to determine the range of variation (MAX, MIN values) of data and choose the
data encoding parameter (n) acording to the desired predsion.

3. Encode eat valuein binary form using the ébove mding scheme.

4. Consider asuitable window sizethat can capture the semantics in data pattern.

5. Slide the window along the time series and store the encoded string for ead window as self for
processng by the negative-seledion algorithm.

6. Generate aset of detedors that do not match any of the self strings acwording to the partial matching
rule with suitably chosen r. It is desirable that the detedors are spread enough to cover the unmatched
string (non-self) space Also an estimate for the size of the detedor set is needed to ensure a cetain
level of reliability in deteding changes [Forrest et al. 1994.

7. Once aunigue set of detedorsis generated from the normal database, it can probabili sticdly detect any
change (or abnormality) in patterns of monitoring sensory data.

8.  When monitoring the system, we used the same preprocessng parameters asin step 3and 4, to encode
new data patterns (moving window). If a detecor is ever adivated (matched with current pattern), a
change in behavior pattern is known to have occurred and an alarm signal is generated regarding the
abnormality. We use the same matching rule (for monitoring the system) as was used in generating
detedors.

Also encoding parameters that aff ed preprocessng are:

BITS PER _DATA (n) - this will dictate the degree of numericd predsion with which red numbers are
represented in binary form. For example, 5-bit data encoding gives 30 intervals into which the range [MIN,
MAX] of datais divided.

WINDOW_SIZE (w) - the number of samples encoded in a single pattern (each stringin saif).

WINDOW_SHIFT - the number of samples by which one pattern is shifted from the previous one in a
moving window. For example, if WIN_SHIFT = 1 with awindow sizew, the patterns will be {xy, X, ...,Xu} ,

{X2, X3, «.es X 1)} ... €LC.

Experimental Results

We simulated severa test cases of the milling cutter dynamics to carry out a set of experiments with the
proposed detedion algorithm. The purposeisto deted todl breakage in diff erent cutting environment.

Figure 5 shows typicd cutting force patterns with and without tool bregage in a simulated milling
operation. In this smulation, the tool was in normal cutting operation for 1500 time steps and then one
tooth was broken, causing changes in cutting force signals at the mrresponding tooth periods. In our
experiments, we used the first 1000 dita points as the self set, Sfor generating detedors and the rest of the
data series are used for testing. Results of the experiments are shown in table 1 and in figure 6. Table 1
shows the various parameters used for preprocessng data and for generating detectors. We tried severa
different parameter values and found the reported values most suitable. We generated the diverse set of
detedors in such a way that they do not match ead other by r-contiguous bit rule. In these experiments,
we set n =6 for binary encoding of data and two different window sizes are mnsidered.
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Figure 6: The height of verticd lines in the graph corresponds to the number of detedors adivated when
novel patterns are found.

Encoding Matching | Number of Bredakage detedion
parameters Threshold Detedors Mean (Std. Dev) Detedion
(n R Rate
Win size=5 10 50 14.30(2.32) 59.58%
Win_shift=5 9 40 17.57(2.25) 74.32%
| =30, S=200 8 30 22.16(2.57) 91.64%
Win size=7 12 40 10.36(3.36) 62.78%
Win_shift=7 10 30 20.38(5.57) 75.56%
| =42, S=142 9 20 30.75(7.9) 93.28%

Table 1: Tool bre&age detedion results, averaged over 50 runs. Column 4 shows the mean number of
detedions (number of times detedors adivated). The standard deviations are shown in parentheses. The
detedion rate is shown in column 5. Thisistheratio of the average detedion to the number of adual novel
patternsin data.



Detedion results (columns 4 and 5 show that the mean number of times detedors adivated and the
average detedion rate in ead case. In al the test runs, the generated detedors could deted the tocth
periods in which the changes in the force pattern occurred. Figure 6 shows a typicd run and the number of
adivated detedors (novel patterns encountered) at different time steps. In this example, a maximum of
threedetedors is adivated (out of 20) when there ae significant changes. Note that the detedors remain
inadive during rormal operation period, in particular, between 1000and 150 time steps where the data
exhibit a normal pattern, thus avoiding false positives. Also all the broken tooth periods could easily be
deteaed.

Further experiments were anducted with various cutting parameters to simulate cutting forces for normal
and broken todl condition, these ae summarized in Table 2. In ead case, first 1500 dita were mnsidered
as the measurement of normal cutting and the rest were for the broken the todl. In al these experiments,
encoding parameter n was %t to 5. Two dfferent window sizes were mnsidered with different parameter
setting. Experiments were repeaed (10 times) for ead cutting condition, where asmall set of detedors
were generated from 1000 initial data and used for monitoring the rest. Results of the experiments are
shown in Tables 3. These experiments indicae that our algorithm can easily deted tool bregage in all test
cases.

Experiment Axial Depth Fed Rate Spindle Spindle
Number Cut (mm) (m/min) Speed(rpm) Diameter(mm)
1 1.34 90.6 800 50
2 1.016 1254 500 40
3 1524 50.8 700 40

Table 2: Use of various cutting parameters for generating cutting force signals.

Percentage of
Encoding Experiment Matching Total Number
Parameters Number Threshold(r) | Of Detedors | Detedors Broken
Generated Activated Periods
Deteded
Win size=6 1 8 30 75% 98%
Win_shift =6 2 8 40 72% 100%
=30, N,=166 3 9 50 63% 96%
Win_size=8 1 9 40 78% 9%
Win_shift =8 2 10 50 73% 98%
1=40, Ny=125 3 11 70 67% 95%

Table 3: The table shows results of tool breakage detedion under different cutting condition. Columns 5
and 6 show the number (in p.c.) of detecors that were adivated when novel patterns encountered in tooth
periods that correspond to the broken tooth and the detedion rates. It is to be noted that the detedion rates
were high (varied between 95%-100%) whil e monitoring broken tooth periods.



The observed results agreed with our theoreticd predication that the performance of the dgorithm varies
with the dhoice of the matching threshold (r). With larger r, the generated detedtors beame sensitive to
any particular novelty in data patterns, so more detedors are necessary to achieve adesired level of overall
reliability. On the other hand, if r is too small, it may not be passble to generate adetedor set from the
available self of reasonable size, since there may not exist any unmatched strings (non-self) at that value of
r. This suggests that the value of r can be used to tune the reliabili ty of detedion against the risk of false
positi ves.

Conclusions

In this paper, we have proposed a method for todl bregkage detedion based on principles inspired by the
natural immune system. The objedive of thiswork isto develop an efficient detedtion algorithm that can be
used to alert an operator to any changes in steady-state charaderistics of milling cutter dynamics. The
results demonstrated that the proposed algorithm could succesSully deted the tooth breskage from
dynamic variation of the aitting forcesignals. It isto be noted that our approach relies on a large enough
samples of normal sensory data to generate adiverse set of detedors that probabilisticdly notice ay
deviation from the normal operation. Because it does not look for any particular (or known) fault, rather
indicae that these patterns are novel with resped to the normal behavior pattern, this algorithm could be
incorporated into existing diagnostic toadls for further classficaion. The detedion system can quickly be
updated by generating a new set of detedors as the normal mill ing operation shifts due to modificaions of
tool-workpiecegeometry, change in the aitting condition, etc. [Forrest et a., 1994] showed that a small set
of detedors can have avery high probabili ty of noticing changes to the original data set.

In most monitoring systems, the detedion of a spurious change in sensor measurements is not as important
as the gradual change in the pattern over a period o time, so our probabili stic detedion agorithm appeas
to be apromising alternative gproach to such problems. Also it may be needled to choose afault-detedion
threshold in order to all ow instantaneous variations or spikes in new patterns from the established normal
patterns whil e monitoring red sensor data.

There ae anumber of parameters that are tunable in both the preprocessng and the detedor generation
stage. In the preprocessng stage, the desired predsion can be atieved by grouping similar analog data in
the same bin, and the window size may be suitably chosen to capture the regulariti es of the data patterns.
Note that the system can be monitored using different time scdes simultaneously. Also, instead of diredly
encoding the time series data, it may be necessary to transform data (e.g. by Fourier transform) depending
on the properties of sensor data. It is also possble to combine several sensor data (i.e. sensor fusion) in
order to improve the reliability of the monitoring system [Dornfeld, 199Q. Particularly, when a single
sensor cannot provide agood correlation with all the anomalies that need to be deteded. Also the dedsions
based on multiple sensors will provide more information simultaneously, the quality will more likely be
better than the dedsions based on a single sensor. One simple data fusion technique is a weighted addition
of the sensor signals. A desired level of detedion reliability can be adieved by changing the window size,
matching threshold, and the number of detedors. The probability of a match at r contiguous positions and
the impad of different choices of r on the overall computational behavior of the dgorithm are reported in
[Forrest et al. 1994]. Theoreticd analysis and empiricd experiments suggest that the dgorithm is highly
sensitive to the value of r. We ae aurrently investigating other matching rules and generation algorithms as
afuture research’.

We have tested the feasibili ty of this detedion algorithm on a number of data sets, including the Madkey
Glass gries [Caudell and Newman, 1993, and some red sensor data. These experiments suggest that this
detedtion algorithm may be useful for many other similar problems. They include fault detedion, anomaly
detedion, machine monitoring, signature verificaion, noise detedion, patient's condition monitoring and so
forth. It should be pointed out that the ideaof using immune system principles in fault detedion was also
studied by others [Ishida and Mizessyn, 19971 shida, 1993], however, they have thosen a different set of

1 A short version of the results presented in this paper was reported in
[ Dasgupta and Forrest, 1996].



principles to emulate the processfault diagnosis. The remarkable detedion abiliti es of biologicd immune
systems suggest negative-seledion algorithms such as ours be well worth exploring in industria
applications.

Refer ences.

[Altintas and Yellowley, 1989 Altintas, Y. and Yellowley, I. (1989. In-Process Detedion of Toadl Failure
in Milling using Cutting Force Models. In Journal of Engineering for Industry, 111:149--157.

[Caudell and Newman, 1993 Caudell, T. P. and Newman, D. S. (1993. An Adaptive Resonance
Architedure to Define Normality and Deted Novelties in Time Series and Databases. In IEEE World
Congress on Neural Networks, pages 1V166--176, Portland, Oregon.

[Chrysslouris and Guill ot, 19970 Chrysslouris, G. and Guillot, M. (1990). A Comparison of Statisticd
and Al approaches to the Selection of ProcessParameters in Intelligent Machining. In Transactions of the
ASME; Journal of Engineering for Industry, 112122--130.

[Dagli and Poshyanonda, 1994] Dagli, C. H. and Poshyanonda, P. (1994). Artificial Neural Networks for
Intelligent Manufacturing, chapter-3, page 57, Chapman & Hall.

[Dasgupta and Forrest, 1996 Dasgupta, D. and Forrest, S. (1996). Novelty detedion in time series data
using ideas from immunology. In | SCA 5th International Conference on Intelligent Systems, Reno, Nevada.

[Dornfeld, 199qQ Dornfeld, D. A. (1990. Neural Network Sensor Fusion for Tool Condition Monitoring. In
Annals of the CIRP, 24:101--105

[Duetal., 1997 Du, R. X., Elbestawi, M. A., and Li, S. (1992. Tool condition monitoring in turning using
fuzzy set theory. In International Journal of Machine Tools & Manufacturing,32(6):781--796.

[Elbestawi et al., 1994 Elbestawi, M. A., Ismail, F., Du, R., and Ullagaddi, B. C. (1994). Modelling
madining dynamics including damping in the tod-workpiece interface In Journal of Engineering for
Industry, 116:435-439.

[Elbestawi et a., 1997 Elbestawi, M. A., Papazdiriou, T. A., and Du, R. X. (1991)). In-processmonitoring
of tool wea in milling using cutting force signature. In International Journal of Machine Tools and
Manufaduring, 31(1):55-73.

[Forrest et al., 1994] Forrest, S., Perelson, A. S., Allen, L., and Cherukuri, R. (1994. Self-Nonself
Discrimination in a Computer. In Proceedings of IEEE Symposium on Research in Security and Privacy,
pages 202--212, Oakland, CA.

[Frank, 1990 Frank, P. M. (1990). Fault Diagnosis in Dynamic Systems using Analytica and Knowledge-
based Redundancy - A survey and some new results. In Automatica, 26(3):459--474.

[Guill ot and Ouafi, 1997 Guill ot, M. and Ouafi, A. E. (1991). On-line Identificaion of Tool Bresage in
Metal Cutting Processes by use of Neural Networks. In Intelligent Engineering Systems Through Artificial
Neural Networks, volume-1, pages 701--709, ASME Press New Y ork.

[Hajela & al. 1997] Hajela, P., Yoo, J. and Lee J. (1997). GA Based Simulation of Immune Networks -
Applicaionsin Structural Optimizaion. In Journal of Engineering Optimization.

[Hart et al. 1998] Hart, E., Ross P. and Nelson, J. (1998). Producing robust schedules via an Artificial
Immune system. In the proceedings of the IEEE International Conference on Evolutionary Computation.



[Helman and Forrest, 1994 Helman, P. and Forrest, S. (1994). An Efficient Algorithm for Generating
Random Antibody Strings. Technicd Report Technicd Report No. CS94-7, Department of Computer
Science, University of New Mexico.

[Ishida, 1993 Ishida, Y. (1993). An Immune Network Model and its Applicaions to ProcessDiagnosis. In
Systems and Computersin Japan, 24(6):38--45.

[Ishida axd Mizesgyn, 1997 Ishida, Y. and Mizessyn, F. (199?). Leaning Algorithms on an Immune
Network Model: Application to Sensor Diagnosis.
In Proceedings of International Joint Conference on Neural Networks, volume~I, pages 33--38, China.

[Kozma et a., 1994 Kozma, R., Kitamura, M., Sakuma, M., and Yokoyama, Y. (1994. Anomaly
{D}etedion by neural network models and statisticd time series analysis. In Proceedings of IEEE
International Conference on Neural Networks, Orlando, Florida

[Li and Wu, 1989 Li, C. J. and Wu, S. M. (1989). On-line Detedion of Locdized defeds in beaings by
pattern recognition analysis. In Transactions of the ASME; Journal of Engineering for Industry, 1121:331--
336

[Li et~al., 1997 Li, G. S, Lau, W. S., and Zhang, Y.Z. (1992. In-Process Drill wea and hredkage
monitoring for a machining centre based on cutting force parameters. In International Journal of Machine
Tools and Manufacturing, 32(6):855--867.

[Liang and Dornfeld, 1989 Liang, S. Y. and Dornfeld, D. A. (1989). Tool wea detedion using time series
analysis of amustic emisson. In Journal of Engineering for Industry, 111:199--205.

[Moore and Reif, 1993 Moore, T. and Reif, Z. (1992). Detedion of Tool Bregage using Vibration Data.
In Proceedings of North American Manufacturing Research Conference (13th NAMRC); SME
Transactions on Manufacture Engeering, pages 45--50.

[Palmai, 1987 Palmai, Z. (1987. Cutting Temperature in Intermittent Cutting. In International Journal of
Machine Tools & Manufacturing, 27(2):261--274.

[Percus et al., 1993] Percus, J. K., Percus, O., and Person, A. S. (1993. Predicting the size of the antibody
combining region from consideration of efficient self/non-self discrimination. In Proceedings of the
National Academy of Science, 60:1691--1695

[Rangwala and Dornfeld, 1990 Rangwala, S. and Dornfeld, D. (1990). Sensor integration using reura
networks for intelligent todl condition monitoring. In Journal of Engineering for Industry, 112219-228

[Takata et al., 1985] Takata, S., Ogawa, M., Bertok, P., Ootsuka, J., Matushima, K., and Sata, T. (1985).
Red-Time Monitoring System of Too Breaage using Kaman Filtering. In Robotics & Computer-
Integrated Manufacturing,2(1):33--40.

[Tansel and McLaughlin, 19939 Tansel, I. N. and McLaughlin, C. (19933). Detedion of todl brekage in
milling operations-1. The time series analysis approach. In International Journal of Machine Tools &
Manufacturing, 33(4):531--544.

[Tansel and McLaughlin, 19931 Tansdl, I. N. and McLaughlin, C. (1993h. Detedion of todl bregkage in
milling operations-Il. The neural network approach. In International Journal of Machine Tools &
Manufacturing, 33(4):545--558

[Tarngand Leg 1993 Tarng, Y. S. and Leg B. Y. (1992). Use of model-based cutting simulation system
for too bre&kage monitoring in milling. In International Journal of Machine Tools &
Manufacturing,32(5):641--649.



[Tlusty and Ismail, 1983 Tlusty, J. and Ismail, F. (1983. Spedal aspeds of chatter in milling. In Trans.
ASME; Journal of Vibration, Acoustics, Stress, and Reliability in Design, 105.24--31.



