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Abstract

Theimmunesystemusesmany strategiesto gen-
erateits enormousrepertoireof diverseantibod-
ies, but their relative importanceis not under-
stood. Herewe addressthe contribution of an-
tibody genelibraries to the antibodyrepertoire.
We introduce a general framework, in which
we can study many antibody-pathogenmatch-
ing rules,includingthewidely-usedshape-space
model(PerelsonandOster, 1979).Weusethege-
neticalgorithmasa modelof evolution to inves-
tigatethetypeof antibodyrepertoiresthatmight
evolve in relationto a givenpathogenicenviron-
ment. For theantibody/pathogenmatchingrules
thatwe studied,thescalingrelationbetweenfit-
nessandthesizeof theevolvedantibodylibrary
is only a shifted variant of the scalingrelation
thatwe obtainwith randomlibrariesof thesame
size. We discusshow our resultscompareto the
antibodiesthat are expressedin newborns,and
we discusstheimplicationsof our resultsfor re-
centexperimentswith phageantibodylibraries.

1 INTRODUCTION

In order to respond effectively to a wide variety of
pathogens,theimmunesystemmustgeneratea diverseset
of immunereceptors.This is accomplishedby anumberof
diversity generatingmechanismswhich have beenidenti-
fied experimentally(Tonegawaet al., 1975;Gilfillan et al.,
1993;Weigertet al., 1970).At thesametime, theimmune
systemonly hasfinite resources,andwe assumethat there
is someevolutionarypressureto usethemefficiently. As
theimmunesystemcannotallocateoneparticularantibody
for eachpossiblepathogenthat it might encounter, a natu-
ral hypothesisis thattheantibodygenelibrariesreflectthe
evolutionaryhistoryof antigenicexposuresof thespecies.

However, immuneresponseshave beeninducedin mice
to artificially-producedmolecules,suggestingthat the im-
munesystemis able to recognizemore than the antigens
thatthespeciesencounteredin its evolution. Thefollowing
questionthenarises:Whattypeof informationdo immune
receptorlibrariesencode?

Using a model basedon the shape-spaceconceptintro-
ducedby PerelsonandOster(1979),we previouslyargued
that the scalingof the survival probability of an organism
with the size of its antibodyrepertoiremakes it unlikely
thatgermlinediversity is themajorcontributor to immune
systemdiversity (Opreaand Forrest,1998). We argued
that the germlinerepertoireinducesa coarse-grainingof
thepathogenspace,mappingtheregionsof this spacethat
are essentialfor the survival of the organism. Here we
extend our earlier analysisto antibody-pathogenmatch-
ing rules that might be more realistic. Our approachis
sufficiently generalthat it can be extendedas more data
on antibody-pathogeninteractionsbecomesavailable. In
theshape-spacemodel,individual fitnessis determinedby
finding the antibodywith the smallestHammingdistance
from the pathogen.This fitnesslandscapeis highly struc-
tured. However, we areinterestedin what happensin the
casewherethefitnesslandscapehasacompletelydifferent
structure,onethat is possiblymorecloselyrelatedto what
is known abouthow biologicalmoleculesinteractwith one
another. In this paper, we explorewhathappenswhenfit-
nessis basedon the idea of a randomenergy model, in-
troducedby Derrida(1984),in thecontext of spinglasses.
In this model,eachbit string is assignedanenergy drawn
from a Gaussiandistribution. We usethe random-energy
modelto approximatethedetailsof intermolecularinterac-
tion, aswill be apparentin the following section,andwe
also extend our resultsto energy distributions other than
Gaussian.



2 BASIC MODEL

If weview thetheantigen-antibodyinteractionfrom abio-
chemicalstandpoint,the strengthof the bondis given by
the differenceof the free energiesof the complex on one
hand,andof the two moleculesin their unboundstate,on
the other hand. A realistic representationof the energy
landscapeasa functionof thesequenceof themoleculesis
beyond our currentknowledgeandcomputationalpower.
Therefore,we usethe following abstraction.We assume
thateachmoleculehasan“energy,” which is a randomde-
viate from a Gaussiandistribution. The antigen-antibody
complex alsohasan energy correspondingto it, which is
likewise a randomdeviate from a Gaussiandistribution.
Thedifferencebetweentheenergy of thecomplex andthe
energyof unboundmoleculesgivesthestrengthof thebond
betweenthem. We usea geneticalgorithm to evolve li-
brariesof differentsizeson a large pathogenset,andde-
terminehow themaximumfitnessof anevolvedindividual
scaleswith thesizeof its antibodylibrary. Onemightargue
that the landscapethatwe have constructeddoesnot have
any obvious structurefor the geneticalgorithm to work
with, given that the energies assignedto closely related
genotypesare randomdeviatesfrom the Gaussiandistri-
bution. The landscapedoes,however, hassomestructure,
astheantibodieswith high energy have a betterchanceof
lowering this energy by binding to pathogens.Theseare
exactly theantibodiesthatthegeneticalgorithmdiscovers,
aswewill see.

Our geneticalgorithm resemblesthe one introducedby
Hightower (1996) to study the shape-spacemodel of an-
tibody library evolution. We considera populationof

�
individuals,calledhosts,whichareevolving in anenviron-
mentof hostilepathogens,eachpathogenrepresentedasa
bit string. Eachindividual in thepopulationconsistsof an
antibody library, containing � antibodies,eachantibody
representedasabit stringof length � . For theexperiments
describedbelow, we chose ������� . Pathogensare also
representedasbit stringsof length � . We evolve theanti-
body librarieson a pathogenset 	 , of size 
�� , settingthe
7 high order bits to 0 in all pathogenstrings. We chose
theseparametersto matchthesettingin our previousstudy
(OpreaandForrest,1998). Our representationof antibody
librariesis reminiscentof the so-called“Pitt” approachto
classifiersystemsin that we concatenate� antibodiesto-
getherto form a singlechromosome.Underthis analogy,
eachlibrary (one individual’s genome)is analogousto a
classifiersystemif we considereachencodedantibodyto
take therole of a singleclassifierrule. It is interestingthat
this aspectof our representationcorrespondsquitedirectly
to, for example,V-regiongenesin humans.

Theessenceof thecomplicatedantibody-pathogeninterac-
tion in therealworld,whichwetry to capturein ourmodel,

is thatfor eachpathogenin theenvironmentthereis at least
oneantibodyin the individual’s library thatcanbind to it.
Moreover, theantibodywith thehighestaffinity for agiven
pathogenwill betheonethatdominatestheresponseto that
pathogen.This phenomenonis known asclonal selection
(seefor exampleTakahashi,1998).Weusethispropertyas
thebasisfor our fitnessfunction. To eachindividual, con-
sistingof a singlelibrary 
 , we assigna score� in match-
ing apathogen� , which wedefineas��������������������! �#"�$#�%�&$
where  �'"($'��� is thestrengthof thebondbetweentheanti-
body " andthepathogen� . To calculatethebondstrength,
we first determinethe “energy” of the antibodyin its un-
boundstate,the “energy” of the pathogenin its unbound
state,and, finally, the “energy” of the antibody-pathogen
complex. Thedifferencebetweenthe sumof the first two
quantitiesandthelastoneof themgivesthebondstrength.
The energy of eachpathogen(antigen)and antibody is
drawn from aGaussiandistributionwith mean50,andvari-
ance2.5, whereasthe energy of the complex waschosen
from a Gaussiandistribution with mean100 andvariance
10. Theexactchoiceof themeanandvarianceof theenergy
of an individual moleculeis clearly somewhat arbitrary, a
topic thatwe hopeto addressin futurework.

To determinethe energy of each“molecule,” we seedthe
randomnumbergeneratorwith the integer representation
of thebit stringrepresentingthat“molecule,” andthencal-
culatea pseudo-randomGaussiandeviateaccordingto the
algorithmgivenin NumericalRecipes(Presset al., 1988).
We assignsuchan energy to eachantigenandeachanti-
body. To obtaintheantigen-antibodycomplex, we take the
XOR betweenthe bit stringsrepresentingthe antigenand
theantibody, andthenusetheintegerrepresentationof the
XOR stringto calculateits energy, asdescribedabove. The
bondstrength,given by the differencein energy between
the(sumof) unboundmoleculesandthecomplex, will be
distributedasa Gaussianwith mean0 andvariance15.

In Hightower(1996)thefitness) of anindividualwasiden-
tified with its averagescore *#�,+ over all pathogensthat it
encountered.We usethe samedefinition of fitnesshere.
This choiceis justifiedbecausethe survival probability of
anindividualdependsonall pathogenchallengesit encoun-
ters(OpreaandForrest,1998). Thus,the fitness ) is de-
finedas: )-� �.0/1���2 ���3�%��45*'�,+&6
Let us briefly summarizethe geneticalgorithm we used
to evolve the libraries. We constructthe initial popula-
tion of

� �87�9 randomlibraries, of identical size, � .
Eachindividual, then,consistsof a single library. In the
framework of the randomenergy model,we may, in fact,



view the antibody library as exactly the antibody reper-
toire. Adding more realismto the model by using mul-
tiple libraries for eachindividual would not affect the re-
sults. A populationsizeof 50 is sufficiently largeto allow
convergenceto relatively high fitnesssolutions,given the
mutationrateof 9:6 9�9;
 perbit thatwe usedin evolving the
libraries.We userankselectionasfollows: If < is therank
of thefitnessof anindividual in thepopulation,thechance
of that individual beingselectedasa parentis, on average,=?> �A@CBEDGF >IHDGBEDGF,J H . To createonelibrary of the new genera-
tion, we select,with replacement,two librariesof the old
population.Wegeneratetwo new librariesby crossingover
the two chosenlibraries. The numberof crossover pointsK is chosenfrom abinomialdistributionwith mean9:6 9:��� .
This is becausechromosomalcrossover in realgeneticsys-
temsis not a deterministicprocess.Assumingthatthereis
aconstantcrossoverratepergene,thenumberof crossover
points per individual will then obey a binomial distribu-
tion. Thecrossover pointsarechosenat theboundarybe-
tweenantibodies,soindividualantibodiesarenotdisrupted
by crossover. We then chooseone of the new crossover
products,mutateit, andaddit to thenew population.1000
generationsof thegeneticalgorithmconstitutearun. At the
endof the run, we take the library with thehighestfitness
in thepopulationanduseit for subsequentanalysis.

3 RESULTS

3.1 SCALING RELATION BETWEEN FITNESS
AND LIBRARY SIZE.

Ourpreviousstudyshowedthat,for theshape-spacemodel,
the scaling relation betweenfitnessand library size for
evolved libraries is only a shifted variant of the relation
obtainedfor a randomlibrary of identical size. For both
cases(evolved andrandomlibraries), the scalingrelation
indicatesa sub-logarithmicdependenceof fitnesson li-
brary size. We interpretedthis resultasshowing that the
germline-encodedantibodiesarenot a largecontributor to
theoverallfitnessof anindividualandthatothersourcesof
diversityarelikely moreimportant. We hypothesizedthat
the role of the germline-encodedrepertoireis morelikely
to extractessentialfeaturesof the pathogenspacethat the
specieshasencounteredin evolution. However, in order
to draw suchstrongconclusionswe needto show thatour
scalingresult alsoholds for the moregeneralcaseof the
randomenergy modeldescribedabove.

Let us first determinethe fitnessof a randomlibrary as
a function of the library size. We write the derivation in
termsof thedensitydistributionof thebondstrength,LM�ON�� ,
and its correspondingcumulative densityfunction, P��#N�� ,
andwe will thenapply it to theparticularGaussiandistri-
bution describedabove. For every pathogen,thefitnessis

givenby themaximumof � randomvariablesdrawn from
thedistribution P , � beingthesizeof theantibodylibrary.
The probability that the bondstrengthbetweena random
pathogenandall of theantibodiesin thelibrary is lessthan
or equalto a value, N , is P��#N��RQ , andthederivative of this
givestheprobabilitydensityof fitnessN :

L Q �#N��S� TT N�U �#P��ON%�R� QWV���YXZLM�ON��C�#P��#N��R� Q FMJ 6 (1)

Now, the fitnessof a randomlibrary of � antibodieson
thecompletepathogenspace,giventheprobabilitydensity
functionof thefitness,L Q �#N�� , is

)\[]�'�^�S� _a`b NcL Q �ON��� _ `b N TT Ned P Q �#N��gfh6 (2)

Let ij��P Q �ON%� , taking valuesbetween0 and 1. Thenkkml d P Q �ON��nfW� T i andEq. 2 canberewritten in termsof i
as

) [ �'�^��� _ Jb No�Oi:� T i%$ (3)

whereNo�Oi:� denotesthefactthat N hasto beexpressednow
as a function of i . But ij�pP Q �ON��q�r�#P��ON%�R� Q , thusP��ON%�s�tivuw , and Na�xP FMJ �Oivuw � , where P FMJ denotesthe
inversefunctionof P . With this,Equation3 becomes

)\[]�'�^���y_ Jb P FMJ �Oi uw � T i%6 (4)

In thecaseof theGaussiandistributedbondstrengths,men-
tionedabove, we cannotderive an analyticalform for the
fitnessdependency on antibodylibrary size,aswe cannot
analyticallyinvert theerror function,which is the integral
of thenormaldistribution. We may, however, computethe
valuesnumerically, andthis is how we generatedthe data
for randomantibodylibrariesshown in Fig. 1 (thedashed
line). As mentionedabove,for thecasethatwestudied,the
bondstrengthsareGaussiandistributed,with meanz{�y9 ,
andvariance� @ �|��7:6
Fig. 1 shows how fitnessscaleswith the library size �
for theGaussiandistribution discussedabove. As wasthe
casefor the shape-spacemodel, the evolved libraries at-
tain a fitnessthat hasa similar functionaldependency on
the library sizeas the randomlibraries. The dependency
is sublogarithmic,thatis, thefitnessincreasesmoreslowly
thanlinearasafunctionof thelogarithmof thelibrary size.
Thus,theshape-spacemodel,with a binomialdistribution
of bond strengths,is well approximatedby the Gaussian
distributedbondstrengths,aswe expected.
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Figure1: ScalingOf FitnessOn A RandomPathogenSet
With TheAntibodySetSize � . Thesolidline showsthefit-
nessof thebestlibrary evolvedin 1000stepsof thegenetic
algorithm,andthedashedline theexpectedfitnessof aran-
domlibrary. For thesolid line, thepointson thecurve are
averagesover 100(for library size �t�t
}$�~c$��c$C���:$��]
}$I��~ )
or 10 (for library size �y�Y�\
�� and 
;7�� ) independentruns,
in which we took the bestfitnessin the populationat the
endof the run. The line is obtainedby interpolatingbe-
tweenthesepoints.

Let usanalyzethestructureof theevolvedlibraries.Given
the fitnessfunction, we would expect that antibodiesthat
have a high free energy in the unboundstatewould have
the highestchanceof lowering their free energy through
intermolecularbinding. Recall that the energy of the free
antibodieswasa randomdeviatefrom a Gaussiandistribu-
tion. It turnsout that the evolved antibodieshave higher
thanaverageenergy. To assessthesignificanceof this dif-
ference,wecalculatethezstatisticfor theevolvedantibod-
ies, that is ��� l F%�� $ where N is the energy of anevolved
antibody, z is themeanenergy of theantibodymolecules,
and � is the standarddeviation of the mean.The evolved
antibodieshaveaz-statisticcenteredaround2 standardde-
viations higher than the mean,clearly different from the
mean.This resulttells us that,asexpected,theantibodies
that were evolved are the equivalentof “sticky” antibod-
ies, of high interconnectivity andmultispecificity, suchas
thosecommonlyseenin theimmunesystemsof newborns
(Kearney et al., 1992). Theseantibodiesbind not only to
pathogens,but to many othermoleculesnormally present
in the body, includingDNA andmoleculeson the surface
of lymphoidcells. Thus,thegeneticalgorithmwasindeed
ableto evolveapropertyknown to characterizetheimmune
systemsof newborns.

3.2 SCALING RELATION FOR OTHER
DISTRIBUTIONS OF BOND STRENGTHS

Fig. 1 suggeststhatevolving theantibodylibrariesallows
us to reachhigherfitnessvaluesthanwe would have with
randomlibraries,eventhoughthefunctionalformof thede-
pendency betweenfitnessandlibrary sizedoesnotchange.
Let usthenexplorewhatthis functionalform might befor
a randomlibrary, underassumptionsaboutthe fitnessof
individual antigen-antibodyinteractionsthatmay have bi-
ologicalrelevance.

Let us assumeagain the random energy model, with
all antibody-antigeninteractionsbeingcharacterizedby a
bondstrengthdistributedaccordingto a densityfunction,L . The cumulative distribution of a single bond strength
will beagaindenotedby P . For example,assumethat the
bondstrengthof an antigen-antibodyinteractionis expo-
nentiallydistributed,meaningthatmostinteractionsareof
low energy, higherenergy interactionsbeingprogressively
morerare.Then P��#N��?�t����� F%� l $ with � constant.Cor-
respondingly, P FMJ �ON����Y� J���E��� ������N���6 Let usdenotei uw
by � . Then i��Y� Q ,

km�km� �Y��� Q FMJ , andtheaveragefitness
over thecompletepathogenspacewill begivenby

) � � �� _ Jb ��� Q FMJ �E��� �������]�� �� � TT � ���;� �#���#�������������M��$
which is approximatedby)Z  �� � ���;� �'�^�����M��$
with � being Euler’s constant,and � being the factorial
function. Thus, in the casewhereantigen-antibodybond
strengthsareexponentiallydistributed,thefitnessof a ran-
domantibodylibrary scaleslogarithmicallywith thesizeof
thelibrary.

We mayalsoconsidera long-taileddistribution, suchasa
power law P��ON��¡�¢����N FM� , with � constant.Theinverse
of this function is P F,J �ON%�£�¤�R����N%�h¥ u¦ . With the same
notation, �§�¨i uw , the averagefitnessover the complete
pathogenspaceis givenby

)�� _ Jb ��� Q FMJ �R���e�h� ¥ u¦ � ���'���§�\�������?� J� ����#�©�§�?� J� � 6
Expanding ª}B QM« J Hª}B QM« JmF u¦ H $ weobtainfor theaveragefitness

)Z�¬� u¦�­ �?� �� ­ �?� ��v® �
�� ��¯°� �� @ � ® 6
Summarizing,when the bondstrengthsareexponentially
distributed,fitnessgrowslogarithmicallywith theantibody



library size;whenthedistribution is Gaussian,with faster
thanexponentialtail, the fitnessgrows more slowly than
logarithmically; andfor a power law, the fitnessis alsoa
power law of thelibrary size.Theaveragefitness,then,as
a functionof the library size,hasa functionalform that is
theinverseof thedensityfunctionfor thebondstrengthbe-
tweenanantibodyandanantigen.We canusethis frame-
work to treatany distribution of antibody-pathogenbond
strengths,asmoredataon this type of molecularinterac-
tions becomesavailable. This is an importantfeature,as
theshape-spacebasedmodels(andtheresultsthatdepend
onthem)haveoftenbeencriticizedfor beingtoorestricted,
andpossiblyunrealisticfor analyzingbiologicaldata.

4 DISCUSSION

It is not yet understoodwhat role thediversityof immune
receptorlibrariesplaysin theimmuneresponse.Basedon
theresultsthatwe presentedhere,togetherwith our previ-
ousstudy(OpreaandForrest,1998),we arguethatadding
more and more antibodiesto the genome-encodedreper-
toire improvesthesurvival probabilityof theindividualby
smallerand smalleramounts. This may be an explana-
tion for why the ± -region libraries in variousspeciesdo
not seemto numbermorethanapproximatelyonehundred
genes.But if the selectionpressurefor increasinglibrary
size is small, what would keepevolution from producing
evensmallerlibrariesthantheonesthatwe observe? One
possibleexplanationis that thereis a hardthresholdin an-
tibody/pathogenbinding,below which recognitionwill not
occurat all. In this case,someminimal numberof anti-
bodieswould be requiredto ensurethat at leastone has
minimalaffinity for any givenpathogen.Alternatively, one
can imaginethat the pathogenset is structuredas a dis-
tribution of clusters,suchthat different antibodiesin the
library would reflect different clustersof pathogens.We
hypothesizethattheantibodygenesencodeantibodiesthat
are“strategically” placedin thespaceof possiblereceptors.
The dataon what antibodygenesareinvolved in immune
responsesto virulentpathogensis sparse.In theresponseto
Hemophilusinfluenzaein humans(Inselet al., 1992),and
to Streptococcuspneumoniaein mice (Lee et al., 1974),
preferentialinvolvementof a small numberof ± region
genes(and light-heavy chain combinations)hasbeenre-
ported,addingcredenceto our hypothesis.

Recently, Davis et al. (1998) proposedthat the diversity
of the repertoirefor T cell, as well as for B cell recep-
tors, residesin the third complementaritydeterminingre-
gion(known asCDR3)of theimmunereceptor. In contrast
with othercomplementarydeterminingregions(CDR1and
CDR2), which are exclusively encodedby the ± -region
gene,CDR3 receivescontributionsfrom oneor two more
genefragments.Theseadditionalgenefragmentsassociate

randomly with the ± -region genefragmentto form the
genefor the antigen-bindingpart of a functional immune
receptor. The authorsof the studyproposedthatCDR3 is
sufficient for an initial binding of the immunereceptorto
theantigen,andthatsomaticmutationof CDR1andCDR2
further improvesthe affinity/specificity of the interaction.
In contrast,our hypothesisemphasizesthatantibodygene
libraries(which codefor CDR1 andCDR2) might be the
basisfor evolutionarylearningaboutthe pathogenicenvi-
ronmentof thespecies.

Finally, large phageantibodyare now usedas a vehicle
for rapidly producinghigh affinity antibodiesto protein
antigens. Their tentative use rangesfrom cancerther-
apy to studying the function of geneproductsidentified
by genomeprojects(Griffiths et al., 1994;Hoogenboom,
1997). Our resultsarerelevant to this work, becausethey
suggestwhat library sizeswe canexpect to constructbe-
fore reachinga certainaffinity rangefor a randomantigen.
In particular, if weknow thedistributionof affinitiesof the
antibodiesin the library to a randomantigen,we canpre-
dict what library sizeswe needto reachin order for the
bestantibodyin the library to be within a certainaffinity
range.We suggestthatpreliminaryaffinity measurements
on a subsetof sucha library, in conjunctionwith our anal-
ysis,couldbeausefultestin evaluatingmethodsfor gener-
atingthephagelibraries.Conversely, wecouldusethedata
obtainedfrom theselargeantibodylibrariesto gaininsight
into theenergy landscapeof antigen-antibodyinteractions.

In conclusion,it is only recentlythat biological datahave
becomeavailablewhich allow us to scrutinizethe various
theoriesthathave beenproposedfor differentmechanisms
in theimmunesystem.Therole of germlinediversity, dis-
cussedin thispaper, is anexampleof suchatheory. Under-
standingits role in the overall immuneresponsehascon-
sequences,both for theoreticalimmunologyandbiotech-
nologyandmedicine.However, theavailability of detailed
biologicaldatameansthatweneedto refinemany of thede-
tails of our models.Seeminglysmall details,suchashow
we model the interactionsbetweenantigensandantibod-
ies, can have large impact on the validity of our results.
Justastheadventof moderngenetictechnologies,suchas
knock-outtechniques,stimulateda review of classicalem-
bryology, somustwecontinuallyrevisit thetheoreticalun-
derpinningsof our modelsasnew biological databecome
available.
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