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Abstract

Theimmunesystemusesmary stratgjiesto gen-
erateits enormougepertoireof diverseantibod-
ies, but their relative importanceis not under
stood. Herewe addresghe contribution of an-
tibody genelibrariesto the antibodyrepertoire.
We introduce a generalframework, in which
we can study mary antibody-pathogematch-
ing rules,includingthe widely-usedshape-space
model(PerelsorandOster 1979).We usethege-
neticalgorithmasa modelof evolutionto inves-
tigatethetype of antibodyrepertoireghat might
evolvein relationto a givenpathogenierviron-
ment. For the antibody/pathogematchingrules
thatwe studied,the scalingrelationbetweerfit-
nessandthe size of the evolvedantibodylibrary
is only a shifted variant of the scalingrelation
thatwe obtainwith randomlibrariesof the same
size. We discusshow our resultscompareo the
antibodiesthat are expressedn newborns, and
we discusgheimplicationsof our resultsfor re-
centexperimentsvith phageantibodylibraries.

1 INTRODUCTION

In order to respond effectively to a wide variety of
pathogenstheimmunesystemmustgeneratea diverseset
of immunereceptorsThisis accomplishedy a numberof
diversity generatingmechanismsvhich have beenidenti-
fied experimentally(Tonegawa et al., 1975;Gilfillan etal.,
1993;Weigertet al., 1970). At the sametime, theimmune
systemonly hasfinite resourcesandwe assumehatthere
is someevolutionary pressurdo usethemefficiently. As
theimmunesystemcannotallocateoneparticularantibody
for eachpossiblepathogerthatit might encountera natu-
ral hypothesiss thatthe antibodygenelibrariesreflectthe

evolutionaryhistory of antigenicexposureof the species.
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However, immuneresponsedave beeninducedin mice
to artificially-producedmolecules suggestinghatthe im-
munesystemis ableto recognizemore thanthe antigens
thatthespeciegncountereth its evolution. Thefollowing
guestiorthenarises:Whattype of informationdo immune
receptolibrariesencode?

Using a model basedon the shape-spaceonceptintro-
ducedby PerelsorandOster(1979),we previously argued
thatthe scalingof the survival probability of an organism
with the size of its antibodyrepertoiremakesit unlikely
thatgermlinediversityis the major contributor to immune
systemdiversity (Opreaand Forrest,1998). We argued
that the germlinerepertoireinducesa coarse-grainingf
the pathogerspacemappingthe regionsof this spacethat
are essentialfor the survival of the organism. Here we
extend our earlier analysisto antibody-pathogematch-
ing rules that might be more realistic. Our approachis
sufficiently generalthat it can be extendedas more data
on antibody-pathogelnteractionsbecomesavailable. In
the shape-spacmodel,individual fitnessis determinecdy
finding the antibodywith the smallestHammingdistance
from the pathogen.This fithesslandscapes highly struc-
tured. However, we areinterestedn what happensn the
casewherethefitnesslandscapdiasa completelydifferent
structure pnethatis possiblymorecloselyrelatedto what
is known abouthow biologicalmoleculesnteractwith one
another In this paper we explore what happenavhenfit-
nessis basedon the idea of a randomenegy model, in-
troducedby Derrida(1984),in the context of spinglasses.
In this model,eachbit string is assignedan enegy dravn
from a Gaussiardistribution. We usethe random-enegy
modelto approximatehe detailsof intermoleculainterac-
tion, aswill be apparenin the following section,andwe
also extend our resultsto enegy distributions other than
Gaussian.



2 BASIC MODEL

If we view thetheantigen-antibodynteractionfrom a bio-
chemicalstandpointthe strengthof the bondis given by
the differenceof the free enegiesof the complex on one
hand,andof the two moleculesn their unboundstate,on
the other hand. A realistic representatiorof the enegy
landscapeasa functionof the sequencef themoleculess
beyond our currentknowledge and computationalpower.
Therefore,we usethe following abstraction. We assume
thateachmoleculehasan“enemy,” whichis arandomde-
viate from a Gaussiardistribution. The antigen-antibody
comple alsohasan enegy correspondingdo it, which is
likewise a randomdeviate from a Gaussiandistribution.
The differencebetweerthe enegy of the complex andthe
enegy of unboundmoleculegivesthestrengthof thebond
betweenthem. We usea geneticalgorithmto evolve li-
brariesof differentsizeson a large pathogerset,and de-
terminehow the maximumfitnessof anevolvedindividual
scaleswith thesizeof its antibodylibrary. Onemightargue
thatthe landscapehat we have constructedloesnot have
ary obvious structurefor the geneticalgorithm to work
with, given that the enegies assignedto closely related
genotypesare randomdeviatesfrom the Gaussiandistri-
bution. The landscapealoes,however, hassomestructure,
asthe antibodieswith high enegy have a betterchanceof
lowering this enegy by binding to pathogens.Theseare
exactly theantibodieghatthe geneticalgorithmdiscovers,
aswewill see.

Our geneticalgorithm resembleshe one introducedby

Hightower (1996) to study the shape-spacenodel of an-
tibody library evolution. We considera populationof M

individuals,calledhostswhich areevolving in anerviron-

mentof hostile pathogenseachpathogerrepresentedsa
bit string. Eachindividual in the populationconsistsof an
antibody library, containing A antibodies,eachantibody
representedsa bit stringof length L. For theexperiments
describedbelon, we choseL = 16. Pathogensare also
representeasbit stringsof length L. We evolve the anti-

body librarieson a pathogerset P, of size2?, settingthe
7 high order bits to 0 in all pathogenstrings. We chose
theseparameterso matchthe settingin our previousstudy
(OpreaandForrest,1998). Our representationf antibody
librariesis reminiscentof the so-called*Pitt” approacho

classifiersystemsan thatwe concatenated antibodiesto-

getherto form a single chromosome.Underthis analogy
eachlibrary (one individual's genome)is analogouso a
classifiersystemif we considereachencodedantibodyto

take therole of a singleclassifierrule. It is interestingthat
this aspecbf our representatiosorrespondsjuite directly

to, for example,V-region genesn humans.

Theessencef thecomplicatedantibody-pathogemterac-
tion in therealworld, whichwetry to capturan our model,

is thatfor eachpathogerin theernvironmentthereis atleast
oneantibodyin the individual’s library thatcanbind to it.
Moreover, the antibodywith the highestaffinity for agiven
pathogemwill betheonethatdominatesheresponseo that
pathogen.This phenomenoris known asclonal selection
(seefor exampleTakahashi1998).We usethis propertyas
the basisfor our fithessfunction. To eachindividual, con-
sistingof asinglelibrary A, we assigna scores in match-
ing a pathogerp, which we defineas

o(p) = max f(a,p),

whereg(a, p) is the strengthof the bondbetweerthe anti-
bodya andthe pathogerp. To calculatethe bondstrength,
we first determinethe “enemgy” of the antibodyin its un-
boundstate,the “enemy” of the pathogernin its unbound
state,and, finally, the “energy” of the antibody-pathogen
compl. Thedifferencebetweernthe sumof the first two
guantitiesandthe lastoneof themgivesthe bondstrength.
The enegy of each pathogen(antigen)and antibody is
drawn from a Gaussiamistributionwith mean50, andvari-
ance2.5, whereaghe enegy of the complex was chosen
from a Gaussiardistribution with mean100 and variance
10. Theexactchoiceof themeanandvarianceof theenegy
of anindividual moleculeis clearly somavhat arbitrary a
topic thatwe hopeto addressn futurework.

To determinethe enegy of each“molecule; we seedthe
randomnumbergeneratowith the integer representation
of thebit stringrepresentinghat“molecule; andthencal-
culatea pseudo-randon®Gaussiardeviate accordingto the
algorithmgivenin NumericalRecipeqPressetal., 1988).
We assignsuchan enegy to eachantigenand eachanti-
body To obtainthe antigen-antibodgomplex, we take the
XOR betweenthe bit stringsrepresentinghe antigenand
the antibody andthenusethe integerrepresentatioof the
XOR stringto calculatdts enepgy, asdescribedibore. The
bond strength,given by the differencein enegy between
the (sumof) unboundmoleculesandthe complex, will be
distributedasa Gaussiawith mean0 andvariancelb.

In Hightower (1996)thefitnessf of anindividualwasiden-
tified with its averagescore(s) over all pathogenghat it

encountered.We usethe samedefinition of fitnesshere.
This choiceis justified becausdhe survival probability of

anindividualdepend®nall pathogerchallengedt encoun-
ters (Opreaand Forrest,1998). Thus,the fithessf is de-
finedas: )

f=35Y o) =0
peEP

Let us briefly summarizethe geneticalgorithm we used
to evolve the libraries. We constructthe initial popula-
tion of M = 50 randomlibraries, of identical size, A.

Eachindividual, then, consistsof a singlelibrary. In the
frameawork of the randomenegy model,we may;, in fact,



view the antibody library as exactly the antibody reper
toire. Adding more realismto the model by using mul-
tiple librariesfor eachindividual would not affect the re-
sults. A populationsizeof 50 is sufficiently largeto allow
corvergenceto relatively high fitnesssolutions,given the
mutationrateof 0.002 perbit thatwe usedin evolving the
libraries. We userankselectionasfollows: If r is therank
of thefitnessof anindividualiin the population the chance
of thatindividual beingselectedasa parentis, on average,

.= 1\24((]‘]{41?) . To createonelibrary of the new genera-
tion, we select,with replacementiwo libraries of the old
population.We generatéwo new librariesby crossingover
the two chosenrlibraries. The numberof crosseer points
n is choserfrom abinomialdistribution with mean0.01.4.
Thisis becausehromosomatrossweerin realgeneticsys-
temsis not a deterministicprocess Assumingthatthereis
aconstantrosseerratepergene thenumberof crosswer
points per individual will then obey a binomial distribu-
tion. The crosswer pointsarechosenat the boundarybe-
tweenantibodiessoindividual antibodiesarenotdisrupted
by crosswer. We then chooseone of the new crosswer
productsmutateit, andaddit to thenew population.1000
generationsf thegeneticalgorithmconstitutearun. At the
endof therun, we take the library with the highestfitness
in the populationanduseit for subsequerdnalysis.

3 RESULTS

3.1 SCALING RELATION BETWEEN FITNESS
AND LIBRARY SIZE.

Ourpreviousstudyshavedthat,for theshape-spacmodel,
the scaling relation betweenfitnessand library size for
evolved libraries is only a shifted variant of the relation
obtainedfor a randomlibrary of identical size. For both
casegevolved and randomlibraries), the scalingrelation
indicatesa sub-logarithmicdependencef fitnesson li-

brary size. We interpretedthis resultas shaving that the
germline-encodedntibodiesarenot a large contributor to
theoverallfitnessof anindividual andthatothersourcesof
diversity arelikely moreimportant. We hypothesizedhat
therole of the germline-encodedepertoireis morelikely
to extractessentiafeaturesof the pathogerspacethatthe
specieshasencounteredn evolution. However, in order
to draw suchstrongconclusionsve needto show thatour
scalingresultalso holds for the more generalcaseof the
randomenegy modeldescribedabove.

Let us first determinethe fitnessof a randomlibrary as
a function of the library size. We write the derivation in
termsof thedensitydistribution of thebondstrengthg(z),
andits correspondingsumulatve densityfunction, G(z),
andwe will thenapplyit to the particularGaussiardistri-
bution describedabove. For every pathogenthe fitnessis

givenby themaximumof A randomvariablesdravn from
thedistribution G, A beingthesizeof theantibodylibrary.
The probability that the bond strengthbetweena random
pathogerandall of theantibodiesn thelibrary is lessthan
or equalto avalue,z, is G(x)*, andthe derivative of this
givesthe probability densityof fitnessaz:

d
e [(G(z))"]

= A x g(z)(G()* . )

ga(r) =

Now, the fithessof a randomlibrary of A antibodieson
the completepathogerspacegiventhe probability density
functionof thefitness,ga(z), is

/ " ega(z)
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Lety = Ga(x), taking valuesbetween0 and1. Then
% [Ga(z)] = dy andEq. 2 canberewritten in termsof y
as

1
£,(4) = /0 #(y)dy, 3)

wherez(y) denoteghefactthatz hasto beexpressedow
asafunctionof y. Buty = Ga(z) = (G(z))*, thus
G(z) = y=, andz = G~1(yx), whereG—! denoteshe
inversefunctionof G. With this, Equation3 becomes

fy(A) = /0 G (y%)dy. )

In thecaseof the Gaussianlistributedbondstrengthsmen-
tionedabove, we cannotderive an analyticalform for the
fitnessdependeng on antibodylibrary size,aswe cannot
analyticallyinvert the error function, which is the integral
of the normaldistribution. We may, however, computethe
valuesnumerically andthis is how we generatedhe data
for randomantibodylibrariesshavn in Fig. 1 (thedashed
line). As mentionedabove, for the casethatwe studied the
bondstrengthsare Gaussiardistributed,with meany = 0,
andvariances? = 15.

Fig. 1 shaws how fithessscaleswith the library size A
for the Gaussiardistribution discussea@bove. As wasthe
casefor the shape-spacenodel, the evolved libraries at-
tain a fitnessthat hasa similar functional dependeng on
the library size asthe randomlibraries. The dependeng
is sublogarithmicthatis, thefithnessincreasesnoreslowly
thanlinearasafunctionof thelogarithmof thelibrary size.
Thus,the shape-spacmodel,with a binomial distribution
of bond strengths,is well approximatedby the Gaussian
distributedbondstrengthsaswe expected.
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Figurel: ScalingOf FithessOn A RandomPathogenSet
With TheAntibody SetSize A. Thesolidline shavsthefit-

nessof the bestlibrary evolvedin 1000stepsof the genetic
algorithm,andthedashedine theexpecteditnessof aran-
domlibrary. For the solid line, the pointson the curve are
averagesover 100 (for library size A = 2,4, 8,16, 32, 64)

or 10 (for library size A = 128 and256) independentuns,
in which we took the bestfitnessin the populationat the
end of the run. Theline is obtainedby interpolatingbe-
tweenthesepoints.

Let usanalyzethe structureof the evolvedlibraries. Given
the fitnessfunction, we would expectthat antibodiesthat
have a high free enegy in the unboundstatewould have
the highestchanceof lowering their free enegy through
intermoleculaminding. Recallthatthe enegy of the free
antibodiesvasarandomdeviate from a Gaussiartistribu-
tion. It turnsout that the evolved antibodieshave higher
thanaverageenegy. To assesshe significanceof this dif-
ferencewe calculatethez statisticfor theevolvedantibod-
ies, thatis z = *~#, wherez is the enegy of anevolved
antibody y is the meanenegy of the antibodymolecules,
ando is the standarddeviation of the mean. The evolved
antibodieshave a z-statisticcenterecaround? standardie-
viations higher than the mean,clearly differentfrom the
mean. This resulttells usthat, asexpected the antibodies
that were evolved are the equivalentof “sticky” antibod-
ies, of high interconnectiity and multispecificity suchas
thosecommonlyseenin theimmunesystemf newborns
(Kearng et al., 1992). Theseantibodieshbind not only to
pathogensbut to mary othermoleculesnormally present
in the body, including DNA andmoleculeson the surface
of lymphoid cells. Thus,the geneticalgorithmwasindeed
ableto evolveapropertyknown to characterizéheimmune
systemf newborns.

3.2 SCALING RELATION FOR OTHER
DISTRIBUTIONS OF BOND STRENGTHS

Fig. 1 suggestshat evolving the antibodylibrariesallows

usto reachhigherfitnessvaluesthanwe would have with

randomlibraries,eventhoughthefunctionalform of thede-
pendenyg betweerfitnessandlibrary sizedoesnot change.
Let usthenexplore whatthis functionalform might be for

a randomlibrary, underassumptionsaboutthe fithessof

individual antigen-antibodynteractionshat may have bi-

ologicalrelevance.

Let us assumeagain the random enegy model, with
all antibody-antigennteractionsbeing characterizedy a
bond strengthdistributed accordingto a densityfunction,
g. The cumulative distribution of a single bond strength
will beagaindenotedby G. For example,assumehatthe
bond strengthof an antigen-antibodyinteractionis expo-
nentially distributed, meaningthatmostinteractionsare of
low enengy, higherenepy interactionsbeingprogressrely
morerare. ThenG(z) = 1 — e~ **, with a constant.Cor
respondinglyG—!(z) = — L log(1—z). Let usdenotey =
by z. Theny = 24, & = 424~ andtheaveragefitness

' dz
overthecompletepathogerspacewill begivenby

1 1
f = ——/ Az og(1 — 2)
@ Jo
1,d

= E(E log(T'(A + 1)) +7),

whichis approximatedy

f & (108(4) + ),

with v being Euler’s constant,andT" being the factorial
function. Thus,in the casewhereantigen-antibodybond
strengthsareexponentiallydistributed,the fithessof aran-
domantibodylibrary scaledogarithmicallywith thesizeof
thelibrary.

We may alsoconsidera long-taileddistribution, suchasa
powerlaw G(z) = 1 — z~ %, with « constant.Theinverse
of this functionis G-(z) = (1 — )= . With the same
notation,z = y%, the averagefitnessover the complete

pathogerspacds givenby

Y _Z_TI_F(A+1)F(1—§)
f‘/OAZ 1-2a)= = T(A+1-1)

Expanding%—) , we obtainfor the averagefitness

1 1 1 1 1
poat (121 (12 1) Lvork).

Summarizing,whenthe bond strengthsare exponentially
distributed,fithessgrows logarithmicallywith theantibody



library size;whenthe distribution is Gaussianyith faster
than exponentialtail, the fitnessgrows more slowly than
logarithmically; andfor a power law, the fitnessis alsoa

power law of thelibrary size. The averagefitness then,as
a function of thelibrary size,hasa functionalform thatis

theinverseof thedensityfunctionfor thebondstrengthtbe-

tweenanantibodyandanantigen.We canusethis frame-
work to treatary distribution of antibody-pathogemond
strengthsas more dataon this type of molecularinterac-
tions becomesvailable. This is animportantfeature,as
the shape-spacbasedmodels(andthe resultsthatdepend
onthem)have oftenbeencriticizedfor beingtoorestricted,
andpossiblyunrealisticfor analyzingbiological data.

4 DISCUSSION

It is not yet understoodvhatrole the diversity of immune
receptofibrariesplaysin theimmuneresponseBasedon

theresultsthatwe presentedhere,togethemwith our previ-

ousstudy(OpreaandForrest,1998),we arguethatadding
more and more antibodiesto the genome-encodeteper

toire improvesthe survival probability of the individual by

smallerand smalleramounts. This may be an explana-
tion for why the V-region librariesin variousspeciesdo

notseemto numbermorethanapproximatelyonehundred
genes.But if the selectionpressurdor increasinglibrary

sizeis small, what would keepevolution from producing
evensmallerlibrariesthanthe onesthatwe obsene? One
possibleexplanationis thatthereis a hardthresholdin an-
tibody/pathogeminding,below which recognitionwill not

occurat all. In this case,someminimal numberof anti-

bodieswould be requiredto ensurethat at leastone has
minimal affinity for any givenpathogenAlternatively, one
canimaginethat the pathogensetis structuredas a dis-

tribution of clusters,suchthat differentantibodiesin the

library would reflect different clustersof pathogens.We

hypothesizahatthe antibodygenesncodeantibodieghat
are“strategically” placedn thespaceof possiblereceptors.
The dataon what antibodygenesareinvolvedin immune
responseto virulentpathogenss sparseln theresponsé¢o

Hemophilusinfluenzaen humang(Inseletal., 1992),and
to Streptococcupneumoniadén mice (Lee et al., 1974),
preferentialinvolvementof a small numberof V' region

genes(and light-heary chain combinations)asbeenre-

ported,addingcredenceo our hypothesis.

Recently Davis et al. (1998) proposedthat the diversity
of the repertoirefor T cell, aswell asfor B cell recep-
tors, residesin the third complementaritydeterminingre-
gion (known asCDR3)of theimmunereceptor In contrast
with othercomplementargleterminingegions(CDR1and
CDR?2), which are exclusively encodedby the V-region
gene,CDR3recevescontributionsfrom oneor two more
genefragments Theseadditionalgenefragmentsassociate

randomly with the V'-region genefragmentto form the
genefor the antigen-bindingpart of a functionalimmune
receptor The authorsof the study proposedhat CDR3is
sufficient for aninitial binding of the immunereceptorto

theantigen andthatsomaticmutationof CDR1andCDR2
further improvesthe affinity/specificity of the interaction.
In contrast,our hypothesissmphasizeshat antibodygene
libraries (which codefor CDR1 and CDR2) might be the
basisfor evolutionarylearningaboutthe pathogenicenvi-

ronmentof the species.

Finally, large phageantibodyare now usedas a vehicle
for rapidly producinghigh affinity antibodiesto protein
antigens. Their tentatve use rangesfrom cancerther
apy to studyingthe function of geneproductsidentified
by genomeprojects(Griffiths et al., 1994; Hoogenboom,
1997). Our resultsarerelevantto this work, becausdhey
suggestwvhat library sizeswe canexpectto constructbe-
fore reachinga certainaffinity rangefor arandomantigen.
In particular if we know thedistribution of affinities of the
antibodiesn thelibrary to a randomantigen,we canpre-
dict what library sizeswe needto reachin orderfor the
bestantibodyin the library to be within a certainaffinity
range. We suggesthatpreliminaryaffinity measurements
on asubsebf suchalibrary, in conjunctionwith our anal-
ysis,couldbeausefultestin evaluatingmethodgor gener
atingthephagdibraries. Corverselywe couldusethedata
obtainedfrom theselarge antibodylibrariesto gaininsight
into the enegy landscap@f antigen-antibodynteractions.

In conclusioniit is only recentlythat biological datahave
becomeavailablewhich allow usto scrutinizethe various
theoriesthathave beenproposedor differentmechanisms
in theimmunesystem.Therole of germlinediversity, dis-
cussedn thispaperis anexampleof suchatheory Under
standingits role in the overallimmuneresponséascon-
sequencedhoth for theoreticalimmunologyand biotech-
nology andmedicine.However, the availability of detailed
biologicaldatameanghatwe needo refinemary of thede-
tails of our models. Seeminglysmall details,suchashow
we modelthe interactionsbetweenantigensand antibod-
ies, can have large impact on the validity of our results.
Justasthe adventof moderngenetictechnologiessuchas
knock-outtechniquesstimulateda review of classicalem-
bryology, somustwe continuallyrevisit thetheoreticalun-
derpinningsof our modelsasnew biological databecome
available.
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